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Attenuation correction (AC) is a critical requirement for quantitative

PET reconstruction. Accounting for bone information in the atten-

uation map (μ map) is of paramount importance for accurate brain

PET quantification. However, to measure the signal from bone
structures represents a challenging task in MR. Recent 18F-FDG

PET/MR studies showed quantitative bias for the assessment of

radiotracer concentration when bone was ignored. This work is focused

on 18F-FDG PET/MR neurodegenerative dementing disorders. These
are known to lead to specific patterns of 18F-FDG hypometabolism,

mainly in superficial brain structures, which might suffer from atten-

uation artifacts and thus have immediate diagnostic consequences.
A fully automatic method to estimate the μ map, including bone

tissue using only MR information, is presented. Methods: The al-

gorithm was based on a dual-echo ultrashort-echo-time MR imag-

ing sequence to calculate the R2 map, from which the μ map was
derived. The R2-based μ map was postprocessed to calculate an

estimated distribution of the bone tissue. μ maps calculated from

datasets of 9 patients were compared with their CT-based μ maps

(μ mapCT) by determining the confusion matrix. Additionally, a region-
of-interest comparison between reconstructed PET data, corrected

using different μ maps, was performed. PET data were reconstructed

using a Dixon-based μmap (μmapDX) and a dual-echo ultrashort-echo-
time–based μ map (μ mapUTE), which are both calculated by the scan-

ner, and the R2-based μmap presented in this work was compared with

reconstructed PET data using the μ mapCT as a reference. Results:
Errors were approximately 20% higher using the μmapDX and μmapUTE
for AC, compared with reconstructed PET data using the reference

μ mapCT. However, PET AC using the R2-based μ map resulted, for

all the patients and all the analyzed regions of interest, in a significant

improvement, reducing the error to −5.8% to 2.5%. Conclusion: The
proposed method successfully showed significantly reduced errors in

quantification, compared with the μ mapDX and μ mapUTE, and there-

fore delivered more accurate PET image quantification for an improved

diagnostic workup in dementia patients.
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The current aging population is leading to an increased atten-
tion to dementing disorders and their most common cause, neurode-

generative Alzheimer disease. One of the earliest features seen on

PET neuroimaging that these neuropsychiatric disorders show is re-

duced brain glucose metabolism in specific regions in neocortical

brain areas. In addition to established biomarkers representing neu-

ronal dysfunction such as 18F-FDG, newer protein aggregation PET

biomarkers for in vivo amyloid imaging in the brain have been de-

veloped and were recently included into the guidelines of the Na-

tional Institute on Aging and the Alzheimer Association (1,2). For all

of these PET techniques, a highly accurate and robust tracer quan-

tification is required for the early diagnosis and accurate monitoring

of therapeutics such as amyloid-modifying agents.
A level of quantification error of below 5% for brain PET is

desired (3). PET data require correction for scattering and atten-

uation before reconstruction. Scatter correction, estimated through

either analytic or simulated models, is based on a previously es-

timated attenuation map (m map).
Attenuation information is obtained through a CT scan in the

case of PET/CT, which is then transformed from Hounsfield units

to the corresponding linear attenuation coefficients (4). During the

last few years, technologic advances on PET instrumentation have

allowed the integration of clinical MR-compatible PET scanners

(5,6). The combination of PET and MR information provides the

opportunity of exploiting several new possibilities such as motion

correction, combined PET and functional MR imaging, anatomically

driven image reconstruction, or simultaneous functional–metabolic–

anatomic acquisition among others. The benefits of these new possi-

bilities are arguably dependent on their clinical application. In par-

ticular, for neurologic studies, the acquisition of a combined PET/MR

scan for quasiperfect coregistration is required, which also provides

patient comfort, reduced radiation exposure, and increased patient

throughput because no PET/CT is necessary. However, the com-

bination of PET/MR also brings several challenges that need to be

addressed to obtain accurate quantitative information, 2 of them

being attenuation correction (AC) and scatter correction.
The 2-point Dixon sequence is used in clinical routine to classify

among 4 different tissues: background, fat, lungs, and soft tissue (7).

