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The joint maximum-likelihood reconstruction of activity and attenu-

ation (MLAA) for emission-based attenuation correction has regained

attention since the advent of time-of-flight PET/MR imaging. Re-

cently, we improved the performance of the MLAA algorithm using an
MR imaging–constrained gaussian mixture model (GMM). In this

study, we compare the performance of our proposed algorithm with

standard 4-class MR-based attenuation correction (MRAC) imple-
mented on commercial systems. Methods: Five head and neck
18F-FDG patients were scanned on PET/MR imaging and PET/CT

scanners. Dixon fat and water MR images were registered to CT

images. MRAC maps were derived by segmenting the MR images
into 4 tissue classes and assigning predefined attenuation coeffi-

cients. For MLAA–GMM, MR images were segmented into known

tissue classes, including fat, soft tissue, lung, background air, and

an unknown MR low-intensity class encompassing cortical bones, air
cavities, and metal artifacts. A coregistered bone probability map

was also included in the unknown tissue class. Finally, the GMM prior

was constrained over known tissue classes of attenuation maps us-
ing unimodal gaussians parameterized over a patient population.

Results: The results showed that the MLAA–GMM algorithm outper-

formed the MRAC method by differentiating bones from air gaps and

providing more accurate patient-specific attenuation coefficients of
soft tissue and lungs. It was found that the MRAC and MLAA–GMM

methods resulted in average standardized uptake value errors of –5.4%

and –3.5% in the lungs, –7.4% and –5.0% in soft tissues/lesions,

and –18.4% and –10.2% in bones, respectively. Conclusion: The
proposed MLAA algorithm is promising for accurate derivation of

attenuation maps on time-of-flight PET/MR systems.
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Hybrid PET/MR imaging systems have provided new oppor-
tunities for enhancing the diagnostic confidence of PET and MR

imaging findings through the fusion of complementary structural
and molecular information (1). The potential of PET/MR imaging
in establishing a new multiparametric imaging paradigm has been
a driving force for developing innovative solutions to tackle the
challenges of these dual-modality systems.
Accurate attenuation correction (AC) of PET data is one of the

major challenges of quantitative PET/MR imaging (2). In these sys-
tems, attenuation maps at 511 keV should ideally be derived from the
acquired MR images. However, in contrast to CT, MR imaging signals
are not correlated with electron density and photon-attenuating prop-
erties of tissues but rather to proton density and magnetic relaxation
properties. Therefore, there is no unique global mapping technique to
convert MR imaging intensities to attenuation coefficients. In addition,
lung tissues and cortical bones, which are 2 important tissue types in
attenuation maps, exhibit low signals on images acquired using con-
ventional MR pulse sequences because of their low water content and
short transverse relaxation time. Therefore, the lungs, bones, and air
pockets, which also produce a low signal, cannot be well differentiated
from each other for the generation of MR imaging segmentation-
based attenuation maps. Ultrashort-echo-time (UTE) and zero-
echo-time (ZTE) MR pulse sequences have been investigated for the
detection and visualization of bones as well as lung parenchyma (3–5).
However, UTE/ZTE MR imaging is time-consuming and sensitive to
magnetic field inhomogeneities and, as such, is not yet clinically fea-
sible for whole-body MR imaging–guided AC (MRAC) of PET data.
Current commercial PET/MR imaging systems use MR imaging seg-
mentation-based approaches as the standard AC method. In these meth-
ods, MR images are segmented into 3 or 4 tissue classes—that is,
background air, lung, and fat and nonfat soft tissues—and predefined
constant attenuation coefficients are assigned to each tissue class (6,7).
However, inter- and intrapatient heterogeneity of attenuation coeffi-
cients in the different tissue classes is ignored by these approaches.
Moreover, because bones and air cavities cannot be well discriminated
in conventional MR sequences, these tissue classes are often replaced
by soft tissue, which can lead to significant bias in PET tracer uptake
quantification in different organs (8,9). Hence, other AC techniques
based on atlas registration, external transmission sources, and PET
emission data have been explored and revisited in PET/MR imaging.
In atlas registration–based approaches, coregistered MR–CT atlas

