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Texture indices are of growing interest for tumor characterization in
18F-FDG PET. Yet, on the basis of results published in the literature
so far, it is unclear which indices should be used, what they repre-

sent, and how they relate to conventional indices such as standard-

ized uptake values (SUVs), metabolic volume (MV), and total lesion

glycolysis (TLG). We investigated in detail 31 texture indices, 5 first-
order statistics (histogram indices) derived from the gray-level histo-

gram of the tumor region, and their relationship with SUV, MV, and

TLG in 3 different tumor types. Methods: Three patient groups

corresponding to 3 cancer types at baseline were studied indepen-
dently: patients with metastatic colorectal cancer (72 lesions), non–

small cell lung cancer (24 lesions), and breast cancer (54 lesions).

Thirty-one texture indices were studied in addition to SUVs, MV,

and TLG, and 5 indices extracted from histogram analysis were also
investigated. The relationships between indices were studied as

well as the robustness of the various texture indices with respect

to the parameters involved in the calculation method (sampling
schemes and tumor volume of interest). Results: Regardless of

the patient group, many indices were highly correlated (Pearson

correlation coefficient jrj ≥ 0.80), making it desirable to focus on

only a few uncorrelated indices. Three histogram indices were
highly correlated with SUVs (jrj ≥ 0.84). Four texture indices were

highly correlated with MV, and none was highly correlated with

SUVs (jrj ≤ 0.55). The resampling formula used to calculate texture

indices had a substantial impact, and resampling using at least 32
discrete values should be used for texture indices calculation. The

texture indices change as a function of the segmentation method

was higher than that of peak and maximum SUVs but less than
mean SUV for 5 texture indices and was larger than that of MV for

14 texture indices and for the 5 histogram indices. All these results

were extremely consistent across the 3 tumor types and explained

many of the observations reported in the literature so far. Conclu-
sion: None of the histogram indices and only 17 of 31 texture in-

dices were robust with respect to the tumor-segmentation method.

An appropriate resampling formula with at least 32 gray levels

should be used to avoid introducing a misleading relationship be-
tween texture indices and SUV. Some texture indices are highly

correlated or strongly correlate with MV whatever the tumor type.

Such correlation should be accounted for when interpreting the
usefulness of texture indices for tumor characterization, which

might call for systematic multivariate analyses.
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PET using 18F-FDG currently plays a major role in cancer patient
staging, management, and monitoring. Standardized uptake values
(SUVs) are often reported to support diagnosis, assist prognosis,
and serve as baseline values to later assess tumor response to therapy
(1). The measurement of texture indices from tumor PET images has
also been recently proposed as an adjunct to predict tumor response
to therapy (2–6). Indeed, it is well known that tumors often present
biologic heterogeneity corresponding to necrosis, fibrosis, regions
with angiogenesis, high cellular proliferation, or the presence of
specific receptors. Such biologic characteristics are of interest be-
cause they are often associated with lesion aggressiveness or lesion
sensitivity to a specific therapy. Although PET images suffer from
modest spatial resolution, it was hypothesized that the uptake distri-
bution within the tumor could bring more insight into the tumor than
the single SUV or tumor volume. On the basis of this assumption,
several groups have studied 18F-FDG uptake heterogeneity in tumors
by computing texture indices in baseline PET images for head and
neck (2), cervical (2,7), esophageal (3,5,8), and lung cancers (4,6) as
well as other cancer types (9). Yet, on the basis of the results pub-
lished in the literature so far for 18F-FDG PET (Table 1), it is unclear
which texture indices should be measured and how they actually
related to the biologic tumor features (10). Indeed, Table 1 shows
that many indices have been studied and that the methods used to
calculate these texture indices were not always identical (resampling
scheme in column 3 and tumor-segmentation method in column 4).
In addition, the performance of different texture indices are difficult
to compare between studies because the classification task was not
always the same (Table 1) and some results do not appear consistent
between studies. For instance, the tumor contrast was greater in non-
responding patients than in responding patients (5) whereas the
opposite was observed in Cook et al. (6). Although different
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TABLE 1
Published Results Regarding Performance of Textural Parameters to Characterize Tumors in 18F-FDG PET

Cancer Textural index

Resampling

scheme (R)

Lesion

segmentation Results

Cervical

n 5 14,

pretreatment
18F-FDG PET (2)

Energy; contrast (CM);

homogeneity; entropy

Threshold 5 0.4 ·
SUVmax and

optimization

(CT dimension)

Postradiotherapy outcome (R vs. NR):

AUC(Texture) . AUC(MV) . AUC(SUV)*

n 5 20,

pre 1 during 1
posttreatment
18F-FDG PET (7)

Run indices; Zone indices R 5 256 Threshold 5 0.4 ·
SUVmax and

optimization

(CT dimension)

Correlation with the changes in tumor

heterogeneity during therapy:

HGRE, SRHGE, LRHGE, HGZE,

SZHGE, LZHGE, SUVmax, SUVmean

Head and neck

n 5 9,

pretreatment
18F-FDG PET (2)

Energy; contrast (CM);

homogeneity; entropy

R unspecified Manually

segmented

Postradiotherapy outcome (R vs NR):

AUC(MV) . AUC(homogeneity) .
AUC(contrast) . AUC(SUV) .
AUC(entropy) . AUC(energy)*

Esophageal

n 5 41,

pretreatment
18F-FDG PET (3)

Homogeneity; correlation;

energy; entropy; contrast

(CM); dissimilarity; coarseness;

contrast (NGLDM); busyness;

Run indices; Zone indices

R 5 64 Fuzzy Locally

Adaptive

Bayesian (26)