For whole-body PET/MR, this approach provides errors of less than

10%, which are acceptable in the medical community, with the ex-

ception of bone lesions (8).
The particular case of brain PET is more demanding because the

ratio between the amount of hard tissue (bone) and soft tissue is higher,

thus potentially obtaining larger errors than in whole-body PET when

bone is ignored in the m map. In the particular case of brain PET

studies, given the small structures present in the brain and the test–retest
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variability in PET quantification (3), the desired quantitative error
should be lower than the error acceptable for whole-body PET.
There are studies that indicate that using the Dixon-based AC,

ignoring bones in the m map, produces significantly high quanti-
tative errors, compared with CT-based AC (9,10). Other studies
have looked at the error in different areas of the brain, proving that
the largest quantitative errors are located near bone structures (11),
the worst scenario being when bone is classified as air, for which
errors up to 30% have been measured.
There are various alternatives to produce accurate attenuation

information from the head. The most extended method is based on
computed atlases using MR and CT information from the same
patients to classify data into different tissues (12–14). In a slightly
different manner, these atlases have been used in combination with
machine-learning algorithms (15–17) to provide more accurate results.
A combination of segmentation and atlas using SPM8 (Statistical
Parametric Mapping; Wellcome Trust Institute of Neurology) (18) to
calculate the m map was presented by Izquierdo-Garcia et al. (19).
Alternatively, different segmentation methods applied to differ-

ent MR sequences, such as magnetization prepared rapid acqui-
sition gradient echo (MPRAGE) (20), ultrashort echo time (UTE)
(21), or dual-echo UTE (dUTE) (22–24), have obtained accurate
quantitative results. The latter represents an interesting approach
because a preliminary good estimate of the m map can be obtained
using information extracted at different echo times (TEs). In all
these methods, predetermined attenuation coefficients are assigned
to each voxel depending on the assigned tissue, which can be air,
soft tissue, fat, and bone. A detailed comparison of the approach
introduced by Keereman et al. (23) with CT data was recently
presented in Delso et al. (25). This study concluded that the m
map calculated by Keereman et al. (23) was a reliable method to
extract the cortical bone but without a functional relation with CT
data. However, artifacts were observed around dental implants, air
interfaces, and nasopharyngeal cavities and within the folds of the
neck fat. The analysis was limited to m maps without presenting
results from reconstructed PET data.
A third methodology uses attenuation information estimation from

emission data, which has been investigated with the maximum-
likelihood activity and attenuation algorithm (26). Moreover,
some improvements were obtained by including time-of-flight in-
formation (27), reducing artifacts produced by cross-talk between
emission and attenuation data. However, studies using this ap-
proach have been limited to whole-body studies, missing potential
improvements particularly for brain PET studies.
In this work, we present a method to extract the head m map

calculated from a dUTE sequence, which is postprocessed to produce
a continuous spectrum of linear attenuation coefficients. The method is
similar to the one presented by Keereman et al. (23) but with higher
emphasis on the image-processing approach to obtain the final m map.
Additionally, in our work we performed a quantitative analysis of
dementia-related brain regions from reconstructed PET data.

MATERIALS AND METHODS

PET/MR Device

The PET/MR scanner used in this work was the Biograph mMR

(Siemens AG-Healthcare) with the software version VB18SP3 and the
work-in-progress software version 719. The mMR scanner is a fully

integrated system with a 3-T MR magnet and a PET ring based on
avalanche photodiode technology.

The dimensions of the magnet were a 163-cm outer diameter and
60-cm inner diameter with an axial field of view of 45 cm, and the

dimensions of the PET bore were a 59.4-cm diameter with a 25.8-cm

axial field of view.
The spatial resolution in the center of the scanner was 4.3 mm, and

the sensitivity was 15 cps/MBq (28). The gradient coil had a gradient
field of 45 mT/m, with a switching time of 200 T/m/s. The head/neck

coil used in all the studies presented here was the 16-channel Total
Imaging Matrix (Siemens AG-Healthcare).

Imaging Protocol

Nine patients (7 men and 2 women), with an average age of 61 6 8 y
(range, 51–76 y) and average weight of 82 6 18 kg (range, 67–128 kg),

were selected for the present prospective study. The patients, with sus-
pected dementia, were selected for a double scan in the PET/CT system

(Biograph mCT; Siemens AG-Healthcare) and subsequently in the PET/
MR, which was located nearby. Patients were intravenously injected

with 184 6 6 MBq of 18F-FDG 30 min before the PET/CT scan,
following the standard protocol in dementia studies. The head PET/

CT scan took 15 min. A low-dose CT (120 keV, 25 mAs) scan was
acquired for attenuation and scatter correction in the PET/CT. All

subjects gave written informed consent, and the local Institutional
Review Board approved the study.

