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Evaluation of tumor heterogeneity based on texture parameters

has recently attracted much interest in the PET imaging

community. However, the impact of reconstruction settings on
texture parameters is unclear, especially relating to time-of-

flight and point-spread function modeling. Their effects on 55

texture features (TFs) and 6 features based on first-order

statistics (FOS) were investigated. Standardized uptake value
(SUV) measures were also evaluated as peak SUV (SUVpeak),

maximum SUV, and mean SUV (SUVmean). Methods: This study

retrospectively recruited 20 patients with lesions in the lung who

underwent whole-body 18F-FDG PET/CT. The coefficient of var-
iation (COV) of each feature across different reconstructions

was calculated. Results: SUVpeak, SUVmean, 18 TFs, and 1

FOS were the most robust (COV # 5%) whereas skewness,

cluster shade, and zone percentage were the least robust
(COV . 20%) with respect to reconstruction algorithms using

default settings. Heterogeneity parameters had different sensi-

tivities to iteration number. Twenty-four parameters including
SUVpeak and SUVmean exhibited variation with a COV less than

5%; 28 parameters, including maximum SUV, showed variation

with a COV in the range of 5%–10%. In addition, skewness,

cluster shade, and zone percentage were the most sensitive
to iteration number. In terms of sensitivity to full width at half

maximum (FWHM), 15 TFs and 1 FOS had the best performance

with a COV less than 5%, whereas SUVpeak and SUVmean had

a COV between 5% and 10%. Grid size had the largest impact
on image features, which was demonstrated by only 11 features,

including SUVpeak and SUVmean, having a COV less than 10%.

Conclusion: Different image features have different sensitivities
to reconstruction settings. Iteration number and FWHM of the

gaussian filter have a similar impact on the image features. Grid

size has a larger impact on the features than iteration number

and FWHM. The features that exhibited large variations such as
skewness in FOS, cluster shade, and zone percentage should

be used with caution. The entropy in FOS, difference entropy,

inverse difference normalized, inverse difference moment nor-

malized, low gray-level run emphasis, high gray-level run em-
phasis, and low gray-level zone emphasis are the most robust

features.
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Recent studies have shown that tumors often display startling
intratumoral heterogeneity, which is often associated with adverse
tumor biology (1,2). Unfortunately, it is difficult to assess intra-
tumoral heterogeneity with random sampling or biopsy as this
does not represent the full extent of phenotypic or genetic var-
iation within a tumor. Given the limitations of current biopsy
strategies, there is an important potential for medical imaging,
which has the ability to capture intratumoral heterogeneity in
a noninvasive way.
In oncology, 18F-FDG PET is currently playing a major role in

clinical diagnosis, staging, prognosis, and assessment of response
to treatment (3). The use of standardized uptake value (SUV) is
now routine in clinical 18F-FDG PET/CT oncology imaging for
quantifying glucose metabolic activity in tissues. Maximum SUV
(SUVmax), mean SUV (SUVmean), and peak SUV (SUVpeak) are
the commonly used metrics (4). However, none of these SUV
measures reflect the underlying spatial distribution of 18F-FDG.
There is now growing interest in using texture analysis to assess
tumor heterogeneity in the field of oncologic imaging.
The first attempt to use the texture features (TFs) in PET

imaging was to predict treatment outcome in cervical and head
and neck cancer (5). Subsequently, there are increasing numbers
of publications related to the application of TFs in PET tumor
imaging, mostly with 18F-FDG (5–21). These previous studies
mainly focused on the predictive and prognostic value (5–
10,13–25) of TF and also the potential use in radiotherapy plan-
ning (20,21). The test–retest reproducibility of TF from 18F-FDG
PET was shown to be comparable to SUV (16). In addition, Galavis
et al. reported the variability of TF as a function of different
acquisition methods, reconstruction parameters, and postrecon-
struction filtering parameters (11). However, only filtered back-
projection and ordered-subset expectation maximization (OSEM)
were investigated. The techniques of time-of-flight (TOF) and
point-spread function (PSF) modeling have been shown to clearly
improve image quality in terms of signal-to-noise ratio (SNR),
lesion contrast, and coefficient of variation (COV) on background
and are now standard in most scanners (22–26). TOF improves
SNR and thus reduces heterogeneity due to noise. PSF modeling
typically leads to improved resolution by modeling in the system
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matrix physical processes that degrade image resolution and thus
improves evaluation of tumor heterogeneity by delineating higher
definition structure within a lesion.
In this context, the objective of this study was to investigate

