
Pharmacokinetic Analysis and Uptake of 18F-FBPA-Fr After
Ultrasound-Induced Blood–Brain Barrier Disruption for
Potential Enhancement of Boron Delivery for Neutron
Capture Therapy

Feng-Yi Yang1,2, Wen-Yuan Chang1, Jia-Je Li1, Hsin-Ell Wang1, Jyh-Cheng Chen1, and Chi-Wei Chang3

1Department of Biomedical Imaging and Radiological Sciences, School of Biomedical Science and Engineering, National Yang-Ming
University, Taipei, Taiwan; 2Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan;
and 3National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei, Taiwan

Boronophenylalanine has been applied in clinical boron neutron

capture therapy for the treatment of high-grade gliomas. The purpose
of this study was to evaluate the pharmacokinetics of 4-borono-

2-18F-fluoro-L-phenylalanine-fructose (18F-FBPA-Fr) in F98 glioma–

bearing Fischer 344 rats by means of intravenous injection of
18F-FBPA-Fr both with and without blood–brain barrier disruption
(BBB-D) induced by focused ultrasound (FUS). Methods: Dynamic

PET imaging of 18F-FBPA-Fr was performed on the ninth day after

tumor implantation. Blood samples were collected to obtain an arte-

rial input function for tracer kinetic modeling. Ten animals were
scanned for approximately 3 h to estimate the uptake of 18F radio-

activity with respect to time for the pharmacokinetic analysis. Rate

constants were calculated by use of a 3-compartment model.
Results: The accumulation of 18F-FBPA-Fr in brain tumors and the

tumor-to-contralateral brain ratio were significantly elevated after in-

travenous injection of 18F-FBPA-Fr with BBB-D. 18F-FBPA-Fr admin-

istration after sonication showed that the tumor-to-contralateral brain
ratio for the sonicated tumors (3.5) was approximately 1.75-fold

higher than that for the control tumors (2.0). Furthermore, the K1/k2
pharmacokinetic ratio after intravenous injection of 18F-FBPA-Fr with

BBB-D was significantly higher than that after intravenous injection
without BBB-D. Conclusion: This study demonstrated that radioac-

tivity in tumors and the tumor-to-normal brain ratio after intravenous

injection of 18F-FBPA-Fr with sonication were significantly higher than
those in tumors without sonication. The K1/k2 ratio may be useful for

indicating the degree of BBB-D induced by FUS. Further studies are

needed to determine whether FUS may be useful for enhancing the

delivery of boronophenylalanine in patients with high-grade gliomas.
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Boron neutron capture therapy (BNCT) is a binary cancer
treatment system that requires the selective delivery of a boron-

containing drug to the tumor and then irradiation with neutrons to

yield high-linear-energy-transfer a particles and recoiling 7Li nuclei

(1–5). Successful application of BNCT requires the selective de-

livery of 10B to the tumor, low levels in the surrounding tissue, and

the delivery of sufficient thermal neutron fluence to the tumor site

(6,7). Considerable efforts have been dedicated to the development

of boron-delivering agents that could ensure a high tumor-to-normal

tissue ratio of uptake of boron in tumors for BNCT (8). With the

development of new techniques for the chemical synthesis of an

effective agent, several new potential boron-delivering agents have

emerged. However, drug delivery will have to be optimized be-

cause it is unlikely that any single agent will be capable of target-

ing most of the tumor cells.
Despite the fact that the blood–tumor barrier is more permeable

than the blood–brain barrier (BBB), the efficacy of systemic che-

motherapy in patients with brain tumors is poor because the se-

lective permeability of the blood–tumor barrier still restricts the

accumulation of drugs delivered to the tumors (9). Promising clin-

ical results for the treatment of high-grade gliomas have been

reported by several clinical groups in Japan (10–13), Sweden

(10,14), and Finland (15). Barth et al. demonstrated that boron

uptake in brain tumors and animal survival could be improved

by BBB disruption (BBB-D) induced with a hyperosmotic solu-

tion of mannitol (16,17). It has been shown that the amount of

boron in brain tumors and the tumor-to-normal brain ratio after

BBB-D induced by mannitol injection are significantly higher than

those for tumors without BBB-D (18). Although this approach

induces BBB-D throughout the entire area of the brain supplied

by the injected artery (19,20), the boron compound is rapidly

cleared from the normal brain and persists at a higher level in

the tumor.
Our previous studies showed that focused ultrasound (FUS)