After the PET/CT scan, the subjects immediately underwent a PET/
MR scan without extra 18F-FDG administered. The tracer activity in

the subjects when the PET scan started in the PET/MR was 138 6 21
MBq. The duration of the PET scan in the PET/MR was 15 min. These

emission data were used for reconstruction in combination with all the
different m maps studied in this work for each patient, including the

CT-based m map; hence, no decay correction was required and no
physiologic discrepancies were present.

At the start of the MR protocol for neurologic studies, a dUTE
sequence, which requires 100 s, was acquired. The dUTE consisted of 2

measurements taken at 2 consecutive TEs, 70 ms and 2.36 ms. The flip
angle was 10� and the repetition time 3.98 ms. The field of view was 300 ·
300 · 300 mm, with an isotropic voxel size of 1.56 mm. After the dUTE
sequence, the rest of the sequences routinely used for dementia studies

were acquired, extending the entire PET/MR scan for approximately 1 h.

Image Processing

The mMR system calculates 2 different m maps for head AC. The rou-
tinely used m map is based on the 2-point Dixon pulse sequence (m mapDX),

as used for whole-body AC, for which the head is classified as soft tissue and
air cavities. Additionally, the mMR system also calculates a m map based on

a dUTE sequence (m mapUTE), for which bone, soft tissue, and air cavities
are identified. The way m mapUTE is calculated is not disclosed by the

vendor, but it is clear that it is computed by some relation between the
resulting images obtained after both TE and posterior thresholding.

For comparison purposes, the CT data from the mCTwas converted
to m map (m mapCT) and used in the PET reconstruction for AC. To

convert the CT data to m values, the CT data in Hounsfield units were
converted to linear attenuation coefficients for a 511-keV energy using

a bilinear scaling (4). The resulting m mapCT was then rigidly regis-
tered and resampled with the image acquired after the first echo

obtained from the scanner using the Siemens Syngo 3-dimensional
software to match the voxel size of both datasets.

PET data were reconstructed using the statistical iterative ordered-
subsets expectation maximization (29), with 21 subsets and 3 itera-

tions. The reconstructed field of view was 128 · 128 · 74 voxels, with

a size of 2.54 · 2.54 · 3 mm. The images were filtered by a 5-mm-
wide Hamming window after reconstruction.

Attenuation Map Estimation

The m map used in this work was estimated as follows: at the start
of each scan, a dUTE pulse sequence was acquired as described in the

“Image Processing” section. The process is described in the flowchart
shown in Figure 1 and detailed below.
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Air Cavities

To identify the internal air cavities in the images measured after

each echo, first the external region of the head was identified using
a global histogram-based thresholding. The threshold value was automat-

ically extracted from the valley of the resulting bimodal intensity histogram
calculated from the first echo image, by calculating the intensity bin with

the lowest gradient between histogram bins. After thresholding, the
resulting external mask was defined as the outer air binary mask (Ba,o),

where voxels identified as air were set to 1 and the rest were set to 0.

The resulting Ba,o obtained from the first echo image was applied to
both echo images. To find out the range of intensity values that each

echo image contains corresponding to the internal air cavities, the
mean (mBa,o) and SD (sBa,o) of the voxels included in the Ba,o mask

were calculated in each echo image.
To extract the internal air cavities, all the voxels with intensity

values less than mBa,o 1 sBa,o in each echo image were classified as air
to produce the binary masks Ba0,i and Ba1,i for each echo image, re-

spectively. Subsequently, the air cavities present in both air masks
(Ba0,i and Ba1,i) were combined in a global internal binary mask (Ba,i)

and merged with Ba,o to produce the global air binary mask (Ba).

Bone Tissue

To extract the bone tissue, the following relationship between the
2 images acquired after each echo was calculated:

R2 5
logI0 2 logI1
TE0 2 TE1

: Eq. 1

R2 is the inverse of the spin–spin transverse relaxation time (T2) from
which the m map is derived (23), where I1 and I0 are the resulting echo

images and TE1 and TE0 are the echo times, 70 ms and 2.36 ms,
respectively. A thorough comparison between the R2-based m map

and mmapCT showed significant qualitative resemblance between both
m maps (25).