datasets are used to derive a pseudo-CT image from the patient’s MR
image or to learn a mapping function that predicts a pseudo-CT
image (10,11). These methods can solve the MRAC problem, par-
ticularly in brain imaging, provided that a perfect registration be-
tween the atlas and different patients can be achieved. However, such
a registration is rarely possible in whole-body PET/MR imaging,
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because of substantial anatomic differences between patients and the
limitations of registration algorithms. With advances in PET detector
technology, time-of-flight (TOF) PET capability has been recently
introduced in clinical PET/CT and PET/MR imaging scanners with
the aim of improving lesion detectability and image quality as well
as reducing acquisition time and the administrated activity of radio-
pharmaceuticals (12). After the recent rebirth of TOF PET,
transmission- and emission-based methods have been revisited for
deriving patient-specific attenuation maps in PET/MR imaging, thus
potentially circumventing the uncertainties and obstacles of both
standard and UTE/ZTE MRAC methods. In transmission-based
approaches, attenuation coefficients are directly measured using ex-
ternal positron-emitting sources (13) or background radiation of
lutetium oxyorthosilicate crystals (14) in a simultaneous transmis-
sion and emission acquisition mode. TOF information is then used to
separate transmission from emission data. The limited timing reso-
lution of current TOF PET scanners, however, does not allow for
perfect separation of transmission data from emission data. There-
fore, the calculated attenuation coefficients might be nonuniformly
scaled and different from their expected values (13). In contrast,
emission-based approaches rely only on emission data for joint
maximum-likelihood estimation of activity and attenuation maps
(MLAA) (15,16). In fact, recent studies have demonstrated that both
activity and attenuation distributions can be determined from TOF
emission data, up to an unknown scaling factor (16,17).
Emission-based AC methods are promising in TOF PET/MR

imaging, where MR imaging anatomic information can be exploited
to guide the estimation of the attenuation map. With the advent of
sequential TOF PET/MR imaging systems, Salomon et al. (18) used
both TOF and MR imaging anatomic information to constrain the
MLAA algorithm. In their approach, MR images are segmented into
many regions over which the attenuation coefficients are iteratively
estimated from the emission data. Despite the fact that this approach
substantially reduces noise and cross-talk artifacts between activity
and attenuation maps, the reconstructed attenuation maps suffer
from mis-segmentation errors, and the quantitative performance of
the algorithm depends on the accurate correction of the scaling
problem. We recently proposed an approach to use MR imaging
spatial and CT statistical information in the joint estimation of ac-
tivity and attenuation using a constrained gaussian mixture model
(GMM) (19). In contrast to Salomon’s method, MR images are
segmented into a few tissue classes and incorporated into the
GMM model. This approach allows the derivation of continuous
attenuation maps with noise suppression, cross-talk, and the scale
problem. In this work, we evaluated the performance of the proposed
MLAA–GMM algorithm with standard 4-class MRAC over a patient
population and demonstrated the potential advantage of MR imaging–
guided emission-based AC methods over conventional MR imaging–
guided segmentation-based approaches.

MATERIALS AND METHODS

PET/MR Imaging and PET/CT Clinical Data Acquisition

In this retrospective clinical study, 5 patients with head and neck car-

cinoma were imaged on the Philips Ingenuity TF PET/MR imaging and
the Siemens Biograph mCT flow PET/CT scanners as part of the clinical

workup. The average age and body mass index of patients were 576 5 y
and 24.6 6 5.1 kg/m2, respectively. The patients were injected with

an average of 271 6 9.3 MBq of 18F-FDG and after a standard uptake
time of 60 min, during which various MR sequences were acquired, un-

derwent whole-body PET/MR imaging in an arms-down position. After
an interval of 10–20 min, the patients underwent complementary PET/CT