could noninvasively enhance the permeability of BBB in the local

region (21–23). The degree of FUS-induced BBB-D is affected by

several ultrasound parameters, including acoustic power, frequency,

burst length, the duty cycle of the transducer, and the concentration

and size of the ultrasound contrast agent (24–26). The use of ther-

apeutic agents followed by sonication represents a feasible approach

for enhanced local drug delivery and improved treatment efficacy
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in brain tumors (27,28). Moreover, it has been demonstrated that
boronophenylalanine (BPA) injection in combination with FUS ex-
posure increases the accumulation of boron in brain tumors (29). An
evaluation of micro-SPECT/CT imaging showed that FUS not only
significantly increased the permeability of the BBB at the sonicated
site but also significantly elevated the tumor-to-normal brain ratio
for a drug in the focal region (30,31). Nuclear imaging may be
useful for offering a good assessment of the extent of BBB-D and
identifying the optimum therapeutic window for radiotherapy or
chemotherapy of brain tumors with BBB-D induced by sonica-
tion.
In this study, we evaluated the pharmacokinetics of 4-borono-2-18F-

fluoro-L-phenylalanine-fructose (18F-FBPA-Fr) after intravenous
injection, both with and without BBB-D induced by FUS, in F98
glioma–bearing rats. The pharmacokinetics of 18F-FBPA-Fr after
sonication were monitored with noninvasive PET to demonstrate
the optimal treatment protocol for thermal neutron irradiation. Fur-
thermore, the rate constants K1, k2, k3, and k4 were derived from
dynamic small-animal PET images (Fig. 1).

MATERIALS AND METHODS

Glioma Tumor Model and 18F-FBPA-Fr Preparation

Male Fischer 344 rats (11–13 wk; approximately 250–280 g)

were anesthetized with an intraperitoneal administration of pento-
barbital at a dose of 40 mg/kg of body weight. Next, 105 F98 rat

glioma cells in 10 mL of Hanks balanced salt solution without Mg21

and Ca21 were injected into the brain. The glioma cells were stereo-

tactically injected into a single location in the right hemisphere
(5.0 mm posterior and 3.0 mm lateral to the bregma) of each rat at

a depth of 5.0 mm from the brain surface. Next, the holes in the skull
were sealed with bone wax, and the wound was flushed with iodinated

alcohol. All procedures were performed according to the guidelines of
and were approved by the Animal Care and Use Committee of the

National Yang-Ming University. 18F-FBPA-Fr was prepared by the
method described in a previous report (32). The radiochemical purity

of 18F-FBPA-Fr was greater than 97%.

Focused Ultrasound System and Exposure

Pulsed FUS exposures were generated with a 1.0-MHz, single-
element focused transducer (A392S; Panametrics). The entire FUS

system setup was described in our previous study (33). The half max-
imum of the pressure amplitude of the focal zone had a diameter and

a length of 3 mm and 26 mm, respectively. The ultrasound contrast
agent (SonoVue; Bracco International) was injected into the tail vein

of the rats approximately 15 s before sonication. The sonication was

precisely targeted with a stereotactic apparatus (Stoelting) that used
the bregma of the skull as an anatomic landmark. Sonication was

applied to the tumor region of 5 glioma-bearing rats on day 9 after
tumor cell implantation. The focal zone of the ultrasound beam was

delivered to a location in the right brain hemisphere centered at the
tumor injection site. The sonication parameters were as follows: an

acoustic power of 2.86 W (corresponding to a peak negative pressure
of 0.7 MPa) with an ultrasound contrast agent injection of 300 mL/kg,

a pulse repetition frequency of 1 Hz, a duty cycle of 5%, and a soni-
cation time of 60 s.

Dynamic PET Imaging

Dynamic small-animal PET images of the F98 glioma–bearing

rats were obtained with a FLEX Triumph preclinical imaging system
(Gamma Medica-Ideas, Inc.). The sensitivity and spatial resolution

of the FLEX Triumph PET/SPECT/CT scanner were 1.1% and 0.91 mm,
respectively. Animals were anesthetized by inhalation of 2% isoflur-

ane in oxygen at 2 L/min in the prone position. Small-animal PET/CT

was performed on day 9 after tumor cell implantation. For evaluation
of the effect of BBB-D induced by FUS, each rat received a bolus

injection into the tail vein of 18F-FBPA-Fr at a dose of 22.2 MBq for
both brain tumors with BBB-D and brain tumors without BBB-D.