The idea behind the R2 map is that the first echo picks up signal
from bone and soft tissue, whereas the second echo picks up signal

only from soft tissue. The R2 map contains high-intensity values
where bone tissue is located and low-intensity values for the rest of

the tissues. There are additional tissues with short T2, such as facial
and neck musculature, which are visible in the R2 map (25). To study

the impact of possible variability between

echo images, we obtained 12 scans of the
same healthy subject at the beginning of the

day and at the end of the day during several
consecutive days. All the resulting echo

images were coregistered using SPM8. The
R2 map of each scan was calculated to see

the impact of the interscan voxel variability
on the R2 map.

R2 Map Postprocessing

After the R2 map was calculated, it was
postprocessed to obtain an accurate estima-

tion of the bone structures. First, the air mask
was subtracted from the R2 map. Subse-

quently, the bone tissue was extracted from
the R2 map to be scaled to linear attenuation

coefficients. For this purpose, the R2 map was
normalized so the maximum intensity value

was 1. Subsequently, all the voxels with an

intensity value greater than 0.004 (empiri-
cally chosen) were initially identified as bone

tissue. From those voxels identified as bone
tissue, the mode (Mb) and the SD (sb) were

calculated. Then all the voxels in the R2 map
with an intensity value greater than Mb 1 sb were identified as bone.

Small differences were observed with 2sb and 3sb thresholds. The
resulting mask was cleaned by discarding blobs with an area smaller

than 5 voxels in each 2-dimensional slice, producing a m map con-
taining only bone tissue (m mapR2b

).

One of the potential problems of using the m mapR2b is that the
intensity values exhibit significant intensity variations, compared with

the m mapCT (25). To correct for the different intensity value ranges
observed between CT and MR data, 4 methods to postprocess the in-

tensity values of m mapR2b
were compared: m mapR2b

with intensity
values resulting from Equation 1 (mmapR2b,raw

), mmapR2b
with intensity

values clipped at a maximum value of 0.251 cm21 obtained experimen-
tally from CT data (m mapR2b,clp

), binary maps for which voxels classi-

fied as bone were set to 0.151 cm21 (m mapR2b,bin
), and m mapR2b

with
intensity values equalized (m mapR2b,equ

) using the equation

I0R2 ;i 5

�
IR2 ;i 2 min

�
IR2

�
DIR2

�
DICT 1 minfICTg; Eq. 2

where IR2 ;i and I0R2 ;i are the intensity values for the R2-based m map
and m mapR2b,equ

, respectively, with voxel index I; minfIxg is

the minimum intensity value of the m map (R2 or CT) from all voxels
with an intensity value above 0; and DIx is the difference between the

maximum- and minimum-intensity values of the m map.
Finally, m mapR2b,x

was completed by including the soft tissue as

a constant (0.096 cm21) and filtered with a gaussian mask of 4.3 mm
in full width at half maximum (28) to match the spatial resolution of

the PET scanner to produce the final m mapR2,x.
The algorithm presented here is fully automatic, takes approxi-

mately 5 s to compute in average, and is implemented in MATLAB
(version 8.1; The MathWorks Inc.).

Quantitative Comparison

The differentm mapsR2,x
were quantitatively compared with them mapCT,

m mapDX, and m mapUTE from the same patients. The m mapsR2,x
,

m mapDX, and m mapUTE were in a common coordinate system, but

the m mapCT had to be rigidly registered to the rest of the m maps to
have all the m maps in the same coordinate system. To classify air, soft

tissue, and bone in the reference m mapCT the thresholds 2200 and
700 HU were used. The global percentage of true-positives and

FIGURE 1. Flowchart to calculate μ mapR2,x
.
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false-negatives between the m maps obtained from each method was

calculated (confusion matrix) using the classes derived from the seg-
mentation. Special attention was paid in the case of air classified as

bone or vice versa, because such a misclassification could potentially
produce significant errors in the reconstructed PET data.

For dementia studies, the most relevant/interesting regions are those
of the neocortex such as the hippocampus, parietal (inferior and

superior), temporal (inferior, middle, and superior), and frontal
regions. The precuneus and posterior cingulate regions, especially,

are the most typically affected regions in Alzheimer disease 18F-FDG
and amyloid PET studies (30–32). The orbitofrontal cortex region was

included in the analysis because of its proximity to bone and air
cavities.