Therapy-response prediction

(R vs. NR): AUC(texture) .
AUC(SUV)* Entropy: NR .
R‡ GLNUz: NR . R‡ Homogeneity:

NR . R‡ ZLNU: R . NR‡

n 5 20,

posttreatment
18F-FDG PET (5)

Contrast (CM); correlation R 5 64 Threshold . 2.5

SUV units

Prediction of pathologic response

(R vs. NR): AUC(contrast) .
AUC(correlation) . AUC(SUV) .
AUC(MV)* Contrast: NR.R‡;

correlation: R . NR‡

n 5 40, presurgery
18F-FDG PET (8)

Energy; entropy R unspecified Threshold . 2.5

SUV units

Correlation with T and N stage:

r(entropy) . r(energy) . r(SUVmax)†

Prediction of advanced stage ([Ia-IIb]

vs. [IIIa-IV]): entropy only

NSCLC

n 5 53,

pretreatment
18F-FDG PET (6)

Coarseness; contrast

(NGLDM); busyness

R unspecified Manually

segmented

Therapy-response prediction (R vs NR):

AUC(contrast) . AUC(coarseness) .
AUC(busyness) . AUC(SUV) .
AUC(MV)* Coarseness: NR .
R‡; contrast: R . NR‡; busyness:

R . NR‡

n 5 27,

pretreatment
18F-FDG PET (4)

Energy; contrast(CM);

homogeneity; entropy

R unspecified Manually

segmented

Correlation with locoregional

recurrence: r(SUV) . r(texture)†

Correlation with local recurrence:

r(texture) . r(SUV)†

Several types

of cancer

n 5 30, pre- and

posttreatment
18F-FDG PET (9)

Homogeneity; entropy;

energy; run indices

R unspecified Automated

Random

Walk Image

Segmentation

Prediction of patient outcome or

variation in uptake region

characteristics: entropy, SRE

*AUC (X) . AUC (Y): classification obtained with index X was better than with index Y, based on AUC.
†Index: R . NR, index was higher in responders (R) than nonresponders (NR).
‡r (X) . r (Y): Spearman rank correlation coefficient (r) with index X was higher than r for index Y.

Run indices: textural index calculated from GLRLM (SRE, LRE, low gray-level run emphasis [LGRE], HGRE, short-run low gray-level

emphasis [SRLGE], short-run high gray-level emphasis [SRHGE], long-run low gray-level emphasis [LRLGE], long-run high gray-level

emphasis [LRHGE], GLNUr, RLNU, run percentage [RP]). Zone indices: textural index calculated from gray level zone length matrix (short-
zone emphasis [SZE], long-zone emphasis [LZE], low gray-level zone emphasis [LGZE], high gray-level zone emphasis [HGZE], short-zone

low gray-level emphasis [SZLGE], SZHGE, LZLGE, LZHGE, gray-level nonuniformity for zone [GLNUz], zone length nonuniformity [ZLNU],

zone percentage [ZP]).
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results could be due to different tumor types, there is still a need
for eliminating other possible methodologic biases. Moreover,
Galavis et al. (11) reported a lack of robustness for several texture
indices as a function of the acquisition and reconstruction param-
eters. Some of the studies mentioned earlier (2–5,9) also investi-
gated first-order statistics such as Kurtosis or SD calculated in the
tumor region, with various results. For instance, in esophageal
cancer Tixier et al. (3) showed that no index extracted from histo-
gram analysis was a significant predictive factor of response to
therapy whereas Tan et al. (5) found that skewness could differ-
entiate responding from nonresponding tumors.
In this context, the purpose of this study was to investigate a large

number of texture indices on a variety of tumors to get a better
insight into how they relate to one another and to conventional
indices such as SUVs, metabolic volume (MV), and total lesion
glycolysis (TLG) and to determine how robust they were with respect
to the gray-level resampling scheme and formula and to the tumor
delineation method. The objective was to identify the most relevant
texture indices to be further studied; to describe their relationship
with respect to SUV, MV, and TLG; and to determine whether results
were consistent across tumor type. To that end, we independently
analyzed 3 patient groups (colorectal, non–small cell lung, and breast
cancers) for which we closely investigated 31 texture indices and
5 indices of first-order statistics in addition to SUVs, MV, and TLG.

MATERIALS AND METHODS

Patients

Three patient groups were studied, for a total of 188 lesions. The

first cohort consisted of 28 patients with metastatic colorectal cancer
(MCC) treated at the Jules Bordet Institute, Brussels, Belgium, and

recruited as part of a prospective clinical trial to assess the clinical role
of early 18F-FDG PET/CT scanning in chemotherapy-treated MCC.

The study was approved by the ethics committee of the Institute Jules
Bordet and registered at clinicaltrials.gov (number NCT00741481),

and written informed consent was obtained from all patients. The
other 2 cohorts consisted of 24 patients with non–small cell lung

cancer (NSCLC) and 54 patients with breast cancer (BC) scanned at
Avicenne Hospital, Bobigny, France. For these 2 patient cohorts, this

study was approved by the local institutional review board (Ile-de-France
X), and the requirement to obtain informed consent was waived. The

characteristics of each cohort are summarized in Table 2.

PET/CT Protocol

Each patient underwent an 18F-FDG PET/CT scan before the start
of therapy.

The serum glucose level was less than 1.4 g/L at the time of injection
for all patients.

