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Tumor Texture Analysis in PET: Where Do We Stand?
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The coexistence of different tumor cells that show distinct
morphologic and phenotypic features either within a tumor or
between tumors defines tumor heterogeneity. The identification,
characterization, understanding, and, possibly, treatment of tumor
heterogeneity are key challenges in oncology and should help
design effective therapeutic and monitoring strategies (/). Be-
cause biopsies probe only parts of the tumors, they do not neces-
sarily reflect tumor heterogeneity (2). Additional techniques are
needed, among which imaging is an appealing approach to com-
prehensively detect, depict, and quantify local variations in tumor
morphology and function. Several hundred published articles have
investigated the beneficial information that can be extracted from
the analysis of tumor heterogeneity using imaging since the be-
ginning of the nineties, mostly involving MR and ultrasonography
(>70% of the articles) (3), with a significant increase in publica-
tions since 2008. The interest in exploring tumor heterogeneity
using PET dates back to 2009 (4) and is conceptually quite
appealing given that PET reflects the biology of the tumor.
Yet, a synthetic synopsis of the published results and subsequent
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conclusions is extremely difficult because of major methodologic
variety in the conducted studies, as described below.

Various image analysis approaches can be used to characterize
tumor heterogeneity (5). In PET, the 2 most frequent approaches
are the methods based on the analysis of the histogram of the
voxel values within the tumor and the methods accounting for
the spatial arrangement of voxel values. In the histogram-based
methods, the heterogeneity descriptors (HDs) disregard the inher-
ent spatial relationship between voxel values, only reflecting the
voxel-value frequency distribution. They include the mean, SD,
median, skewness, kurtosis, percentile values, range of standard-
ized uptake value (SUV), entropy, and energy and are called first-
order statistics (FOS). The second approach accounts for the
spatial arrangement of the voxel values within the tumor using
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higher-order statistics by first calculating a 2-dimensional matrix
describing this spatial organization. This matrix is often the gray-
level cooccurrence matrix (GLCM), giving the probability of
observing a pair of voxel values at a given distance in a given
direction (6). Several other matrices are also used, among which
are the neighborhood gray-tone difference matrix, which provides
information regarding how each voxel value differs from the
neighbor voxel values; the gray-level run length matrix, which
stores the number of voxels with identical values in each direction;
and the gray-level size zone matrix, which stores the size of the
3-dimensional (3D) region that includes a given voxel value. All
these matrices capture some spatial relationship between voxel
values, and each matrix enables the calculation of several HDs,
therefore yielding several dozen HDs. This large number of
descriptors complicates the overview of published results because
not all authors use the same HD. A publication bias is likely as it is
often unclear whether HDs other than the presented ones were
studied and did not perform well. In addition, the same descriptor
name is used for descriptors calculated from different definitions
or different matrices. For instance, homogeneity does not obey the
same definition in the study by El Naqa et al. (4) and in Tixier
et al. (7). Entropy is not defined identically in 2 different articles
by Tixier et al. (8,9). A contrast feature can be calculated from the
GLCM or from the neighborhood gray-tone difference matrix,
whereas entropy can be calculated from the gray-level histogram
or from the GLCM. Moreover, different descriptor names some-
times obey the same definition. The short zone high gray level
emphasis HD is called Szonehigl (/0), high-intensity short-zone
emphasis (7), or high-intensity small-area emphasis (8). This lack
of standardization in the names and precise definition of the var-
ious HDs creates confusion. Last, for each HD following a precise
definition, several calculation options are possible. These options
include the way the tumor voxel values are rescaled between
a minimum and maximum SUV (SUV,.x) before subsequent
HD calculation or the 3D extension of the 2-dimensional de-
scriptor definition to accommodate the 3D nature of the tumor.
When speaking about an HD, it is therefore essential to provide
its precise name and definition, including the matrix it is de-
rived from and its 3D calculation method.