Reconstructed PET data obtained with the m mapR2,raw, m mapR2,bin,
m mapR2,clp

, m mapR2,equ
, m mapDX, and m mapUTE were quantitatively

compared with reconstructed PET data corrected using the m mapCT.
To compare the different methods, all the reconstructed PET images

were analyzed using SPM8. First, the MPRAGE dataset of each
patient was rigidly registered to the common coordinate space of the m

maps and PET using the aforementioned same transformation. Then,
the T1 (MPRAGE) Montreal Neurologic Institute (MNI) template was

elastically registered to the MPRAGE dataset of each patient. The
MNI template contains a voxel atlas holding 116 anatomic predefined

regions based on the automated anatomic labeling atlas. Once the
MNI template was in the same coordinate space as the MPRAGE

data, it was used to extract the quantitative information from the
PET data. Finally, the mean was extracted from all the 116 anatomic

predefined regions. The figure of merit used for the comparison be-
tween methods was the normalized error (En), defined as

Enð%Þ 5 AX 2 ACT

ACT

· 100; Eq. 3

using the m mapCT–corrected PET images as reference. �ACT and �AX

are the mean activities measured in a given region of interest (ROI) of

the PET data reconstructed using the m mapCT for AC and the alter-
native m maps. Although SPM8 automatically analyzes the 116 anat-

omic predefined regions, we strictly concentrated on those regions
related to different stages of dementia, especially those showing alter-

ations in the early stages of dementia.

RESULTS

Robustness of dUTE Sequence

Figures 2A and 2B show a central axial slice of the mean and
SD, respectively, for each voxel of the R2 map calculated from
each scan. The logarithm of the coefficient of variation (CV de-
fined as s/m) was additionally calculated (Fig. 2C). The CVexhib-
its high variability due to similar intensity values in I0 and I1 for
voxels corresponding to tissues with long T2 and dissimilar

intensity values in I0 and I1 for voxels with
short T2 relaxation time. Because of the
logarithms of I0 and I1 used in Equation
1, the differences obtained in the CV are
enhanced. The mean and SD of the voxels
belonging to bone, air cavities, and soft
tissue in Figures 2A, 2B, and 2C, respec-
tively, are shown in Supplemental Table 1
(supplemental materials are available at
http://jnm.snmjournals.org).

Attenuation Maps

Figure 3 shows a 3-dimensional render-
ing of m mapCT and m mapR2b,equ

of a pa-
tient. The central axial slice of the m mapCT, m mapR2,equ

, and m
mapUTE are shown in Figures 3C, 3D, and 3E, respectively. The
errors of m mapR2,equ and m mapUTE, compared with m mapCT, are
shown in Supplemental Figure 1.
When the m mapCT from all the patients was analyzed, the mode was

0.11 6 0.00004 cm21, the maximum value was 0.25 6 0.009 cm21,
and the range (DICT) was 0.14 6 0.009 cm21. The low deviations
suggest that the m mapCT was consistent for all the patients. These
parameters were used to equalize the m mapR2b intensity values to
match the CT attenuation coefficients. Figure 4 shows the intensity
histograms of the bone structures from Figure 3, where the m mapCT is
shown in red, the m mapR2b,raw

in blue, and the m mapR2b,equ
in green.

Figure 5A shows the classification results for bone and Figure
5B air using the m mapCT as reference for the 3 different m maps
under evaluation: R2-based m map, m mapDX, and m mapUTE
(numeric values are in Supplemental Tables 2 and 3). True-
positives represent the percentage of correctly classified voxels
as bone or air. False-negatives correspond to the percentage of
voxels belonging to bone or air incorrectly classified as a different
tissue. Finally, false-positives correspond to the percentage of
incorrectly classified voxels as bone or air, but they belong to
a different tissue.
Considered a special case was when bone was classified as air

or vice versa. The results for each method in the case for which

FIGURE 2. Mean (A) and SD (B) for each voxel of R2 map calculated from each of 12 dUTE

scans and log (CV) (C) measured from A and B.

FIGURE 3. Three-dimensional rendering of bone structure of μ mapCT
(A) and μ mapR2b,equ

(B) of patient. Corresponding central axial slices of

μ mapCT (C), μ mapR2,equ
(D), and μ mapUTE (E) including air cavities and

soft tissue.
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voxels belonging to bone were misclassified as air and vice versa
are shown in Supplemental Table 4.