For the patients with MCC, 18F-FDG PET/CT images were acquired
using a Discovery LS System (GE Healthcare), 69 6 7 min (range, 58–

88) after injection of 18F-FDG (4 MBq/kg), with 4 min per bed position.
PET images were reconstructed with the built-in GE Advance software

using the ordered-subset expectation maximization algorithm, with 2
iterations and 28 subsets, and gaussian postfiltering (full width at half

maximum [FWHM], 5.45 mm). The images were corrected for attenu-
ation based on the CT and for scatter. The CT scan was obtained with

a 4-slice multidetector helical scanner (Lightspeed; GE Healthcare). The
tension was 120 kV, and the range of current was set from 30 to 200 mA

(determined by the Auto-mA algorithm from GE Healthcare). The other
parameters were 0.5 s per CT rotation, a pitch of 1.5, and a table speed

of 15 mm/rotation. The reconstructed image voxel size was 0.98 · 0.98 ·
5 mm for CT and 3.91 · 3.91 · 4.25 mm for PET.

For the patients with NSCLC or BC, all 18F-FDG PET/CT images
were obtained using a Gemini TF PET/CT scanner (Philips), 76 6

9 min (range, 56–94) after injection of 18F-FDG (3 MBq/kg), with
1.45 min per bed position. PET images were reconstructed using a

BLOB-OS-TF (Blob–ordered-subsets–time-of-flight) list-mode itera-
tive algorithm with 2 iterations and 33 subsets. Attenuation correction

was performed using the CT. No postreconstruction smoothing was
used. CT images were acquired using the following settings: 120 kV,

100 mA, pitch of 0.69, slice thickness of 3 mm, and increment of 1.5
mm. The reconstructed image voxel size was 1.17 · 1.17 · 1.5 mm for

CT and 4 · 4 · 4 mm for PET.
For the 2 imaging systems, the spatial resolution of the images,

derived from phantom acquisitions performed using the exact same
acquisition and reconstruction protocols, was about 7 mm in FWHM.

All PET images were expressed in SUV units normalized by the
patient body weight, using:

SUVðg=mLÞ 5 tissue activityðBq=mLÞ
=½injected doseðBqÞ=body weightðgÞ�; Eq. 1

where the tissue activity was decay-corrected to account for the time
elapsed between injection and acquisition.

Tumor Segmentation

For each tumor, 2 MVs were estimated with 2 delineation methods
often used in a clinical setting.

The first volume of interest (VOITAB) was estimated as described by

Nestle et al. (12) where the threshold was defined by:

T 5 b · I70 1 Ibgd; Eq. 2

with b 5 0.3. The b parameter was optimized using 3 acquisitions of
a Jaszczak phantom including spheres from 0.98 to 3.12 cm in di-

ameter, with sphere to background activity ratios varying from 2.96 to
10 (13). I70 was the mean uptake in a contour containing all voxels

with a value greater than 70% of the maximum uptake in the tumor.
Ibgd was defined as the mean uptake in a shell of 2 voxels thickness

TABLE 2
Patient Characteristics

Characteristic MCC NSCLC BC

Sex
Male 18 19 —

Female 10 5 54

Age (y)
Mean 63 62 55

Range 27–83 48–79 31–83
Localization
Colon 2 — —

Lung — 24 —

Breast — — 54

Liver 59 — —

Peritoneum 4 — —

Other 7 — —

Stage
II A — — 17

II B — — 9
III A — 16 2

III B — 8 11

III C — — 1
IV 28 — 14

Type of lesion
Primary 2 24 54

Metastases 70 — —
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located at 6 voxels from the region used to calculate I70, and only

voxels with uptake less than 2.5 SUV units were included in the
calculation of Ibgd.

The second delineation method was a fixed threshold set to 40% of
the maximum SUV in the lesion and gave a tumor volume of interest

(VOI) noted VOI40%.
A morphologic closing operation was implemented for each VOI

(VOITAB and VOI40%) to include necrotic regions if there were any in
the VOI. In 47 of 188 lesions, VOIs were manually adjusted to exclude

neighboring nodes or metastases. Finally, only the 150 lesions of 188
that had a VOITAB greater than 5 mL (77 voxels for MCC or 78 voxels

for NSCLC and BC) were included in the subsequent analysis, be-
cause textural measurements might not be relevant in small regions.

This 5-mL value was chosen empirically (3) based on 2 observations:
some texture parameters are based on series of neighboring voxel

values in the x, y, or z directions, and series of less than 4 voxels
would not make the calculations meaningful, calling for texture cal-

culation in volumes of at least 4 · 4 · 4 5 64 voxels; and with the
spatial resolution in our PET images being about 7 mm in FWHM, it

was reasonable to calculate texture in volumes with dimensions of at

least equal to 3 times the FWHM not to include texture due to partial-
volume effect. Assuming spheric volumes, this yields to volumes of

about 5 mL.

Tumor Characterization

In each VOITAB and VOI40%, 41 indices were measured, namely
SUVmax, SUVmean, and SUVpeak (defined below); MV; TLG;

5 first-order statistics based on histogram analysis; and 31 texture
indices.

SUVmax was defined as the maximum uptake in the segmented
tumor. SUVmean was measured as the average uptake in the tumor

VOI. SUVpeak was computed as the maximum average SUV in a cube
of 3 · 3 · 3 voxels included in the tumor for each possible location of

this cube in the VOI. MV was the volume of the VOI. TLG was
calculated as the product of SUVmean by MV.

On the basis of first-order statistics, 5 histogram indices were computed:

SD (SDHist), skewness, kurtosis, EntropyHist, and EnergyHist.
To calculate texture indices, the VOI content was first resampled in

D discrete values using:

RðxÞ 5 D · ½IðxÞ 2 SUVmin�=½SUVmax 2 SUVmin�; Eq. 3

where I(x) is the SUV of voxel x in the original image; SUVmin and
SUVmax are the minimum and maximum SUV in the VOI,

respectively; R(x) is the resampled value of voxel x; and D is the
number of resampled values. After resampling with 64 discrete values

(D 5 64 in Eq. 3), 4 matrices were computed from each VOI: the
cooccurrence matrix (CM) (14), the gray-level run length matrix

(GLRLM) (15), the neighborhood gray-level different matrix (NGLDM)

(16), and the gray-level zone length matrix (GLZLM) (17). The
GLRLM was calculated from 13 different directions in space.