An additional source of confusion is that PET images have
limited spatial resolution and (smoothed) noise, which themselves
introduce some textural pattern and local signal correlation. It is of
foremost importance to understand how the heterogeneity descrip-
tors are affected by these resolution and noise components, which
do not relate to the underlying biologic signal. In this issue of
The Journal of Nuclear Medicine, Yan et al. (/1) contribute to that
understanding by reporting a thorough analysis of the robustness
of 55 textural features derived from matrices and of 6 FOS
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with respect to the changes in the iterative reconstruction scheme
(changes in the algorithm options, in postfiltering, in iteration
number, and in reconstructed grid size) that directly affect the
spatial resolution and noise in the PET images. A similar analysis
had previously been reported (/2) but the novelty of the Yan et al.
study is that up-to-date iterative reconstructions taking advantage
of time-of-flight information and modeling of the point-spread
function of the imaging systems have been used, and a more de-
tailed analysis of the HD variation as a function of different
parameters is presented. Among all parameters included in the
analysis, they found that the voxel size (or grid size) affects the
HD value the most, followed by the full width at half maximum
of the gaussian postprocessing filter applied to the reconstructed
images. Neither the number of iterations nor the actual reconstruc-
tion scheme (with or without time-of-flight information, with or
without point-spread function modeling) affected the HD values
much. As SUV,,,, and peak SUV (SUV,.,) have been proven
useful to characterize tumors, comparing the robustness of HD
with respect to that of SUV,, and SUV .4 gives insight into how
useful HD might be. Considering all sources of variability inves-
tigated in their study (grid size, postprocessing filter full width at
half maximum, reconstruction scheme, and iteration number), 7
HDs were as robust as or even more robust than SUV ., and
SUVmax: entropy FOS, difference entropy (DE), inverse difference
(ID), inverse difference moment (IDM), and inverse difference
moment normalized (IDMN) from the GLCM; low grey-level
run emphasis (LGRE) and high grey-level run emphasis (HGRE)
from the gray-level run length matrix; and low grey-level zone
emphasis (LGZE) from the gray-level size zone matrix. Six other
indices were also robust although not as much as the 7 previous
ones, including the largely investigated entropy from the GLCM
and high grey-level zone emphasis (HGZE) index. These findings
are important because they prompt us to focus on 13 indices in-
stead of considering the large number of possible HDs. The num-
ber of HDs of interest could actually be further reduced by
accounting for the large correlation existing between some indi-
ces. In particular, Orlhac et al. (/3) have shown that LGZE and
LGRE were highly correlated and similarly for HGZE and HGRE.
The contribution of Yan et al. (//) combined with results regard-
ing the correlation existing among HDs (/3) and with findings
about the robustness of HD with respect to different segmentation
approaches (/3-15) and to test-retest scans (8,15) definitely help
to select HDs of major interest in PET. When these results are
analyzed, HGRE (or HGZE) is a good candidate (LGRE and
LGZE are not robust enough to segmentation (/3), as well as
entropy, DE, IDM, IDMN, sum average (SA) and sum entropy
(SE) from the GLCM, and FOS entropy. The ID and small number
emphasis (SNE) indices identified as robust by Yan et al. have not
been investigated in detail by others and might be worth additional
investigation, as well as the redundancy between all these HDs.
Even focusing on a small number of robust HDs, many
investigations still have to be performed before HD can be
soundly used to assist in the assessment of tumor biologic
heterogeneity. Indeed, some HDs are highly correlated with the
metabolic volume (MV) of the tumor (/3,14,16). This high cor-
relation explains the results published in Tixier et al. (7), in which
the authors concluded that some HDs predicted the tumor re-
sponse in esophageal cancer patients whereas the MV only was
already highly predictive of tumor response in the very same
patients (/7). For instance, the intensity variability (identical to
grey-level nonuniformity for zone, noted GNLUz or GNLz)
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shown as highly predictive of tumor response by Tixier et al.
(7), is actually mostly a surrogate of the MV (/3). Such mislead-
ing data interpretation could be avoided by systematically per-
forming an adequate multivariate analysis to demonstrate the real
added value of HDs with respect to conventional index (especially
SUV and MV). Incidentally, it was recently demonstrated that the
high correlation between HD and MV is introduced in part by the
tumor-dependent SUV rescaling step involved in HD calculation
(18) and that a tumor-independent SUV rescaling similar to that
proposed by Leijenaar et al. (/5) removes most of that correla-
tion, while introducing a correlation between HD and SUV. This
raises the question of which rescaling is the most relevant. One
hint might come from the interpretation of the HD. In Tixier et al.
(9), when tumor-dependent SUV rescaling was used, tumors
visually rated as the most heterogeneous by doctors had the
highest homogeneity index, which is extremely counterintuitive.
This prompts some in-depth analysis of the actual meaning of
HDs and of how they relate to the visual assessment of tumor
heterogeneity. Also, a practical use of HDs will require some
guidance regarding which HD values reflect heterogeneous
tumor uptake. Because most studies performed so far were
retrospective, interpretation rules have not yet been estab-
lished. For deriving such rules, comparing tumor heterogeneity
measured from PET images with that observed in histologic
specimens might be useful, to determine which type and level
of heterogeneity can be captured and quantified through
PET and to bridge the gap between in vivo and ex vivo tumor
characterization.

On the basis of all PET studies that have focused on tumor
heterogeneity so far, what have we learned regarding its potential
clinical value? A recent extensive literature analysis (/9) could not
find enough evidence to support a relationship between PET HD
and patient outcome in cancer patients, mostly due to an inappro-
priate control of type I error in studies that often investigate many
HDs on a single dataset. A definite answer regarding the useful-
ness of HD in PET for enhancing tumor characterization now
requires some standardization of HD calculation, precise reporting
on HD selection, and thorough investigation of the many open
methodologic questions previously mentioned. These efforts are
absolutely needed to make the most of all that PET images can
offer for characterizing tumor biologic heterogeneity.
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