Quantitative Comparison with Reconstructed PET Data

Figure 6 shows the En measured for the different ROIs related to
dementia analyzed in this study. The m maps used in each recon-
struction were the m mapDX and m mapUTE calculated by the
scanner and then the 4 alternatives based on the R2 map m map:
m mapR2,raw

, m mapR2,bin
, m mapR2,clp

, and m mapR2,equ
. The uncer-

tainties, shown as error bars, were measured as the SD over the left
and right hemispheres among all the patients. The numeric values
of Figure 6A are shown in Supplemental Table 5. Supplemental
Figure 2 shows central axial, coronal, and sagittal slices of the En

for a patient using all the m maps under study.

DISCUSSION

A variability study of the dUTE sequence resulted in higher
variability in bone structures than soft tissues, which translates into
higher variability in tissues with short T2 relaxation times than in
tissues with long relaxation times. Such variability was additionally
assessed in the R2 map by calculating the mean and SD for each
voxel between the 12 scans. To see if the variability was significant,
the log(CV) was calculated to study the noise. This calculation
showed low CV in bones, compared with soft tissues, suggesting
that using the R2 map to estimate the bone structures produces reli-
able results.
As indicated by other authors, the main challenge in estimating

the m map is to separate bone and air cavities (33), especially in
regions in which they are close together (34) and tissue misclas-
sification can result in significant errors.
The assessment of the tissue classification showed that our

method performed better than the m mapUTE, not only at cor-
rectly identifying voxels as bone (66.6%, compared with 22.4%)
but also at misclassifying fewer voxels of bone as soft tissue
(33.3%, compared with 77.5%).
Regarding the air cavities, the 3 methods performed similarly at

correctly classifying voxels as air (88.6% 6 2.5% accurate) and
misclassifying voxels of air as another tissue (11.4% 6 2.5%
misclassified). However, the proposed method misclassified fewer
voxels as air that actually belonged to another tissue (21.2%6 2.5%,

compared with 41.5% 6 1.3%), concluding that the other 2 meth-
ods significantly overclassified voxels as air.
In the special case in which air and bone can be interchangeably

misclassified, the proposed method produced lower errors than the
other methods at classifying voxels of bone as air (1.7%,
compared with 2.7% and 5.2%). However, the proposed method
produced a slightly higher error (3.6%, compared with 0.9%) than
the other methods classifying voxels of air as bone. This was
attributed to the low number of voxels classified as bone (0% in
the case of m mapDX) for the m mapUTE.
m mapR2,equ

uses patient-specific CT minimum and maximum
values for equalization; however, we observed negligible variations
among our patient population. Thus, the use of non–patient-specific
values would be possible if a reference CT-based m map is not
available.
The quantification errors, obtained in the ROI analysis from

reconstructed PET data using the m mapDX, were consistently the
highest (except for the orbitofrontal cortex), compared with the
other m maps. These high values were attributed to the total ab-
sence of bone. The mean En calculated between all the ROIs was
214.8% 6 3.9% (m mapDX),213.5%6 2.5% (m mapUTE), 0.88%6
2.7% (m mapR2,raw), 0.36% 6 2.6% (m mapR2,clp), 22.90% 6 1.5%
(m mapR2,bin

), and 20.87% 6 2.1% (m mapR2,equ
). Even though

the mean En obtained with the m mapR2,raw
and m mapR2,clp

were comparable to the En obtained with the m mapR2,equ
, the

FIGURE 4. Intensity histograms of voxels corresponding to bone from

μ mapCT (red), MR from μ mapR2b,raw
(blue), and μ mapR2b,equ

(green).