The CM was calculated from the same 13 different directions with a
1-voxel distance relationship between consecutive voxels. The index

value was the average of the index over the 13 directions in space.
For the NGLDM, only the 26 nearest neighbors in 3 dimensions were

considered. Thirty-one texture indices were calculated from these
matrices (Table 3).

The definitions of all indices are given in Supplemental Table 1
(supplemental materials are available at http://jnm.snmjournals.org).

Correlation Analysis

To characterize the relationships between the different indices, we

analyzed the linear correlation between each pair of indices, computed
with 64 discrete values (Eq. 3) from VOITAB and characterized it by

the Pearson correlation coefficient (denoted r thereafter), considering
each patient group separately. On the basis of these correlation anal-

yses, we grouped indices so that all pairs of indices in a group had an
jrj greater than 0.80 in at least 2 patient sets (to reduce false-positive

findings). The mean jrj over index pairs and associated SD were
calculated for each group of highly correlated indices. Despite the

large number of correlation values that were calculated, no compen-
sation for multiple comparison was performed as we did not perform

any statistical test on the r values (18).

Impact of Gray-Level Resampling Scheme to Calculate

Texture Indices

To determine whether texture indices depended on the resampling
step, we calculated each texture index using 4 additional sampling

TABLE 3
List of Indices Calculated from Texture Matrices

Matrix Index

Cooccurrence Matrix Homogeneity
Energy

Correlation

Contrast

Entropy
Dissimilarity

Gray-Level Run Length Matrix SRE

LRE
LGRE

HGRE

SRLGE

SRHGE
LRLGE

LRHGE

GLNUr

RLNU
RP

Neighborhood Gray-Level Different Matrix Coarseness

Contrast

Busyness
Gray-Level Zone Length Matrix SZE

LZE

LGZE
HGZE

SZLGE

SZHGE

LZLGE
LZHGE

GLNUz

ZLNU

ZP

SRE5 short-run emphasis; LRE5 long-run emphasis; LGRE5
low grey-level run emphasis; HGRE 5 high grey-level run empha-

sis; SRLGE5 short-run low grey-level emphasis; SRHGE5 short-

run high grey-level emphasis; LRLGE 5 long-run low grey-level

emphasis; LRHGE 5 long-run high grey-level emphasis; GLNUr 5
grey-level non-uniformity for run; RLNU 5 run-length non-unifor-

mity; RP 5 run percentage; SZE 5 short-zone emphasis; LZE 5
long-zone emphasis; LGZE 5 low grey-level zone emphasis;

HGZE 5 high grey-level zone emphasis; SZLGE 5 short-zone
low grey-level emphasis; SZHGE 5 short-zone high grey-level

emphasis; LZLGE 5 long-zone low grey-level emphasis; LZHGE

5 long-zone high grey-level emphasis; GLNUz 5 grey-level non-
uniformity for zone; ZLNU 5 zone length non-uniformity; ZP 5
zone percentage.
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schemes (D 5 8, 16, 32, and 128 in Eq. 3) of the VOITAB voxels. We

analyzed the Pearson correlation coefficient r with results obtained
with D 5 64 for each patient set independently.

We also studied the impact of the formula used for resampling
using Equation 4 previously reported (3,7) instead of Equation 3:

RðxÞ 5 D · ½IðxÞ 2 SUVmin�=½SUVmax 2 SUVmin1 1�: Eq. 4

Texture indices were calculated with Equations 3 and 4 for D 5 64
discrete values in VOITAB. For each texture index, we calculated the

Pearson correlation coefficient for the index obtained with these 2
resampling equations. We also calculated r between the index com-

puted with Equation 4 and SUVmax.

Change of Textural Index as Function of

Segmentation Method

To study the impact of the segmentation method on the tumor

volume estimate, we first plotted the Bland–Altman graph to compare
MVTAB (metabolic volume in VOITAB) and MV40% (metabolic volume

in VOI40%) for the 3 sets of tumors separately (MCC, NSCLC, BC).
For each tumor set, the variation of each index as a function of the

tumor-segmentation method was assessed by calculating the relative
difference d between the index measured from VOITAB and the index

measured from VOI40% for each lesion using:

dð%Þ 5 ðindex½VOI40%� 2 index½VOITAB�Þ
=ðindex½VOI40%�1 index½VOITAB�Þ=2 · 100:

Eq. 5

D5 64 (Eq. 3) was used for all texture indices calculations. The SD of
d (sdd) of these differences over all lesions from each tumor set was

calculated to characterize the sensitivity of the value to the segmented
volume.

RESULTS

Correlation Between Different Indices

Because we started from 41 indices, (41 · 40)/2 5 820 Pearson
correlation coefficients were calculated for each of the 3 patient
cohorts. One hundred sixty-six were greater than 0.80 for at least 2
patient sets, and 110 were greater than 0.80 for all 3 patient sets,
demonstrating a strong correlation between indices. When the in-
dices presenting a correlation greater than 0.80 in at least 2 patient
sets were grouped together, 9 groups were identified (Table 4).
Table 4 also shows the mean absolute correlation between the

indices for each patient set separately. Busyness and long-zone
low gray-level emphasis (LZLGE) did not belong to any group
of highly correlated indices and constituted 2 additional groups,
yielding a total of 11 groups.
Table 5 summarizes the correlation between all texture indices,

histogram indices, and MV. No histogram index was correlated
with MV, whereas the r correlation coefficient between SUVmax
and SDHist, EnergyHist, and EntropyHist was higher than 0.84. The
correlation of texture indices with SUVmax was always less than
0.46, except for long-zone high gray-level emphasis (LZHGE),
where it was 0.55 for the NSCLC patient set. The r correlation
coefficient of MV with SUVmax was 0.31, 0.41, and 0.02 for the
MCC, NSCLC, and BC patient sets, respectively.