imaging of 10–12 min, also in the arms-down position. MR imaging was

performed on the Achieva 3-T MR imaging subsystem of the PET/MR
imaging scanner. A whole-body scan was acquired in shallow-breathing

mode using a 3-dimensional multiecho fast field echo Dixon technique
with the following parameters: repetition time of 5.7 ms; echo time 1/echo

time 2 of 1.45 and 2.6, respectively; flip angle of 10�, slice thickness of 3
mm, and matrix size of 680 · 680. PET/CT scanning was performed in

continuous-bed-motion mode with a bed speed of 1.1 mm/s, equivalent to
3 min per bed position in step-and-shoot mode. For CT-based AC (CTAC)

of PET data, a multislice CT scan protocol was performed using the
following parameters: 100–120 kVp, 150 mAs, and 5-mm slice thickness.

Supplemental Figure 1 (supplemental materials are available at http://jnm.
snmjournals.org) shows a flowchart of the acquisition protocol used in this

study. The TOF PET data of the mCT scanner was used for joint re-
construction of activity and attenuation maps, and the anatomic MR

images acquired on the Ingenuity PET/MR imaging scanner were used
for MR imaging–guided MLAA and 4-class MRAC methods. In-phase

MR images were deformably registered to CT images using the Elastix
software (20), with 5-level multiresolution registration and Mattes mutual

information criterion. The resulting transformation fields were then used

for registration of fat and water images.

Attenuation Map Generation

MR Imaging–Guided Emission-Based Attenuation Map. In the frame-

work of the maximum-likelihood estimation, the MLAA algorithm jointly
estimates activity (l) and attenuation (m) maps by maximization of the

Poisson log-likelihood of TOF PET emission data, that is,
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where git is the number of prompt coincidences measured by the PET

scanner along the line-of-response i in TOF bin t, bit is the expected
number of random and scattered coincidences, ni is detector normaliza-

tion factors, ai 5 expð2 +
j

lijmjÞ is attenuation factors, cijt is the geo-

metric probability detection of annihilation events emitted from voxel j

along the line of response i in TOF bin t, and lij is the intersection length
of the line of response i with voxel j in millimeters. Because the activity

and attenuation variables are coupled in Equation 1, the MLAA algo-
rithm follows an iterative alternating maximization approach (16). In

this approach, the algorithm alternates between an emission and a trans-
mission maximum-likelihood image reconstruction problem, which are,

respectively, solved by a TOF ordinary Poisson ordered-subset expecta-
tion maximization (OSEM) algorithm and a non-TOF ordered-subset

maximum-likelihood for transmission tomography (OS-MLTR) algo-
rithm. In the proposed MLAA–GMM algorithm, we used a transmission

maximum a posteriori image reconstruction for estimation of attenuation
by exploiting a Markov random field smoothness function (RMRFÞ and
a mixture of gaussian model (RGMM), defined as follows:
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Eq. 3

RMRF favors attenuation maps that are smooth based on the weighted
(v) differences between voxel j and its neighboring voxels in the
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neighborhood Nj. RGMM models the statistical distribution (histogram)
of linear attenuation coefficients (LACs) in attenuation maps at 511 keV

as a mixture of H known gaussian functions with mean mh, SD sh, and
mixture proportion rh (21). The parameters b and g weight the impact

of the penalty functions. In the proposed MLAA–GMM algorithm, the
RGMM is iteratively approximated using a convex surrogate and spatially

constrained by MR imaging anatomic information using a tissue prior
map. This prior map contains known and unknown tissue classes, over

which unimodal gaussians and a mixture of gaussians are, respectively,

imposed on the estimation of LACs during the OS-MLTR algorithm.