variability of TF in 18F-FDG PET images due to different recon-
struction settings including postreconstruction gaussian filters with
different full width at half maximum (FWHM), different iteration
numbers, and voxel size. The filtered backprojection algorithm
was not included in this study, because it has been adequately
addressed in a previous study (11).

MATERIALS AND METHODS

Patients

This retrospective study was approved by the Domain Specific

Review Board and Institutional Review Board of National Health Care
Group, Singapore, and the requirement to obtain informed consent

was waived. Patients with lesions in the lung who underwent whole-
body 18F-FDG PET/CT at the National University Hospital, Singa-

pore, from February 2013 to May 2014 were retrospectively enrolled
while excluding those patients with a lesion volume less than 5 cm3

(14). Only the lesions located in the lung were included for analysis.
Finally, this study included 17 patients with non–small cell lung can-

cer (mean age, 70 y; age range, 50–82 y; 12 men, 5 women), 1 female

patient with nasopharyngeal cancer (age, 71 y), and 2 female patients
with lymphoma (age, 60 and 75 y). Clinical staging for the non–small

cell lung cancer cohort was as follows: stage 1A (n 5 1), stage 2B
(n5 1), stage 3A (n5 1), stage 3B (n5 4), and stage 4 (n5 10). The

patients with nasopharyngeal cancer and lymphoma were found to be
stage 4.

Data Acquisition

All patients underwent a whole-body 18F-FDG PET/CT using

a Biograph 64 mCT scanner (Siemens). Patients fasted for at least
8 h to ensure a serum glucose level less than 10 mmol/L. The time

difference between injection and acquisition was 71 6 9 min (range,
52–88 min) after injection of 229.4 6 22.2 MBq (6.2 6 0.6 mCi;

range, 181.3–270.1 MBq [4.9–7.3 mCi]) of 18F-FDG. PET raw data
were acquired for 1 min per bed position with the exception of the bed

position covering the liver, which was acquired for 3 min. CT was

performed with a tube voltage of 120 kV and a tube current of

50 mAs.

Image Reconstruction

Four investigations listed in Table 1 were performed to explore the
impact of reconstruction settings on image features. The numbers of

subsets for reconstructions without TOF and with TOF were 24 and
21, respectively. The image slice thickness was 5 mm. In total, 96

images were produced for each patient. The PET images were cor-
rected for attenuation and scatter based on the CT scan.

Tumor Segmentation

In this study, SUV was calculated as 18F-FDG uptake with decay
correction normalized to injected dose and patient body weight. A

tumor VOI was delineated using a fixed threshold set to 40% of the
SUVmax in the lesion and followed by a morphologic closing opera-

tion to include necrotic regions since tumor heterogeneity is often

associated with hypoxia and subsequent necrosis (27). In addition,
a manual adjustment to exclude neighboring nodes or metastases

was made for each VOI if necessary. As in the study by Orlhac
et al. (14), only lesions with a volume greater than 5 cm3 were included

in the subsequent analysis, because the impact of the partial-volume
effect and textural measurements may not be relevant in small regions.

Thus, the impact of the partial-volume effect can be neglected. Pre-
vious studies (22–26) demonstrated that OSEM 1 PSF 1 TOF pro-

duced better image quality than other methods in terms of SNR,
contrast, and lesion detectability. Therefore, in this study, the tumor

VOIs were delineated on the image reconstructed by OSEM 1 PSF 1
TOF with default settings and then applied to the other methods. This

yielded 20 VOIs in non–small cell lung cancer, 2 VOIs in nasopha-
ryngeal cancer, and 2 VOIs in lymphoma with a volume of 36.1 6
42.3 cm3 (range, 5.3–153.1 cm3). SUVmean, SUVpeak, and SUVmax of
the lesions reconstructed by OSEM 1 PSF 1 TOF with default set-

tings were 6.4 6 2.7 (range, 3.1–12.0), 8.5 6 4.0 (range, 4.0–18.8),
and 10.5 6 4.5 (range, 5.3–21.2), respectively.