FIGURE 5. Percentage of classification success for bone (A) and air

(B) for R2-based μ map (blue), μ mapDX (green), and μ mapUTE (red).
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reconstructed PET data showed in some cases tracer uptake that
was not present in any of the other approaches. Therefore, these
were considered as false-positives. Supplemental Figure 3 shows
exemplary axial slices of reconstructed PET data using m mapCT,
m mapR2,raw

, m mapR2,clip
, m mapR2,bin

, and m mapR2,equ
, showing

abnormal tracer uptake (indicated with an arrow) for the cases of m
mapR2,raw

and m mapR2,clip
, compared with the other m maps. In the

specific case of dementia studies, in which the regions to analyze
are well defined, these false-positives may not represent a problem.
However, in the case of extending this approach to oncologic
studies, the false-positives represent a limitation to this algorithm.
Consequently, the m mapR2,raw and m mapR2,clp were not further con-
sidered as reliable approaches for future studies. The worst perfor-
mance in the ROI analysis was obtained with the m mapR2,bin

,
which showed that a continuous spectrum of attenuation coeffi-
cients is more suitable than using discrete attenuation coefficients,
as used in other works (11,14,16,23,24).
Clipping the attenuation coefficients from the m mapR2b

(m mapR2,clp
)

provided the minimum mean En. However, these results must be
assessed individually per ROIs, because the differences observed
between the different m mapsR2,x

were too low and a global value
is not meaningful.
From a diagnostic point of view, the hippocampus, which is

a region close to dense bone, resulted in a mean En above 22%.
The lowest error was obtained with the m mapR2,clp

(0.1%) and the
highest with the m mapR2,bin

(21.6%).
The orbitofrontal cortex is another dementia-related brain region

that was included in the analysis because of its location in a region
in which bone and air cavities are next to each other. Thus, tissue
misclassification would exacerbate the quantitative difference.
Interestingly, this region was the only one that showed a change of
tendency of all the ROIs included in the analysis when comparing
between m mapDX and m mapUTE. This effect was attributed to the
classification of voxels in the air cavities as bone. This ROI also
showed the highest En among all the analyzed ROIs for all the
methods based on the R2-based m map, the highest En being for
the m mapR2,bin

(26.6%) and the other methods showing similar
results (25%).
The parietal superior area also showed a remarkably high En,

compared with the rest of ROIs. The reconstructed PET data using
the m mapDX and m mapUTE showed the highest En, 221.2% and

217.5%, respectively, whereas the En

dropped down to 2.45% with the m

mapR2,equ.
The rest of the ROIs showed homogeneous

En for each m map. The measured En average
among the rest of the ROIs was 215.9% 6
1.7% (m mapDX), 213.5% 6 1.4% (m
mapUTE), 1.3% 6 0.6% (m mapR2,raw

),
22.7% 6 0.3% (m mapR2,bin), 0.7% 6 0.5%
(m mapR2,clp

), and 20.5% 6 0.2%
(m mapR2,equ

).
To put these results in perspective,

compared with other approaches for which
the error was measured in the same way as
in this study, mean global errors of 25%
and maximum errors of approximately220%
to 40% were obtained in structures near bone,
especially those close to air cavities (23,24).
More successful approaches obtained mean
errors of 0.2% (12), 2.40% (17), and 2.74%

(19) using ROI analysis. However, these methods rely on databases
(MPRAGE, CT, Dixon-volume interpolated breath-hold examination,
UTE) that are not always available; require a training process (17),
which has an impact on the classification performance; and have a com-
putation time of 7–30 min to calculate the m map.
All the aforementioned works used a m mapCT as a reference.

The use of m mapCT for AC as reference is recognized as the gold
standard. However, there is some doubt about the reliability of
CT for absolute quantitation (35). Studies to confirm the accuracy
of CT-based AC and MR-based AC using phantoms, for which
the amount and density of attenuating material are known, are
ongoing.

CONCLUSION

In this work, we compared the m map based on the R2 map with
the m maps calculated by the mMR scanner, the m mapDX and
m mapUTE. The comparison was performed at 2 levels: first by
analyzing the rate of correctly classified bone and air in each
m map and second by comparing the activity concentration mea-
sured in regions related to dementia obtained after reconstructing
the PET data, using the different m maps for AC.
Results showed that the R2-based m map, independent of the

postprocessing method, produced more accurate quantitative infor-
mation than the m mapDX and m mapUTE. The worst results were
consistently obtained with the m mapDX with PET quantitative errors
of 8%–21% depending on the ROI, whereas the m mapUTE improved
only by approximately 2% on average, compared with the m mapDX.
The proposed method based on the m mapR2,equ

showed consis-
tently better tissue classification and more accurate PET quantita-
tive results than those obtained with the m mapDX and m mapUTE,
reducing the PET quantitative error to 25.8% to 2.5%.
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