Figure 1 presents the flowchart of the proposed MLAA–GMM algorithm.
In this work, the algorithm was initialized by a uniform activity map and

a 4-class MRAC map.
For generation of the tissue prior map (Fig. 2), Dixon water and fat

MR images were segmented into 4 known tissue classes including fat,
soft tissue, lungs, and background air and an additional unknown

tissue class corresponding to the regions with low MR intensity
(i.e., cortical bones, air pockets, and metal-induced susceptibility arti-

facts). Because of the partial-volume averaging and incomplete Dixon
water and fat separation, spongy bones might possess moderate MR

intensities in water images and therefore be classified as known soft
and fat tissue classes instead of the unknown class. To eliminate this

misclassification, we subtracted the fat from water images and used
a bone probability map, obtained from a coregistered average CT, to

ensure the inclusion of bones into the unknown class. The soft-tissue
class was segmented by thresholding the fat-suppressed water images.

The fat class was defined on the basis of the voxels of the fat image
whose intensities are 50% larger than the water image. The lungs and

background air were segmented from in-phase MR images using a su-

pervised seeded region-growing method implemented in the ITK-
SNAP software (22). In the proposed MLAA method, a mixture of

4 gaussians representing inside air, fat/soft mixture, and bone was
used to guide the attenuation estimation over the unknown tissue class.

The parameters of the mixture model and unimodal gaussians were
estimated from 10 whole-body CTAC maps (19). Supplemental Figure

2 presents the estimated parameters.
MR Imaging–Guided Segmentation-Based Attenuation Map. Stan-

dard 4-class MRAC maps were derived by segmenting the Dixon
water and fat images into 4 tissue classes: background air, lung, fat,

and nonfat soft tissues. The background air, lungs, and fat tissue
classes were obtained with the same procedure used for deriving the

tissue prior map. The nonfat soft-tissue class was then defined as the
complement of the segmented classes. In this procedure, all bones, air

pockets, and susceptibility artifacts are assigned to the nonfat soft-
tissue class. Mean attenuation coefficients of 0, 0.0224, 0.0864, and

0.0975 cm21 were assigned to background air, lungs, fat, and nonfat
soft-tissue classes, respectively. The CT bed attenuation map was also

added to the resulting MRAC maps.
CT-Based Attenuation Map. For comparison of the MLAA and MRAC

methods against a reference AC method, CT-based attenuation maps
were generated for each patient using Siemens e7 tools. High-resolution

FIGURE 1. Flowchart of MLAA–GMM algorithm, which alternates be-

tween OSEM activity reconstruction and OS-MLTR attenuation recon-

struction. Algorithm is initialized by 4-class MRAC attenuation map and

MR imaging–based scatter sinograms. GMM model is spatially con-

strained by tissue prior map. norm. = normalization.

FIGURE 2. Derivation of tissue prior map. Fat and water Dixon images

are segmented into background air, fat, soft tissue, lungs, and low-intensity

class (5-class). Possible position of bones is determined from coregistered

average CT image.

FIGURE 3. Comparison of 4-class MRAC and MLAA–GMM attenua-

tion maps with their reference CTAC map from representative 18F-FDG

PET/CT/MR imaging study. Display window is 0.08 ± 0.055 cm−1.
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CT images were downsampled to a resolution of 400 · 400. CT Hounsfield

units were then converted to 511-keV attenuation values using a kVp-
dependent bilinear mapping approach. The resulting attenuation maps

were finally smoothed to the resolution of PET images using isotropic
gaussian filter (4 mm, in full width at half maximum).

PET Image Reconstruction

TOF PET data acquired on the mCT PET/CT scanner were

reconstructed using a 3-dimensional TOF OSEM algorithm with 3
different AC methods: MR imaging–guided emission-based, MR-

guided segmentation-based, and CT-based. PET images were recon-
structed with 3 iterations and 21 subsets and a matrix size of 200 · 200

with 4 · 4 · 2 mm voxels. For the MLAA–GMM algorithm, an in-
house software was developed for the native geometry of the mCT

scanner with the following specifications: 400 radial bins, 168 azi-
muthal angles, 621 planes, and 13 TOF bins. The coincidence window

width and effective TOF resolution of the scanner were 4.1 and 0.58
ns, respectively. The activity and attenuation maps were reconstructed

with 1 iteration and 2 subsets of the OSEM algorithm and 1 iteration
and 3 subsets of the OS-MLTR algorithm with 20 global iterations. As

mentioned above, the algorithm was initialized with a 4-class MRAC
map with a TOF scatter simulated using the same MRAC map. On the

basis of our previous work (19), the b and g parameters (in Eqs. 2 and
3) were experimentally set to 80 and 0.015, respectively. The esti-

mated attenuation maps were then used for a standard OSEM PET

image reconstruction.