Image Features

The TFs being used in 18F-FDG PET imaging can be categorized
into 2 types: second-order and high-order features. A second-order

feature is usually calculated from the gray level cooccurrence matrix
(GLCM) (28). There are various matrices to calculate the high-order

TABLE 1
List of Reconstruction Settings

Reconstruction

algorithm

Variation over the

default reconstruction

settings

Impact of iteration
number on image

features (FWHM:

2.5 mm; grid size:

256 · 256

Impact of FWHM on

image features

(iteration: 2; grid

size: 256 · 256)

Impact of grid size on image

features (iteration: 2; FWHM:

2.5 mm)

OSEM Iteration: 2; FWHM:

2.5 mm; grid size:

256 · 256

Iteration: 1, 2, 3 FWHM: 2.5, 3.5,

4.5, 5.5 mm

Grid size: 256 · 256; 128 · 128

OSEM 1 PSF Iteration: 2; FWHM:

2.5 mm; grid size:

256 · 256

Iteration: 1, 2, 3 FWHM: 2.5, 3.5,

4.5, 5.5 mm

Grid size: 256 · 256; 128 · 128

OSEM 1 TOF Iteration: 2; FWHM:

2.5 mm; grid size:
256 · 256

Iteration: 1, 2, 3 FWHM: 2.5, 3.5,

4.5, 5.5 mm

Grid size: 256 · 256; 128 · 128

OSEM 1 PSF 1 TOF Iteration: 2; FWHM:

2.5 mm; grid size:
256 · 256

Iteration: 1, 2, 3 FWHM: 2.5, 3.5,

4.5, 5.5 mm

Grid size: 256 · 256; 128 · 128
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features including the gray-level run length matrix (GLRLM) (29),
gray-level size zone matrix (GLSZM) (30), neighboring gray-level

dependence matrix (NGLDM) (31), and neighbor gray-tone differ-

ence matrix (NGTDM) (32). To reduce image noise, resampling the

original PET values is necessary. Orlhac et al. (14) suggested that at
least 32 gray levels should be used in the computation of TF. A bin

size of 32, 64, and 128 was investigated in this study. In addition, 6
first-order statistics (FOS) based on histogram analysis were also

included. The TF and FOS and their acronyms are summarized in
Supplemental Table 1 (supplemental materials are available at http://

jnm.snmjournals.org). In addition, SUVmax, SUVmean, and SUVpeak

(a spheric VOI having a volume of 1 mL in a position that provides

the maximal VOI average) were computed for comparison.
The 3-dimensional GLCM used in this study was extended from the

original 2-dimensional GLCM by summing voxel triplet probabilities in
a 2-dimensional image. Thirteen different directions and a spatial distance

of 1 voxel displacement were selected (14). The average TF over the 13
directions was used in this study, and the same 13 directions were used to

calculate GLRLM. The 26 nearest neighbors in 3 dimensions were used
for NGLDM and NGTDM. In addition, only the intensity difference of

zero between the voxel and its neighbors was considered for NGTDM.

Data Analysis

To characterize the variation of image features over the different
reconstruction parameters, we calculated the COV as follows:

COV 5 SD=mean · 100ð%Þ;

where SD and mean are the SD and the mean value of each image feature,
respectively, over the different reconstruction settings. The mean value of

the COV of all lesions for each TF and FOS was used to characterize
feature variability. All features were categorized into 4 groups based on

COV: very small (COV# 5%), small (5%, COV# 10%), intermediate
(10%, COV# 20%), and large (COV. 20%) range of variation. In the

last 3 studies, all features were categorized into 4 groups based on the

FIGURE 1. Coronal images of 71-y-old female patient diagnosed with

non–small cell lung cancer (stage IV; body weight, 61.8 kg; height,

1.57 m; injected dose, 245.1 MBq) reconstructed by OSEM (A), OSEM 1
PSF (B), OSEM 1 TOF (C), and OSEM 1 PSF 1 TOF (D) with default

reconstruction parameter settings (2 iterations and 24 subsets for OSEM

and OSEM 1 PSF, 2 iterations and 21 subsets for OSEM 1 TOF and

gaussian filter with FWHM of 2.5 mm). Lesion is located in right lung and

contoured in green.