Impact of Resampling Step

For each index and each patient set, the calculation of the r
Pearson correlation between texture indices calculated with
D 6¼64 and D 5 64 (8 vs. 64, 16 vs. 64, 32 vs. 64, 128 vs. 64),
denoted rD-D hereafter, shows the following. First, 9 of 31 texture
indices (homogeneity, correlation, the 2 contrasts, dissimilarity,
coarseness, high gray-level run emphasis [HGRE], gray-level non-
uniformity for run [GLNUr], and run length nonuniformity
[RLNU]) yielded an rD-D higher than 0.95 for all patient sets
and all comparisons, suggesting that these indices are robust with
respect to the number of gray levels used for resampling. Second,
2 indices (busyness and LZLGE) strongly depended on that num-
ber, with rD-D between 20.05 and 1. Third, when using at least 32
discrete values for resampling, rD-D was always higher than 0.80
for all indices except busyness (rD-D between 20.05 and 0.13),
LZLGE (rD-D between 0.37 and 1), and LZHGE (rD-D between
0.73 and 0.95).
Nineteen of 31 indices were little influenced by the formula

used to resample the VOI content (req4_eq3 $ 0.95). Ten of
31 texture indices were moderately affected (0.80 # req4_eq3
, 0.95), but busyness and short-zone high gray-level emphasis
(SZHGE) were strongly modified (req4_eq3 , 0.80). When Equa-
tion 4 was used, the Pearson correlation coefficients ranged from
0.35 to 0.67 between texture indices from group 6 and SUVmax,
whereas they ranged between 0.02 and 0.32 for texture indices
computed with Equation 3. This suggests that using Equation 4
instead of Equation 3 introduces a spurious correlation between
the texture indices of group 6 and SUVmax.

TABLE 4
Groups of Correlated Indices with Mean Absolute Correlation per Group and Associated SD for 3 Tumor Types

Group Correlated index MCC NSCLC BC

1 Homogeneity-correlation-contrast (CM)-dissimilarity-contrast (NGLDM) 0.94 ± 0.04 0.90 ± 0.07 0.91 ± 0.06
2 Energy-entropy-coarseness 0.93 ± 0.04 0.93 ± 0.05 0.90 ± 0.06

3 SRE-RP-SZE-ZP 0.98 ± 0.01 0.89 ± 0.08 0.97 ± 0.02

4 LRE-LZE-LZHGE 0.87 ± 0.09 0.48 ± 0.44 0.89 ± 0.05
5 LGRE-SRLGE-LRLGE-LGZE-SZLGE 0.98 ± 0.02 0.64 ± 0.32 0.97 ± 0.02

6 HGRE-SRHGE-LRHGE-HGZE-SZHGE 0.96 ± 0.03 0.91 ± 0.09 0.96 ± 0.04

7 GLNUr-RLNU-GLNUz-ZLNU-MV-TLG 0.97 ± 0.03 0.94 ± 0.07 0.91 ± 0.07

8 SUVmax-SUVmean-SUVpeak-SDHist-EntropyHist-EnergyHist 0.93 ± 0.05 0.93 ± 0.04 0.93 ± 0.06
9 Skewness-Kurtosis 0.81 0.57 0.85

10 Busyness — — —

11 LZLGE — — —

Please refer to definition of acronyms in footnote to Table 3.
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Change in Index Values as Function of

Segmentation Method

The Bland–Altman plots comparing MVTAB and MV40% for the
3 tumor sets (Fig.1) demonstrate that there were substantial differ-
ences between the 2 volumes and that the larger the volume the
higher the difference in MV as a function of the segmentation
method.
The sdd calculated for each index and each tumor set is listed in

Table 6. No texture or histogram indices had an sdd less than those
of SUVmax or SUVpeak, suggesting that all texture and histogram
indices depend more on the tumor-segmentation method than
SUVmax and SUVpeak. Only 5 texture indices sdd (entropy,
short-run emphasis [SRE], long-run emphasis [LRE], run percent-

age, short-zone emphasis) were lower than that of SUVmean in
the 3 tumor sets. Twelve indices had an sdd between the sdd of
SUVmean and sdd of MV, whereas the remaining 14 texture in-
dices and 5 histogram indices had an sdd higher than that of MV,
showing that these 19 indices were highly dependent on the seg-
mented volume.