Quantitative Evaluation

The relative quantification error (bias) in the standardized uptake
value (SUV) was calculated on a volume-of-interest (VOI) basis for

each patient with respect to the reference CTAC PET as follows:

Bias 5 100 ·
SUVm 2 SUVCTAC

SUVCTAC
; Eq. 4

where m is the AC method used (MLAA or MRAC). For each patient,
14 VOIs were defined on normal tissue regions including the lungs

(upper, middle, and lower portions of left and right lungs); aorta; liver;

myocardium; thyroid; cerebrum; and fourth cervical (C4), third tho-

racic (T3), and fourth lumbar (L4) vertebra. VOIs were also defined on

lesions localized on CTAC PET images. For the defined VOIs, the

mean (m), SD (s), and root-mean-squared error (RMSE) of bias

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 1s2

p
) was calculated. The correlation between SUVMRAC and

SUVMLAA and reference SUVCTAC was determined using Pearson

correlation analysis. The concordance between the SUVs was evalu-

ated using Bland–Altman plots. The statistical differences in SUV bias

was also calculated using the paired-sample t test. The differences

were considered statistically significant for a P value of less than 0.05.

RESULTS

Figure 3 compares the CTAC map of a representative patient
with the attenuation maps obtained using the proposed MLAA–

GMM algorithm and the 4-class MRAC method. As shown, the

MLAA–GMM algorithm can reasonably well estimate the atten-

uation coefficients of bones and discriminate air cavities, particu-

larly paranasal sinuses. In contrast, the bones and air gaps in the

MRAC maps are simply replaced by soft tissue, which can lead to

quantification errors in the reconstructed PET images. Figure 4

shows the close-up views of the attenuation maps over the lungs

in different displaying windows. The CTAC map shows that the

lungs of this patient have a congested structure especially in the

left lung. As indicated by the arrows, some of the condensed soft-

tissue structures in the MRAC map have been erroneously seg-

mented into the lung-tissue class, whereas the MLAA–GMM

algorithm compensates for the mis-segmentation of these structures

and also retrieves lung-density gradients. Because of respiratory

motion of the lungs during PET acquisition and count-dependent

performance of the MLAA algorithm, the estimated attenuation

coefficients cannot preserve all local details. For this dataset, the

lung attenuation coefficients of the CTAC, MLAA, and MRAC

attenuation maps, filtered by a gaussian filter

of 4 mm in full width at half maximum,

were 0.0293 6 0.0077, 0.0301 6 0.0075,

and 0.0225 6 0.0003 cm21, respectively.

Supplemental Figure 3 compares the atten-

uation maps of another patient study, where

the MLAA–GMM algorithm also compen-

sates for a mis-segmented pathology and

accurately retrieves the lung-density gradi-

ent in a continuous fashion. Figure 5 shows

activity and attenuation maps of another

study in which the MLAA algorithm also

compensated for respiratory-phase mis-

match between activity and attenuation

maps. As shown by the arrow, the uptake

at the upper lobe of the liver has been under-

estimated by CTAC and MRAC methods

because of undercorrection of attenuation.

FIGURE 4. Close-up views of lungs in different displaying windows:

0.08 ± 0.055 cm−1 (top) and 0.03 ± 0.03 cm−1 (bottom).