TABLE 2
Change of Image Features over Default Reconstruction Settings

Feature COV # 5% 5% , COV # 10% 10% , COV # 20% COV . 20%

SUV SUVmean, SUVpeak SUVmax

FOS Entropy COV, kurtosis, energy Variance Skewness

GLCM Dissimilarity, energy,

entropy, ID, SE, DE, IMC,

IDN, IDMN, DM, SDN

Contrast, correlation,

homogeneity, MP,

SA, DV

Autocorrelation, SOS, SV CS

GLRLM GLNr, RP, LGRE, HGRE SRE, LRE, RLN, SRLGE, SRHGE,

LRLGE, LRHGE

GLSZM GLNz, LGZE ZLN, HGZE,

WVGLZ_S

SZE, LZE, SZLGE, SZHGE,

LZLGE, LZHGE, WVGLZ_N

ZP

NGLDM Entropy SNE, NN, SM LNE

NGTDM Coarseness,

busyness,

complexity, TS

Contrast

ID5 inverse difference; SE 5 sum entropy; DE5 difference entropy; IMC5 information measure of correlation; DM5 diagonal moment;

SDN5 second diagonal moment; MP 5 maximum probability; SA 5 sum average; DV5 difference variance; SOS5 sum of squares; SV5
sum variance; GLNr 5 grey-level nonuniformity for run; RP 5 run percentage; LGRE 5 low grey-level run emphasis; HGRE5 high grey-level

run emphasis; SRE 5 short-run emphasis; LRE 5 long-run emphasis; RLN 5 run-length nonuniformity; SRLGE 5 short-run low grey-level

emphasis; SRHGE 5 short-run high grey-level emphasis; LRLGE 5 long-run low grey-level emphasis; LRHGE 5 long-run high grey-

level emphasis; GLNz 5 grey-level nonuniformity for zone; LGZE 5 low grey-level zone emphasis; ZLN 5 zone-length nonuniformity; HGZE 5
high grey-level zone emphasis; WVGLZ_S 5 weighted variance of gray-level size, S direction; SZE 5 short-zone emphasis; LZE 5 long-

zone emphasis; SZLGE5 short-zone low grey-level emphasis; SZHGE5 short-zone high grey-level emphasis; LZLGE5 long-zone low grey-

level emphasis; LZHGE 5 long-zone high grey-level emphasis; WVGLZ_N 5 weighted variance of gray-level size, N direction; SNE 5 small

number emphasis; NN 5 number nonuniformity; SM 5 second moment; LNE 5 large number emphasis; TS 5 texture strength.
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following rule: for each feature f, if it had a higher value of COV for one
reconstruction algorithm than for the other reconstruction algorithms, it

would be assigned to the group based on this higher value.
In addition, the quality of PET images reconstructed with default

settings were analyzed using the SNR in the liver. A spheric mask
with a diameter of 3 cm was placed in the liver, and the 4 default re-

constructions were evaluated using the same mask. The SNR was defined
as the ratio of the mean to the SD of the uptake within the mask.