DISCUSSION

Our primary objective was to clarify the relationship between
texture indices with conventional indices such as SUVs and MV.
Indeed, as shown in Table 1, although textural indices are being
reported as potentially useful in recent publications, the consistency
of published results is currently difficult to assess for several reasons.
First, the same name given to a texture index does not always

correspond to the same definition (10). For instance, homogeneity
is not defined identically in Tixier et al. ((3); Eq. 3) and in other
articles ((2); Eq. 4 (4,19)). We found in our patients that the 2
indices were highly correlated (r . 0.99 regardless of the patient
set). Similarly, zone length nonuniformity (ZLNU) and gray-
level nonuniformity for zone do not obey the same definition
in Tixier et al. (3,20). In our work, we chose the definitions of
Xu et al. (15). In addition, indices corresponding to the same
definition are not always given the same acronym. For instance,
the SZHGE index we studied (15) is sometimes called Szonehigl
(19), high-intensity short-zone emphasis (3), or high-intensity
small-area emphasis (20). Last, in certain publications, indices
are not defined.
Second, the performances of texture indices are not always

compared with the performances of MV, SUVs, and TLG, making
it difficult to determine the added value of texture indices,
compared with conventional indices. For instance, in Tixier
et al. (3), it is concluded that texture indices measured in the
pretreatment scan are highly predictive of the therapeutic response
in esophageal cancer, but results of MV are not provided, whereas
in Hatt et al. (21), in a similar cohort of patients, MV was reported
to be highly predictive of the therapeutic response. It is thus un-
clear which of MVs or texture indices are most useful in these
patients. Similarly, in Dong et al. (8), the correlation of SUVmax,
energy, and entropy with the TNM classification was reported, but
MV was not investigated. Because TNM classification is often
highly predictive of outcome, the performance of texture indices,
compared with TNM classification, should also be reported and
analyzed using multivariate approaches.
Another confounding factor relates to the volume in which

texture indices are calculated given that there is currently no ideal
method to delineate the tumor. Different groups use different
approaches, and differences in texture indices results might come
from a different delineation method. Also, the relevance of texture
indices has been investigated with respect to several tasks (Table
1, last column), making it complicated to draw generic conclu-
sions regarding how texture indices should be measured and when.
This is all the more true that there are disagreements between
results by different groups. For instance, in posttreatment scans,
the tumor contrast was greater in nonresponding patients than in
responding patients in esophageal cancer treated by neoadjuvant
chemoradiation (5), whereas it was smaller in NSCLC treated by
chemotherapy (6) in pretreatment scans (Table 1). If these differ-
ences might be due to the different tumor types investigated in
these studies or different scanning protocols, it is still useful to
determine whether these are the only possible explanations.

TABLE 5
Correlation Between Indices and MVTAB for 3 Patient

Groups

MV

Group Index MCC NSCLC BC

1 Homogeneity 0.66 0.74 0.76

Correlation 0.67 0.73 0.64

Contrast (CM) −0.58 −0.72 −0.62
Dissimilarity −0.62 −0.75 −0.68
Contrast (NGLDM) −0.57 −0.71 −0.61

2 Energy −0.58 −0.54 −0.42
Entropy 0.74 0.75 0.58

Coarseness −0.74 −0.80 −0.70
3 SRE −0.76 −0.72 −0.82

RP −0.76 −0.65 −0.83
SZE −0.72 −0.81 −0.73
ZP −0.74 −0.83 −0.80

4 LRE 0.77 0.56 0.83

LZE 0.82 0.41 0.73
LZHGE 0.86 0.86 0.76

5 LGRE −0.48 −0.22 −0.42
SRLGE −0.48 −0.36 −0.43
LRLGE −0.47 0.12 −0.40
LGZE −0.48 −0.58 −0.44
SZLGE −0.47 −0.64 −0.45

6 HGRE 0.17 0.31 −0.13
SRHGE 0.14 0.28 −0.15
LRHGE 0.27 0.40 −0.03
HGZE 0.28 0.27 −0.08
SZHGE −0.01 −0.07 −0.29

7 GLNUr 0.98 0.99 0.98

RLNU 1.00 1.00 1.00

GLNUz 0.99 0.99 0.99

ZLNU 0.99 0.97 0.93
MV 1.00 1.00 1.00

TLG 0.95 0.87 0.85

8 SUVmax 0.31 0.41 0.02
SUVmean 0.14 0.32 −0.07
SUVpeak 0.32 0.43 0.03

SDHist 0.26 0.24 −0.11
EntropyHist 0.37 0.41 −0.03
EnergyHist −0.31 −0.39 0.02

9 Skewness −0.43 −0.46 −0.09
Kurtosis −0.11 0.16 0.24

10 Busyness −0.15 −0.13 −0.04
11 LZLGE −0.07 0.22 0.18

Please refer to definition of acronyms in footnote to Table 3.
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Moreover, there is often confusion between texture indices and
indices extracted from the histogram of voxel values in the tumor
region of interest. The latter indices are based on first-order
statistics and do not reflect the spatial arrangement of voxels.
Therefore, they do not describe the texture, as already underlined
in Asselin et al. (22).
We therefore performed a comprehensive analysis of textural

and classic indices of different tumor types, to better understand
how they relate to indices that are currently used, in terms of
information that they convey and robustness. We deliberately
investigated independently 3 tumor sets, corresponding to differ-
ent tumors and acquisition/reconstruction protocols, to analyze the
consistency of our results across a variety of tumor images and
only draw conclusions when our results were almost identical for
all images.

Correlation Between Indices

Many texture indices have been described in the literature
(14–17), without clear indication on which should be used (Table 1).
We studied the correlation between the different texture indices
themselves and between texture indices and conventional indices,
aiming at identifying the indices that actually capture different
pieces of information. As a first approximation, we considered
linear correlation only and sorted indices so as to group together
all indices being highly correlated (Table 4). Table 4 suggests that
there is no added value in calculating several indices belonging to
the same group, because they describe highly correlated informa-
tion. Indices from different groups can still be significantly corre-
lated because the cutoff value of 0.80 that we used is arbitrary.
Our results suggest that the correlation is not dependent on the

tumor types we studied (Table 4, last 3 columns have similar r for
all groups except for groups 4 and 5). In groups 4 and 5, index values
highly depended on the segmentation method (Table 6), which might
explain the reduced correlation. In addition, we did not observe any
systematic difference in trends for the NSCLC and BC tumors
against the MCC tumors, although the MCCs were acquired on a
different scanner using acquisition and reconstruction protocols un-
like the ones used for the NSCLC and BC tumors. This suggests that
the correlation between indices does not depend much on the tumor
type we studied or on the acquisition/reconstruction protocols: the
correlation is rather inherent to the definition of the indices.
SDHist, EntropyHist, and EnergyHist were highly correlated with