FIGURE 5. PET images and attenuation maps of patient presenting with respiratory-phase

mismatch between PET and CT/MR imaging acquisitions. Activity and attenuation profiles along

dashed line shown on CTAC attenuation map are also shown.
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As shown on the attenuation maps and profiles, the MLAA algo-
rithm estimates correctly the underlying attenuation experienced by
the emission data and therefore increases liver uptake, thus improv-
ing the detection and quantification of possible upper-lobe lesions.
Table 1 compares the mean 6 SD of LACs of different tissue

classes of the CTAC, MLAA, and MRAC attenuation maps cal-
culated over all patient datasets. For these classwise calculations,
the lung, fat, and soft-tissue classes were obtained from the tissue
prior map built for each patient (Fig. 2). The bone class was de-
rived by thresholding CTAC images at 0.109 cm21. As can be
seen, the main difference between MLAA and MRAC methods
sits over the lungs and bones, for which the maximum PET quan-
tification errors occur when using standard MRAC methods. The
results show that the MLAA–GMM algorithm outperforms the
MRAC method over these tissue classes by estimating mean and
SD of LACs, which are closer to those of the reference CTAC
method. The proposed method, however, slightly over- and under-
estimates the mean of the LACs of lungs and bones, respectively.
In fat and soft-tissue classes, both MLAA and MRAC attenuation
maps have a mean similar to the CTAC maps, whereas the SD of
only MLAA’s LACs are close to those of CTAC maps.
The quantitative PET performance of MR imaging–guided AC

methods was further evaluated in comparison with the CTAC
method using VOI-based analysis. Table 2 summarizes the mean,
SD, and RMSE of the mean SUV (SUVmean) bias in VOIs defined
in normal tissue and lesions. Figure 6A shows the errors in each
VOI, grouped for the lung and soft-tissue organs, whereas Figure
6B shows the results for VOIs defined on bones or soft tissues

located close to bones. In this figure, the markers show the mean of
bias in each VOI, whereas the horizontal bars and vertical boxes
indicate the mean and 2 SDs of the bias between VOIs in each
region. The results show that the MLAA–GMM algorithm gener-
ally gives rise to a reduced RMSE bias over all regions. For VOIs
defined in the lungs (n 5 30), the MRAC method underestimates
SUVmean by –5.4% 6 12.0%, with an RMSE of 13.1%, whereas
MLAA–GMM reduces the errors to –3.5% 6 6.6%, with an
RMSE of 7.5%. For the total VOIs defined on the aorta, myocar-
dium, liver, and thyroid (n 5 20), MRAC and MLAA–GMM
methods resulted in average SUV errors of –7.0% 6 6.6%
(9.6% RMSE) and –4.9% 6 5.5% (7.4% RMSE), respectively.
Over the lesions (n 5 11), which were mainly mediastinal lym-
phoma, the MLAA–GMM reduced the errors from –9.0% 6 5.4%
with an RMSE of 10.5% to –4.5% 6 5.3% with an RMSE of
7.0%. Finally, for all regions in or near bones (n5 20), the MRAC
and MLAA algorithms resulted in an average SUV error of
–18.4% 6 7.9% (20.0% RMSE) and –10.2% 6 6.5% (12.1%
RMSE), respectively. The statistical analysis revealed that there
is an overall significant difference (P , 0.05) between the pro-
posed MLAA–GMM and MRAC methods in bones, malignant
lesions, and most soft-tissue regions. The results also showed that
the bias differences in the lungs are insignificant.
The SUV correlation and concordance of the MLAA and MRAC

methods with reference CTAC was further evaluated. Figure 7 (top)
shows the scatterplots of the SUVmean in all studied VOIs between
PET CTAC, PET MRAC, and PET MLAA with correlation and
regression coefficients. The results show that PET MLAA and PET
MRAC are highly correlated with PET CTAC, with R2 values of
0.982 and 0.992, respectively. Figure 7 (bottom) also shows the results
of Bland–Altman concordance analysis. The limits of agreement were
calculated from logarithmically transformed values. Differences and
limits of agreement are expressed as a function of average SUVs. As
shown by the regression lines of the difference, MRAC and MLAA
AC methods result in a systematic underestimation of SUV by up to
9.85% and 6.75%, respectively. However, MLAA clearly outperforms
MRAC by reducing the errors and their dispersion.