RESULTS

Change of Image Features over Default

Reconstruction Settings

PET images of a representative lung cancer patient reconstructed
by the default reconstruction settings for OSEM, OSEM 1 TOF,

OSEM 1 PSF, and OSEM 1 TOF 1 PSF are shown in Figure
1. The delineated lesion is also shown in green in the figure. Con-
sistent with the previous findings (22–26), OSEM 1 TOF 1 PSF
produced visually the best image among the chosen 4 reconstruc-
tion algorithms with their default settings. In addition, quantitative
assessment supported the fact that OSEM1 TOF1 PSF produced
the best image with an SNR of 9.1 in the liver, whereas the SNR of
OSEM, OSEM 1 PSF, and OSEM 1 TOF were 5.2, 5.5, and 8.5,
respectively. The results with a bin size of 32, 64, and 128 were
similar with only a few differences. For example, the COV of
energy from GLCM changed from 5% for a bin size of 64 to
a range of 5%–10% for a bin size of 32. In this study, 64 was
selected as the reference bin size. SUVmean and SUVpeak exhibited
a small variation, with a COV less than 5%, and SUVmax had

TABLE 3
Impact of Iteration Number on Image Features

Feature COV # 5% 5% , COV # 10% 10% , COV # 20% COV . 20%

SUV SUVmean, SUVpeak SUVmax

FOS COV, Entropy Energy, kurtosis Variance Skewness

GLCM Dissimilarity, energy, entropy,

ID, SA, SE, DE, IMC, IDN,

IDMN, DM, SDN

Autocorrelation, contrast,

homogeneity, MP, SOS,

SV, DV

Correlation CS

GLRLM GLNr, RLN, RP, LGRE, HGRE SRE, LRE, SRLGE,

SRHGE, LRLGE, LRHGE

GLSZM ZLN, LGZE SZE, GLNz, LZE, HGZE,
SZLGE, SZHGE, LZLGE,

WVGLZ_S

LZHGE, WVGLZ_N ZP

NGLDM Entropy SNE, NN, SM LNE

NGTDM Contrast Coarseness, busyness,

complexity, TS

ID 5 inverse difference; SA 5 sum average; SE 5 sum entropy; DE 5 difference entropy; IMC 5 information measure of correlation;

DM5 diagonal moment; SDN 5 second diagonal moment; MP5 maximum probability; SOS 5 sum of squares; SV5 sum variance; DV5
difference variance; GLNr5 grey-level nonuniformity for run; RLN5 run-length nonuniformity; RP5 run percentage; LGRE5 low grey-level
run emphasis; HGRE 5 high grey-level run emphasis; SRE 5 short-run emphasis; LRE 5 long-run emphasis; SRLGE 5 short-run low grey-

level emphasis; SRHGE 5 short-run high grey-level emphasis; LRLGE 5 long-run low grey-level emphasis; LRHGE 5 long-run high grey-

level emphasis; ZLN 5 zone-length nonuniformity; LGZE 5 low grey-level zone emphasis; SZE 5 short-zone emphasis; GLNz 5 grey-level
nonuniformity for zone; LZE5 long-zone emphasis; HGZE5 high grey-level zone emphasis; SZLGE5 short-zone low grey-level emphasis;

SZHGE 5 short-zone high grey-level emphasis; LZLGE 5 long-zone low grey-level emphasis; WVGLZ_S 5 weighted variance of gray-level

size, S direction; LZHGE5 long-zone high grey-level emphasis; WVGLZ_N5 weighted variance of gray-level size, N direction; SNE5 small

number emphasis; NN 5 number nonuniformity; SM 5 second moment; LNE 5 large number emphasis; TS 5 texture strength.

FIGURE 2. Image features with different range of variation for OSEM, OSEM 1 PSF, OSEM 1 TOF, and OSEM 1 PSF 1 TOF for each individual

parameter: iteration number (A), FWHM (B), and grid size (C).
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a COV in the range of 5%–10%. Most of the features (58/61) had
a COV less than 20%, indicating small differences across the 4
algorithms (Table 2).

Impact of Iteration Number on Image Features

Three features (skewness, cluster shade [CS], and zone
percentage [ZP]) demonstrated a large variation (COV . 20%).
SUVmean, SUVpeak, and 22 features measuring heterogeneity
showed a small variation (Table 3). The entropy from FOS,
GLCM, and NGLDM were all insensitive to iteration number. In
addition, there were 27 features in the group of small variations
including contrast from GLCM and NGTDM. SUVmax had a COV
less than 10%. The remaining 9 features had a COV of between
10% and 20%. The results of each individual reconstruction algo-
rithm were comparable (Supplemental Table 2), and the image
features with different range of variation across the 4 reconstruc-
tion algorithms are shown in Figure 2A. There were only 8 fea-
tures displaying differences between OSEM and OSEM 1 PSF. In
addition, CS was the only parameter exhibiting a large variation in
all reconstruction algorithms.