SUV measurements on all patient sets, consistent with previous
results (5,3). This correlation explains the results previously pub-
lished (2) in which SUVs and SDHist led to similar performance in
predicting outcomes in cervical cancers (area under the receiver

operating characteristics curves [AUC] of 0.46 and 0.53, respec-
tively) and head and neck cancers (AUC between 0.60 and 0.70 for
SUVs and 0.68 for SDHist). In contrast, none of the texture indices
was strongly correlated with SUVmax, which is consistent with
previous findings (8,23). Yet, Table 5 demonstrates that most tex-
ture indices (except those of group 6) are significantly correlated
with MV: big lesions exhibit more texture than small lesions. It is
thus challenging to untangle the added value of texture parame-
ters, compared with MV, for tumor characterization. This problem
is exemplified by the results previously reported (3,21) for
patients with esophageal cancer. Gray-level nonuniformity for zone
(called intensity-variability) and ZLNU (size-zone variability), which
we found highly correlated with MV whatever the patient set (Ta-
ble 5, jrj . 0.92), were shown to predict tumor response (3), but
MV results were not given. In Hatt et al. (21), however, MV
was demonstrated as predictive of tumor response in a similar
group of patients by the same authors without referring to tex-
ture indices analysis. A systematic joint evaluation of textural
parameters and MV is thus compulsory to clarify the role of
each in characterizing tumors.
Run indices calculated from the GLRLM matrix are highly

correlated with zone indices calculated from GLZLM (groups 3, 4,
5, 6, and 7 in Table 4), as suggested in Tixier et al. (3).
Contrast defined as CM and contrast defined as NGLDM,

dissimilarity, and homogeneity were highly correlated (jrj . 0.7,
all in our group 1), similar to what was already observed for 18F-
fluorothymidine PET in breast cancer patients (19). In 18F-FDG
PET, dissimilarity and homogeneity have also been reported to be
highly anticorrelated in esophageal tumors (r 5 20.93) (23).
In El Naqa et al. (2), energy and entropy yielded similar per-

formance to classify therapeutic response in patients (AUC of 0.50
and 0.53 in head and neck cancer patients, 0.72 and 0.65 in cer-
vical cancer patients), which we can explain by the high anticor-
relation between these 2 texture indices (r 5 20.92, both in group
2). In addition, in El Naqa et al. (2), contrast and homogeneity also
led to similar classification performance (AUC of 0.80 and 0.82,
respectively, in head and neck cancer patients, 0.60 and 0.62 in
cervical cancer patients), which we can explain by the high cor-
relation between these 2 indices (both in group 1).
In Vaidya et al. (4), the Spearman rank correlation coefficients

(rs) between energy and tumor locoregional failure (jrsj 5 0.06)
was close to that between entropy and tumor locoregional failure
(jrsj 5 0.02). On the basis of our results, the reason is that energy
and entropy are highly correlated (both belong to group 2). In
that same work, rs between contrast and tumor locoregional failure
(jrs j 5 0.10) was almost identical to rs between homogeneity and

FIGURE 1. Bland–Altman plots comparing MVs obtained with 2 segmentation methods (MVTAB and MV40%) for MCC (A), NSCLC (B), and BC (C).
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tumor locoregional failure (jrsj 5 0.11), again in line with Table 4,
where contrast and homogeneity both belong to group 1.
The similar performance of contrast and correlation for

predicting the pathologic response to neoadjuvant chemoradiation
therapy (AUC of 0.85 and 0.80, respectively) reported before (5)
can also be explained by the fact that these 2 indices belong to
group 1. Likewise, in Dong et al. (8), entropy and energy were
highly predictive of the TN staging, because these 2 indices are
highly correlated (both belong to group 2, Table 4).

Resampling Step

The gray-level sampling is essential to make texture indices
independent of the signal intensity. Yet, many authors do not
precisely describe this step (Table 1, column 3). We showed that
the number of gray levels substantially affects the texture indices
values, especially when less than 32 discrete values are used (e.g.,
entropy, SZHGE or ZLNU). In addition, using Equation 4 as in
Tixier et al. and Yang et al. (3,7) makes the texture indices of
group 6 dependent on the SUVmax, because of the 11 in the
denominator of Equation 4. This explains the results presented
previously (7) in which Equation 4 was used, and where 6 texture
indices (HGRE, short-run high gray-level emphasis, long-run high
gray-level emphasis, high gray-level zone emphasis, SZHGE, and
LZHGE), SUVmax, and SUVmean were all correlated with tumor
changes in the complete metabolic response group. The resam-
pling approach (formula and number of gray level) should thus
always be specified, and Equation 3 should be used instead of
Equation 4, to reduce the correlation between texture indices
and SUV. It should be underlined that the strong correlation be-
tween values of the same index for different levels of discretiza-
tion never implied interchangeability, as demonstrated by Bland–
Altman analysis (results not shown). The absolute values of the
texture indices significantly change with the resampling scheme
and can therefore only be interpreted if the resampling step is
precisely described.