DISCUSSION

Interest in the estimation of PET attenuation maps from emission
data has recently been revived in the context of TOF PET/MR
imaging AC to overcome the limitations and quantification errors of
standard segmentation-based MRAC methods (18,19). In this work,
we compared the performance of our previously reported MLAA
algorithm with the standard MRAC method to demonstrate the
potential of emission-based AC methods in TOF PET/MR imaging.
In segmentation-based MRAC methods, the mis-segmentation

of the lungs and the assignment of nonpatient-specific lung
attenuation coefficients can result in PET quantification errors.

TABLE 1
Mean ± SD of LACs of Different Tissue Classes of CTAC, MLAA, and MRAC Attenuation Maps Calculated over All Clinical

Studies

Method Lung Fat Soft tissue Bone

CTAC 0.025 ± 0.009 0.087 ± 0.009 0.098 ± 0.008 0.118 ± 0.012

MLAA 0.027 ± 0.008 0.086 ± 0.010 0.097 ± 0.006 0.104 ± 0.012

MRAC 0.022 ± 0.001 0.086 ± 0.004 0.097 ± 0.001 0.095 ± 0.005

TABLE 2
Quantification Bias of PET MRAC and PET MLAA in Different

Tissues with Respect to Reference PET CTAC

VOI MRAC MLAA P

Lung −5.4 ± 12.0 (13.1) −3.5 ± 6.6 (7.5) 0.1605

Aorta −9.5 ± 10.5 (14.1) −7.6 ± 9.3 (12.1) 0.0942

Liver −7.4 ± 1.8 (7.6) −5.4 ± 3.2 (6.3) 0.0376

Myocardium −9.2 ± 6.0 (11.0) −3.1 ± 6.8 (7.5) 0.0027

Thyroid −1.9 ± 8.8 (9.0) −3.6 ± 5.1 (6.3) 0.6574

Lesions −9.0 ± 5.4 (10.5) −4.5 ± 5.3 (7.0) 0.0237

Cerebrum −18.5 ± 11.3 (21.6) −11.6 ± 6.0 (13.1) 0.0503

C4 −22.9 ± 2.7 (23.1) −12.3 ± 3.1 (12.7) 0.0011

T3 −19.8 ± 8.4 (21.5) −12.6 ± 8.6 (15.2) ,0.001

L4 −12.4 ± 4.5 (13.2) −4.2 ± 4.4 (6.1) ,0.001

Data are mean ± SD, with RMSE (%) in parentheses.
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Our results demonstrated that, consistent with previously reported
results (23), the MRAC method results in errors in the lungs of up to
26% (Fig. 6). Because of their low proton density and short T2*
relaxation time, the lungs show low signal intensity in the fast
gradient-recalled echo pulse sequences conventionally used in whole-
body MR imaging acquisitions. Therefore, in conjunction with the
limitations of segmentation-based MRAC algorithms, the soft-tissue
structures of the lungs, for example, pulmonary vessels and bron-
chioles, might be mis-segmented into lung class. Our results showed
that the MLAA–GMM algorithm not only fairly compensates for the
mis-segmentations but also derives more patient-specific lung LACs
(Fig. 4; Supplemental Fig. 3). Hence, as reported in Table 2, the
RMSE in the lungs was reduced from 13.1% to 7.5%. In contrast
to Salomon et al. (18), our proposed MLAA estimates continuous
attenuation coefficients and thus retrieves the lung-density gradients
and intrapatient variability of lung attenuation coefficients. Continu-
ous lung LACs can also be derived from atlas registration–based AC
methods. However, these approaches had a limited success because
of the low signal of the lungs (10).
Another limitation of segmentation-based MRAC is that the