Impact of FWHM on Image Features

The number of features (TF and FOS) in the 4 groups (very
small, small, intermediate, and large variation) were 16, 16, 21,
and 8, respectively (Table 4). All of the TFs from GLRLM
exhibited a COV less than 20%. GLRLM also yielded the TF with
variation less than 20%, except for CS. Among the features de-
rived from FOS, only variance and skewness had large variations
(COV $ 20%), and 4 other features (entropy, COV, kurtosis, and
energy) had small variations (COV# 10%). The TF from GLSZM
had a large range of COV, including 4 features (short-zone em-
phasis, ZP, short-zone low grey-level emphasis, and long-zone
high grey-level emphasis) with COV larger than 20%. The results

of impact of the FWHM on TF and FOS for each individual re-
construction algorithm are shown in Supplemental Table 3. In
addition, 20 image features including SUVmean, SUVpeak, and
SUVmax exhibited different ranges of variation (Fig. 2B). Vari-
ance, skewness, CS, and ZP were in the large-variation group for
all reconstruction algorithms. SUVmean and SUVpeak exhibited
small variation, and SUVmax showed intermediate variation. Over-
all, the reconstruction algorithms all demonstrated similar perfor-
mance.

Impact of Grid Size on Image Features

Two grid sizes (128 · 128 and 256 · 256) were used to evaluate
the impact on TF and FOS with default iteration number and
a FWHM of 2.5 mm (Table 5). More than half of the features
(35/61) were sensitive to grid size, as demonstrated by the high
COV ($20%), including 1 of 6 features from FOS, 11 of 21
features from GLCM, 8 of 11 features from GLRLM, 6 of 13
features from GLSZM, 4 of 5 features from NGLDM, and 5 of
5 features from NGTDM. The entropy from FOS, difference en-
tropy, inverse difference normalized (IDN), and inverse difference
moment normalized (IDMN), low grey-level run emphasis, high
grey-level run emphasis, and low grey-level zone emphasis were
stable with respect to the grid size (COV # 5%). Moreover, only
sum average and sum entropy showed small variations (5% ,
COV # 10%). Others (17/61 features) exhibited intermediate sen-
sitivity to the grid size (10% , COV # 20%). The grid size had
a similar impact on TF and FOS for all the reconstruction algo-
rithms (Supplemental Table 4), and the corresponding features,
with different variations for these 4 reconstruction algorithms,
are shown in Figure 2C. More than half of the 61 features (TF
and FOS) demonstrated a large variation. SUVmean and SUVpeak

had a COV less than 10%. The COVof SUVmax was between 10%
and 20%.

TABLE 4
Impact of FWHM on Image Features

Feature COV # 5% 5% , COV # 10% 10% , COV # 20% COV . 20%

SUV SUVmean, SUVpeak SUVmax

FOS Entropy COV, kurtosis, energy Variance, skewness

GLCM Energy, entropy, ID, SE, DE,

IMC, IDN, IDMN, DM

Dissimilarity, homogeneity,

MP, SA, SDN

Autocorrelation, contrast,

correlation, SOS, SV, DV

CS

GLRLM GLNr, RP, LGRE, HGRE RLN SRE, LRE, SRLGE, SRHGE,
LRLGE, LRHGE

GLSZM LGZE GLNz, ZLN, HGZE LZE, SZHGE, LZLGE, WVGLZ_N,

WVGLZ_S

SZE, ZP, SZLGE, LZHGE

NGLDM Entropy SNE, NN, SM LNE

NGTDM TS Coarseness, contrast, busyness Complexity

ID5 inverse difference; SE5 sum entropy; DE5 difference entropy; IMC5 information measure of correlation; DM5 diagonal moment;