Dynamic data acquisition was obtained with several frames at short
intervals, followed by five 30-min frames up to 3 h after injection.

The images were viewed and quantified with AMIDE (A Medical
Imaging Data Examiner) software (free software provided by Source-

Forge) (34). Spheric regions of interest (radius, 2.5 mm) under the
skull defect were manually pinpointed at the sonicated site and in the

same region of the contralateral brain. The mean radioactivity within
the region subjected to BBB-D at various time intervals was de-

termined and compared with the results obtained for the equivalent
region of the contralateral brain. Time–activity curves were plotted

for both the tumor and the contralateral (normal) brain.

Pharmacokinetic Analysis

Arterial blood samples were obtained during dynamic small-animal
PET scanning; a total of 14 samples (0.1 mL each) were collected over

a period of 3 h. The blood was spun in a microcentrifuge, and red cells
and plasma were separated for inherent circulation plasma substrate

measurements for each animal. The radioactivity of plasma samples
was assayed with a g scintillation counter and was expressed in kBq/mL

of plasma sample. The pharmacokinetic parameters of the tissue could
be estimated from the dynamically acquired small-animal PET images.

with the data for plasma sample radioactivity as the arterial input
function. The pharmacokinetics of 18F-FBPA-Fr were analyzed by

use of a modified 3-compartment model for K1 (mL/g/min), k2 (min21),
k3 (min21), and k4 (min21) (Fig. 1) (35). The rate constants (K1, k2, k3,

FIGURE 1. Pharmacokinetics of 18F-FBPA-Fr analyzed by 3-compart-

ment model for K1 (mL/g/min), k2 (min−1), k3 (min−1), and k4 (min−1). K1

and k2 represent forward transport and reverse transport of 18F-FBPA-Fr

across BBB, respectively. k3 and k4 are anabolic and reverse-process

rate constants, respectively.

FIGURE 2. Small-animal PET/CT images of F98 glioma–bearing

Fischer 344 rats and corresponding brain sections of tumors both with

(A) and without (B) sonication by FUS. Regions targeted by FUS are

circled in tumors in right hemisphere.
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and k4) were calculated by nonlinear regression with PMOD software

(version 3.0; PMOD Technologies).

Histology

Two glioma-bearing rats from the FUS exposure group and 2

tumor-bearing control rats (no FUS exposure) were sacrificed after
dynamic PET scanning for histologic examination. The rats were

perfused with saline and 10% neutral buffered formalin. The brains
were removed, embedded in paraffin, and then serially sectioned into

6-mm-thick slices. The slices were stained with hematoxylin and
eosin to visualize the general cellular structure. Staining by terminal

deoxynucleotidyl transferase–mediated dUTP nick-end labeling
(TUNEL) (DeadEnd Colorimetric TUNEL system; G7130; Promega)

was performed to detect DNA fragmentation and apoptotic bodies
within the cells. Photomicrographs of brain sections stained with

hematoxylin and eosin and by TUNEL were obtained by use of
a Mirax Scan digital microscope slide scanner (3D Histech) with

a Plan-Apochromat 20·/0.8 objective (Carl Zeiss). The serial histol-
ogy images were annotated with Pannoramic Viewer software (3D

Histech).

Statistical Analysis

All data are shown as mean 6 SEM. Statistical analysis was per-

formed with an unpaired Student t test. The level of statistical signif-
icance was set at a P value of less than or equal to 0.05.

RESULTS

In the small-animal PET/CT images of glioma-bearing rats, high
contrast was seen in brain tumors both with and without sonication
but especially in the sonicated tumors (Fig. 2). Moreover, the
corresponding brain sections were observed for tumor identifica-
tion after small-animal PET/CT scanning (Fig. 2). Hemorrhage in
the tumor region was due to BBB-D after FUS exposure. The
time–activity curves derived from dynamic small-animal PET/
CT images for 18F-FBPA-Fr in the tumor and the contralateral
(normal) brain are shown in Figure 3A. No significant differences
in 18F-FBPA-Fr uptake were found in the tumor and the contra-
lateral brain despite the BBB-D for the tumor. Compared with the
contralateral brain, the tumor showed a significant accumulation
of radioactivity. Furthermore, the uptake of 18F-FBPA-Fr in the
tumor was significantly increased by BBB-D after FUS. Both of the
derived tumor-to-contralateral brain ratios reached a plateau at 15 min