identification of bones, which produce low signal intensity in
gradient-recalled echo MR imaging pulse sequences, is challeng-
ing. In 4-class MRAC maps, the bones are replaced by soft tissue,

which on the basis of our results can lead to a mean bias of –18.4%.
This mean bias is consistent with the greater than 15% errors reported
previously (9,23). As demonstrated in this work, the proposed MLAA–
GMM algorithm is capable of estimating bone attenuation coefficients,
thus outperforming the MRAC method by reducing the mean error to
–10.2%. Bezrukov et al. reported that a combination of segmentation
and atlas registration–based AC methods can effectively reduce bone
SUVerrors of the 4-class MRAC from –16.1% to –4.7% (8). However,
the performance of these techniques depends on accurate atlas registra-
tion and robust prediction of attenuation coefficients. In contrast,
several CT images are registered to a patient’s in-phase MR image
in our MR imaging–constrained MLAA algorithm to only roughly
indicate the position of the bones. Therefore, this technique is in
principle not subjected to misregistration errors.
As indicated in Supplemental Figure 2, we set the means of

gaussian models defined in known tissue classes to the mean LACs
used in the 4-class MRAC maps. Therefore, for high values of the g
parameter in Equation 3, the MLAA–GMM is essentially reduced to
a 4-class MRAC method. The results show that the MLAA and
MRAC methods present similar mean LACs in fat and soft-tissue
classes (Table 1); however, the SDs (inter-/intravariability) of LACs
in the MLAA attenuation maps are similar to those of reference
CTAC maps. Combined with more accurate derivation of lung
and bone LACs, our MLAA–GMM approach resulted in improved
quantitative performance over soft-tissue organs, compared with the
MRAC method (Table 2).
The results of this feasibility study demonstrate the potential of

the emission-based AC methods for accurate AC in TOF PET/MR
imaging. However, it is worth highlighting the limitations of the
proposed algorithm and the study conducted herein. Similar to other
maximum a posteriori reconstruction techniques, the performance of
the MLAA–GMM depends on the selection of the regularization
parameters, especially the g parameter of the GMM model. In this
work, we set the g and the b parameter in Equation 2 to experimen-
tally optimized values for a few simulation and clinical studies (19).
In general, the MLAA algorithm is time-consuming because it alter-
nates between an emission and transmission tomographic reconstruc-
tion. The preparation of a tissue prior map can further increase the

FIGURE 6. SUVmean errors between PET MRAC and PET MLAA with

respect to reference PET CTAC images in VOIs defined on normal tis-

sues and lesions (A) and in/near bones (B). Means and SD are indicated

by horizontal bars and vertical boxes, respectively. C4, T3, and L4 rep-

resent fourth cervical, third thoracic, and fourth lumbar vertebra.

FIGURE 7. (Top) Scatterplots between SUVmean of PET images recon-

structed using CTAC, MLAA–GMM, and MRAC AC methods. (Bottom)

SUVmean Bland–Altman concordance plots.
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computational burden of the proposed MLAA–GMMmethod. In this
first clinical study, a relatively small number of PET/MR/CT datasets
could be included. Therefore, the statistical significance of our results
might be subject to a degree of uncertainty. Future work will focus on
further evaluation of the studied AC methods using a large clinical
patient database acquired with different tracers to pave the way for
translation of emission-based AC methods into the clinic.

CONCLUSION

In this work, the performance of an MR imaging–guided emission-
based AC method was compared with the standard segmentation-
based MRAC method using clinical studies. It was demonstrated that
the proposed constrained MLAA algorithm is promising for deriving
patient-specific attenuation maps, especially in the lungs and bones.
Our results showed that the MRAC method resulted in average SUV
errors of –5% and –18% in the lungs and bones, and the proposed
algorithm reduced the errors to –3% and –10%, respectively.
Emission-based AC is promising in clinical TOF PET/MR imag-
ing and presents the potential to replace conventional segmenta-
tion-based methods implemented on commercial systems.
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