Index Robustness

There is currently no single widely accepted tumor-segmentation
method (24). For the same tumor, it is therefore essential to
study the sensitivity of any texture indices to the VOI in which it
is calculated. To that end, we considered 2 segmentation methods
frequently used in the clinics, which yielded consistent tumor
volumes (i.e., no aberrant segmentation, Fig. 1) with substantial
differences. The results suggest that all histogram indices
depended more on the segmentation method than MV. For SDHist

and skewness, poor reproducibility was already reported with test–
retest analysis (20). The change in texture indices for these 2
segmentation methods showed that some were highly sensitive
to the segmentation method, especially low gray-level run empha-
sis, short-run low gray-level emphasis, long-run low gray-level
emphasis, low gray-level zone emphasis, and short-zone low
gray-level emphasis in group 5, whereas others, such as homoge-
neity and entropy, were robust. Our results are consistent with
those published previously (20,23) but provide, with indications
regarding texture indices robustness, for a much larger number of
texture indices. Contrast and busyness were highly sensitive to the
segmentation method (Table 6) and were also reported as being
highly dependent on the acquisition mode and reconstruction
parameters (11). In Tixier et al. (3), these 2 parameters failed to
predict tumor response in esophageal cancer whereas they pre-
dicted the tumor response in NSCLC lesions (6) when lesions
were delineated manually. The different performances in 2 differ-
ent settings are in line with the poor robustness of these indices.
Similar to the correlation results, the robustness of texture indices
with respect to the delineation method did not depend much on the
tumor type we studied or on the acquisition and reconstruction
protocols (Table 6).
Variability should not be the only criterion for selecting indices

(25). Combining correlation and robustness results (Tables 4 and 6)
show that all texture indices from group 5, gray-level nonunifor-
mity for run, busyness, LZLGE, and histogram indices are not

TABLE 6
sdδ (by Cohort) and Change of Each Index as Function of

Segmentation Method

sdδ(%)

Group Index MCC NSCLC BC Change

1 Homogeneity 3.6 1.9 2.2 Moderate

Correlation 6.8 4.5 9.1 Large

Contrast (CM) 7.7 5.1 4.9 Large
Dissimilarity 4.5 2.7 2.7 Moderate

Contrast

(NGLDM)

9.1 6.1 5.9 Large

2 Energy 6.6 3.0 4.1 Large

Entropy 1.5 0.7 1.0 Low

Coarseness 6.9 2.8 3.1 Moderate

3 SRE 0.1 0.1 0.1 Low
RP 0.2 0.1 0.1 Low

SZE 1.2 0.9 0.9 Low

ZP 2.4 1.3 1.4 Moderate

4 LRE 0.5 0.3 0.3 Low
LZE 7.5 4.4 4.2 Large

LZHGE 5.4 5.6 5.9 Large

5 LGRE 13.0 10.3 13.5 Large

SRLGE 12.9 10.3 13.5 Large
LRLGE 13.1 10.4 13.5 Large

LGZE 12.3 9.7 13.3 Large

SZLGE 13.3 10.4 14.5 Large
6 HGRE 4.1 2.7 3.0 Moderate

SRHGE 4.1 2.6 2.9 Moderate

LRHGE 3.9 2.8 3.1 Moderate

HGZE 3.7 2.5 2.9 Moderate
SZHGE 3.8 2.4 2.8 Moderate

7 GLNUr 10.8 3.6 4.6 Large

RLNU 9.3 2.3 3.3 Moderate

GLNUz 8.9 3.0 3.4 Moderate
ZLNU 6.6 2.4 2.9 Moderate

MV 9.7 2.4 3.4 Moderate

TLG 7.7 1.6 2.5 Moderate
8 SUVmax 0.7 0.0 0.0 Low

SUVmean 2.7 1.1 1.2 Low

SUVpeak 0.0 0.0 0.0 Low

SDHist 8.3 10.4 9.1 Large
EntropyHist 4.8 5.1 5.5 Large

EnergyHist 10.7 11.5 11.8 Large

9 Skewness 67.9 440.6 158.5 Large

Kurtosis 15.0 14.5 12.0 Large
10 Busyness 1267.4 119.6 20.1 Large

11 LZLGE 14.8 10.6 13.2 Large

Three categories were defined: low: sdδ (index) ≤ sdδ (SUVmean);

moderate: sdδ (SUVmean) , sdδ (index) ≤ sdδ (MV); large: sdδ (MV)

, sdδ (index).
Please refer to definition of acronyms in footnote to Table 3.
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robust with respect to the segmentation method. Texture indices
such as homogeneity, entropy, SRE, or ZLNU could certainly be
more carefully studied to clarify the role they might play for tumor
or tumor response characterization. These texture indices are not
highly correlated, hence they describe different tumor features,
and they appeared to be robust enough with respect to the tumor
delineation method. Yet, to determine the added value of these
indices with respect to conventional indices, their performance
(including repeatability) should be systematically compared with
those of MV, SUVmax, SUVpeak, or SUVmean in different types
of lesion. In addition, a careful investigation of the relationship
between these texture indices values and actual tumor features as
measured ex vivo is essential to understand the bearing of these
texture indices.

CONCLUSION

We analyzed a large range of texture and histogram indices in
several tumor types. We demonstrated the need for a proper
resampling strategy for calculating texture indices, and we also
showed that several texture indices brought similar information.
Some texture indices were highly correlated with MV. All
histogram indices strongly depended on the tumor delineation
method, whereas some of the texture indices were robust with
respect to tumor segmentation. Our findings were consistent
across 3 tumor types and 2 acquisition/reconstruction protocols.
We demonstrated that our results explained many of the results
published on texture indices for tumor characterization so far.
Further investigations, including systematic comparison with
conventional indices and multivariate analyses, are absolutely
needed to clarify the value of texture indices, compared with
SUVs, MV, and TLG, for tumor characterization and tumor
response prediction.
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