after 18F-FBPA-Fr administration (Fig.
3B). The mean tumor-to-contralateral brain
ratios from 15 min to 165 min after intra-
venous injection of 18F-FBPA-Fr both with
and without BBB-D were approximately
3.5 and 2.0, respectively.
No significant differences in the time–

activity curves for 18F-FBPA-Fr in plasma
after intravenous injection were found
both with and without BBB-D. These data
were used as the arterial input function for
calculating the pharmacokinetic parame-
ters by use of tracer kinetic modeling (Fig.
4). Each point on the curve represented
plasma sampling at a specific point during
the time frame. The rate constants K1, k2, k3,
and k4 derived from the arterial input func-
tion for the intravenous injection of 18F-
FBPA-Fr with BBB-D are shown in Table 1.

Next, the K1/k2 ratio was obtained from a pharmacokinetic
analysis of blood from the same rat as that used for the data
shown in Table 1. Regression analysis (Fig. 5A) revealed a linear
relationship between the radioactivity in the tumor and K1/k2,
quantified as tumor radioactivity (KBq/mL) 5 0.0376 · K1/k2 2
0.172 (R2 5 0.851). Figure 5B shows the linear regression of K1/k2
with the tumor-to-contralateral brain ratio, quantified as tumor-
to-contralateral brain ratio 5 0.6574 · K1/k2 2 0.6642 (R2 5
0.906).
Figure 6 shows mild scattered extravasation of red blood cells

and TUNEL-positive apoptotic cells in the tumor tissues treated
with 18F-FBPA-Fr and sonication relative to the tumor tissues
treated with 18F-FBPA-Fr alone.

DISCUSSION

The success of BNCT will depend mainly on the differential
uptake of boron in tumors and normal tissues. When BPA is com-
plexed with fructose, its accumulation in tumors has been proven
to increase because of enhanced solubility (36). Previous studies

FIGURE 3. Pharmacokinetics of 18F-FBPA-Fr in glioma-bearing rats, calculated from small-

animal PET. (A) Time–activity curves for 18F-FBPA-Fr in tumors and contralateral brains of

glioma-bearing rats. Data were obtained from dynamic small-animal PET images after in-

travenous (i.v.) injection of 18F-FBPA-Fr both with and without BBB-D. (B) Tumor-to-contra-

lateral brain ratio for 18F-FBPA-Fr, derived from data in A. Each point represents mean ±
SEM for 5 rats.

FIGURE 4. Time–activity curves for 18F-FBPA-Fr in plasma of F98 glioma–

bearing rats after intravenous (i.v.) injection of 18F-FBPA-Fr both with and

without BBB-D. Each point represents mean ± SEM for 5 rats.
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reported that the pharmacokinetics of 18F-FBPA-Fr were similar to
those of BPA (18,37). 18F-FBPA-Fr showed specific tumor uptake in
F98 glioma–bearing rats and could be used as a probe for BPA
complexed with fructose in clinical BNCT. In the present study,
we used noninvasive small-animal PET/CT imaging to investigate
the pharmacokinetics of 18F-FBPA-Fr after intravenous adminis-
tration both with and without BBB-D induced by FUS.
To allow more 18F-FBPA-Fr to diffuse into the brain, hyperos-

motic BBB-D was applied in preclinical BNCT. Compared with
BNCT alone, BNCT with BBB-D showed significantly increased
treatment efficacy and animal survival (38,39). Detailed pharmaco-
kinetics after intravenous and intracarotid injections of 18F-FBPA-Fr
and BPA, both with and without osmotic BBB-D, were reported in
our previous study (18). The amount of boron in the tumor and the
tumor-to-normal brain ratio after intracarotid injection of BPA
with osmotic BBB-D were significantly higher than those pro-
duced by other delivery routes without BBB-D. For BNCT to be
successful, it is essential not only to maximize tumor boron uptake
but also to minimize boron concentrations in normal brain tissue.
Neurotoxicity attributable to BBB-D combined with BPA or so-
dium sulfhydryl borane never was observed. However, BBB-D
more effectively targeted infiltrating tumor cells (40). Therefore,
targeted BBB-D induced by FUS could provide a powerful ap-
proach for local enhancement of boron uptake in the tumor region
with minimal damage in the surrounding normal brain tissue.
The quantitative PET data indicated that the tumor-to-contra-