MP 5 maximum probability; SA 5 sum average; SDN 5 second diagonal moment; SOS 5 sum of squares; SV 5 sum variance; DV 5
difference variance; GLNr 5 grey-level nonuniformity for run; RP 5 run percentage; LGRE 5 low grey-level run emphasis; HGRE 5 high

grey-level run emphasis; RLN 5 run-length nonuniformity; SRE 5 short-run emphasis; LRE 5 long-run emphasis; SRLGE 5 short-run low

grey-level emphasis; SRHGE 5 short-run high grey-level emphasis; LRLGE 5 long-run low grey-level emphasis; LRHGE 5 long-run high

grey-level emphasis; LGZE 5 low grey-level zone emphasis; GLNz 5 grey-level nonuniformity for zone; ZLN 5 zone-length nonuniformity;
HGZE 5 high grey-level zone emphasis; LZE 5 long-zone emphasis; SZHGE 5 short-zone high grey-level emphasis; LZLGE 5 long-zone

low grey-level emphasis; WVGLZ_N 5 weighted variance of gray-level size, N direction; WVGLZ_S 5 weighted variance of gray-level size,

S direction; SZE 5 short-zone emphasis; SZLGE 5 short-zone low grey-level emphasis; LZHGE 5 long-zone high grey-level emphasis;
SNE5 small number emphasis; NN5 number nonuniformity; SM5 second moment; LNE5 large number emphasis; TS5 texture strength.

TEXTURE FEATURES IN PET • Yan et al. 1671



DISCUSSION

Our primary aim was to investigate the impact of reconstruction
settings on image features derived from 18F-FDG PET tumor
images acquired with a PET/CT scanner incorporating PSF and
TOF. Filtered backprojection was not included in this study be-
cause it is now rarely used clinically. Our results demonstrated that
most of the features (58/61) had a COV less than 20% across the 4
algorithms with default settings, which were different from the
results of variation across all possible reconstruction settings de-
rived from FBP and OSEM in a previous study (11).
Although the results with a bin size of 32, 64, and 128 are

similar, choosing the optimal bin size is still challenging. In
a recent investigation of the prognostic value of the TF obtained
from 18F-FDG PET images in patients with oropharyngeal carci-
noma (12), uniformity from GLCM was found to be a significant
prognostic factor whereas its predictive value depended on the bin
size. The optimal discretization size may depend on the noise and
resolution of the PET images and should be carefully considered
for different objectives.
Coarseness from NGTDM was considered to be correlated with

human perception of image granularity and was deemed clinically
useful. The coarseness from NGTDM can be used not only to
predict response of chemoradiotherapy for non–small cell lung
cancer (10) and esophageal cancer (18) but also to differentiate
normal tissues from head and neck tumors and lymph nodes (8).
However, it was found to be sensitive to reconstruction settings
with a small variation (5% , COV # 10%) over the 4 default
reconstruction settings, intermediate variation (10% , COV #
20%) for both impact of iteration number and FWHM, and large

variation (COV . 20%) to grid size. Therefore, it is desirable to
standardize the reconstruction for multicenter clinical trials if such

imaging biomarkers are to be used.
The smaller grid size meant that the bigger voxel size was more

affected by the tissue fraction effect, and the image had a more

uniform intensity distribution, which subsequently influenced TF

and FOS. The grid size had the largest effect on image features, as

demonstrated by 17 of the features with a COV between 10% and

20% and 35 of 61 features with a COV greater than 20% in this

study (Table 5). Postreconstruction gaussian filters can improve

the SNR of an image. However, there is a trade-off between noise

and spatial resolution. A larger FWHM leads to poorer spatial

resolution although the resultant image has less noise. The FWHM

of the gaussian filter was found to be the second largest factor

contributing to the variation of image features. Compared with

grid size and FWHM, the iteration number had less impact on

image features. In addition, TF and FOS were not sensitive to

reconstruction algorithms with default settings and iteration

number.
Volumetric tumor delineation is a prerequisite for computing

TF and FOS. Although a large number of approaches have been

proposed to segment tumors in PET images, accurate tumor

segmentation is still a challenging task (33). A simple thresh-

olding method (40% of SUVmax) was used here, possibly lead-

ing to an imperfect tumor delineation. However, the inaccurate

segmentation is unlikely to change the relative difference due

to different reconstruction settings for each feature. Other lim-

itations of the present study include a relatively small patient

cohort and a single lesion site. Therefore, a larger patient cohort

TABLE 5
Impact of Grid Size on Image Features

Feature COV # 5% 5% , COV # 10% 10% , COV # 20% COV . 20%

SUV SUVmean, SUVpeak SUVmax

FOS Entropy Kurtosis, variance, COV, energy Skewness

GLCM DE, IDN, IDMN SA, SE Autocorrelation, entropy, ID,

SOS, SV

Contrast, correlation, CS,

dissimilarity, energy,

homogeneity, MP, DV, IMC, DM,

SDN

GLRLM LGRE, HGRE LRE, SRE, GLNr, RLN, RP, SRLGE,

SRHGE, LRLGE, LRHGE

GLSZM LGZE SZE, LZE, LZLGE, HGZE,
SZLGE, LZHGE

GLNz, ZLN, ZP, SZHGE,
WVGLZ_N, WVGLZ_S

NGLDM SNE LNE, NN, SM, entropy

NGTDM Coarseness, contrast, busyness,

complexity, TS

DE 5 difference entropy; SA 5 sum average; SE 5 sum entropy; ID 5 inverse difference; SOS 5 sum of squares; SV 5 sum variance;
MP 5 maximum probability; DV 5 difference variance; IMC 5 information measure of correlation; DM 5 diagonal moment; SDN 5 second

diagonal moment; LGRE5 low grey-level run emphasis; HGRE5 high grey-level run emphasis; LRE5 long-run emphasis; SRE5 short-run

emphasis; GLNr 5 grey-level nonuniformity for run; RLN 5 run-length nonuniformity; RP 5 run percentage; SRLGE 5 short-run low grey-

level emphasis; SRHGE 5 short-run high grey-level emphasis; LRLGE 5 long-run low grey-level emphasis; LRHGE 5 long-run high grey-
level emphasis; LGZE 5 low grey-level zone emphasis; SZE 5 short-zone emphasis; LZE 5 long-zone emphasis; LZLGE 5 long-zone low

grey-level emphasis; HGZE5 high grey-level zone emphasis; SZLGE5 short-zone low grey-level emphasis; LZHGE5 long-zone high grey-

level emphasis; GLNz 5 grey-level nonuniformity for zone; ZLN 5 zone-length nonuniformity; SZHGE 5 short-zone high grey-level empha-

sis; WVGLZ_N 5 weighted variance of gray-level size, N direction; WVGLZ_S 5 weighted variance of gray-level size, S direction; SNE 5
small number emphasis; LNE 5 large number emphasis; NN 5 number nonuniformity; SM 5 second moment; TS 5 texture strength.
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study with different tumor types needs to be performed in the
future. Moreover, it is absolutely necessary to investigate the clin-
ical relevance and biologic basis of the PET texture features.
A new PET imaging biomarker should be insensitive to

reconstruction settings or at least not worse than conventional
indices such as SUV measures. In this work, as expected, SUVmax,
measuring single-pixel uptake, was more sensitive to reconstruc-
tion settings than SUVmean and SUVpeak. However, SUVmax is still
more robust than some TF and FOS such as skewness from FOS,
CS from GLCM, and ZP from GLSZM. The image features with
a smaller variation than SUVmax are indicated for further investi-
gation as to their clinical relevance. These features include the
entropy from FOS, difference entropy, IDN and IDMN from
GLCM, LGRE and HGRE from GLRLM, and LGZE from
GLSZM.

CONCLUSION

In this study, we analyzed the effect of reconstruction settings,
including different algorithms, iteration number, FWHM of the
postreconstruction gaussian filter, and grid size, on TFs and first-
order features. Different TF and FOS had different sensitivities to
reconstruction settings. Iteration number and the FWHM of the
gaussian filter had a similar impact for all 4 reconstruction
algorithms. Compared with iteration number and FWHM, grid
size had a larger impact on image features. Careful selection of
image features for research, clinical practice, and clinical trials is
essential.
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