lateral brain ratio in a glioma-bearing rat was 1.75-fold higher
after intravenous injection of 18F-FBPA-Fr with BBB-D than after

intravenous injection without BBB-D (Fig. 3B). Intravenous in-
jection of BPAwith FUS-induced BBB-D may be a better delivery
method because this route is safer than intracarotid injection with
hyperosmotic BBB-D used in previous studies. However, the bio-
effects of ultrasound on brain tissue are still unknown, and further
investigations of FUS are needed.
The modified 3-compartment model shown in Figure 1 indicated

that an increase in BBB permeability was promoted by K1 and
suppressed by k2. After the intravenous injection of 18F-FBPA-Fr
with BBB-D, a mild increase in K1 and a significant decrease in k2
were seen (Table 1). These data indicated that 18F-FBPA-Fr was
transported from the brain into the blood more readily after FUS-
induced BBB-D. The K1/k2 ratio was significantly higher (;4.37-
fold) after intravenous injection of 18F-FBPA-Fr with BBB-D than
after intravenous injection without BBB-D. As described earlier,
a decrease in k2 was the principal factor affecting the K1/k2 ratio
of 18F-FBPA-Fr after FUS-induced BBB-D. High interstitial fluid
pressure is known to reduce the driving force for extravasation in
tumors despite large gaps in the endothelium and greatly confining
the transport of drugs (41). The effect of FUS on the K1/k2 ratio was
consistent with the hypothesis that the enhanced extravasation of
18F-FBPA-Fr resulted partly from the decrease in high interstitial
fluid pressure after FUS exposure.
An important requirement for BNCT is the accumulation of

boron compounds in the tumor. The tumor-to-normal tissue ratio is
another key requirement for determining the optimal neutron
irradiation time for BNCT to minimize irradiation of normal
tissues. Analysis of the K1/k2 ratio with boron tumor uptake or

the tumor-to-contralateral brain ratio after
FUS-induced BBB-D revealed that the val-
ues exhibited a good correlation (Fig. 5).
Furthermore, the results revealed that the
intravenous injection of 18F-FBPA-Fr with
BBB-D would result in a higher level of
tumor uptake of BPA and a higher tumor-
to-contralateral brain ratio. Thus, the K1/k2
ratio may offer an indication of the extent of
FUS-induced BBB-D and provide excellent
feedback information to the operator. In on-
going studies, we plan to attempt to enhance
the efficacy of BNCT by FUS exposure in
animal brain tumor models.

CONCLUSION

Investigation of the pharmacokinetics of
18F-FBPA-Fr with small-animal PET/CT

TABLE 1
Rate Constants for Brain Tumors After Intravenous Injection of 18F-FBPA-Fr Both With and Without FUS-Induced BBB-D

Rate constant or ratio Intravenous injection of 18F-FBPA-F Intravenous injection of 18F-FBPA-F 1 BBB-D

K1 (mL/g/min) 0.009 ± 0.004 0.011 ± 0.001
k2 (min−1) 0.031 ± 0.013 0.006 ± 0.0006

k3 (min−1) 0.54 ± 0.51 0.0004 ± 0.0003

k4 (min−1) 0.32 ± 0.24 2.3 ± 1.5

K1/k2 0.41 ± 0.11 1.79 ± 0.23*

*P value for comparison of group receiving BBB-D with group not receiving BBB-D was 0.006.
Each value represents mean ± SEM for 5 rats.

FIGURE 5. Correlations of K1/k2 ratio with radioactivity in tumor region of interest (ROI) and

tumor-to-contralateral brain ratio. (A) Correlation between K1/k2 ratio and radioactivity in tumor

ROI. (B) Correlation between K1/k2 ratio and tumor-to-contralateral brain ratio. Each point repre-

sents 1 rat. Mean radioactivity in tumor ROI and tumor-to-contralateral brain ratio were derived from

small-animal PET images after intravenous injection of 18F-FBPA-Fr both with and without BBB-D.
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imaging revealed that FUS not only significantly increased the
accumulation of boron in the sonicated tumor but also signifi-
cantly elevated the tumor-to-normal brain ratio in the focal region.
The K1/k2 ratio could be used to evaluate boron uptake in the
tumor and the tumor-to-normal brain ratio and could provide an
indication of the extent of FUS-induced BBB-D. This noninvasive
nuclear imaging method may be a promising quantitative ap-
proach for optimizing the therapeutic window in future applica-
tions of BNCT.
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