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Because g cameras are generally susceptible to environmental con-

ditions and system vulnerabilities, they require routine evaluation of

uniformity performance. The metrics for such evaluations are com-

monly pixel value–based. Although these metrics are typically suc-
cessful at identifying regional nonuniformities, they often do not

adequately reflect subtle periodic structures; therefore, additional

visual inspections are required. The goal of this project was to de-

velop, test, and validate a new uniformity analysis metric capable of
accurately identifying structures and patterns present in nuclear

medicine flood-field uniformity images. Methods: A new uniformity

assessment metric, termed the structured noise index (SNI), was
based on the 2-dimensional noise power spectrum (NPS). The con-

tribution of quantum noise was subtracted from the NPS of a flood-

field uniformity image, resulting in an NPS representing image

artifacts. A visual response filter function was then applied to both
the original NPS and the artifact NPS. A single quantitative score

was calculated on the basis of the magnitude of the artifact. To

verify the validity of the SNI, an observer study was performed with

5 expert nuclear medicine physicists. The correlation between the
SNI and the visual score was assessed with Spearman rank corre-

lation analysis. The SNI was also compared with pixel value–based

assessment metrics modeled on the National Electrical Manufac-
turers Association standard for integral uniformity in both the useful

field of view (UFOV) and the central field of view (CFOV). Results:
The SNI outperformed the pixel value–based metrics in terms of its

correlation with the visual score (r values for the SNI, integral UFOV,
and integral CFOV were 0.86, 0.59, and 0.58, respectively). The SNI

had 100% sensitivity for identifying both structured and nonstruc-

tured nonuniformities; for the integral UFOV and CFOV metrics, the

sensitivities were only 62% and 54%, respectively. The overall pos-
itive predictive value of the SNI was 87%; for the integral UFOV

and CFOV metrics, the positive predictive values were only 67%

and 50%, respectively. Conclusion: The SNI accurately identified

both structured and nonstructured flood-field nonuniformities and
correlated closely with expert visual assessment. Compared with

traditional pixel value–based analysis, the SNI showed superior per-

formance in terms of its correlation with visual perception. The SNI
method is effective for detecting and quantifying visually apparent

nonuniformities and may reduce the need for more subjective visual

analyses.
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Given the transience of performance, flood-field uniformity
testing is an essential part of the assessment of nuclear medicine
g cameras (1). Such testing is typically the first type of testing
performed at acceptance and is considered the central element of
quality control programs—acquired and assessed on a daily basis to
determine the clinical readiness of a system. Uniformity testing aids
in identifying several common performance issues, including spatial
nonlinearities in camera response (2), drifting gains in photomultiplier
tubes, corrupt correction files, and incorrectly positioned photopeaks
(3). Although flood-field uniformity plays a vital role in determining
the quality or clinical readiness of a system, how to effectively quan-
tify this characteristic remains a major challenge.
Although several methods for quantifying flood-field uniformity

have been developed (4–10), the most accepted and widely used
method of uniformity analysis is based on the principles of the
National Electrical Manufacturers Association standard (8,11).
This is a pixel value–based method in which the quality of a uni-
formity image is determined on the basis of the range of pixel
densities across the field of view after compression to a 64 · 64
matrix and application of a smoothing filter function. This method
was initially devised as a standardized method with which manu-
facturers could state their system specifications. Because of its
ease of calculation and reproducibility across multiple manufac-
turer platforms, this basic method has become widely used in daily
quality control uniformity analysis (12).
Despite their widespread use, pixel value–based methods are

somewhat limited because they use only the range or distribution
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of pixel values across an image; they are not well suited for de-
scribing periodic nonuniformities. Although these methods fre-
quently accomplish the goal of flagging gross nonuniformities,
they often fail to capture subtle structures and patterns that are
caused by changes in g-camera performance and that may be
visually obvious and clinically unacceptable. This problem is es-
pecially important in tomographic imaging, in which subtle non-
uniformities have the potential for greater impact (13). Because of
their limitations, pixel value–based analyses must be accompanied
by a visual inspection for confident evaluation of an image (14).
This visual inspection introduces a subjective component to image
analysis; it lacks reproducibility and relies on the expertise of the
observer.
A promising alternative for quantifying flood-field uniformity

involves the use of the noise power spectrum (NPS). The NPS was
previously used to describe the spatial correlations of the noise in
radiography, mammography, and CT (15–17). Other authors have
reported the use of the NPS to characterize the components of
noise in nuclear medicine imaging (18,19). Here we describe an
expansion of the use of the NPS to evaluate the quality of flood-
field uniformity images with regard to the presence of nonuni-
formities. Our goals were to develop a uniformity analysis metric
derived from a 2-dimensional (2D) NPS capable of accurately
identifying structures and patterns present in nuclear medicine
flood-field uniformity images, with the added validation of being
closely correlated with visual perception, and to compare this new
metric with traditional analytic methods in clinical use.

MATERIALS AND METHODS

Structured Noise Index (SNI)

The NPS is a spectral decomposition of the variance of an image.

As such, it describes the various frequency components that comprise
the noise in the image. Commonly, the NPS is computed from the

squared Fourier transform of a 2D image (20) with the equation

NPSðun; vkÞ 5 lim
Nx ;Ny ;M/N
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where Iðxi; yjÞ is the image intensity at pixel location ðxi; yjÞ; I is the
global mean intensity; u and v are the spatial frequencies conjugate to
x and y, respectively; Nx and Ny are the numbers of pixels in the x

and y directions, respectively; Dx and Dy represent the pixel spacing
in the x and y directions, respectively; and M is the number of regions

used for analysis in the ensemble average, which can be adequately

reported with a sufficiently large number of regions.
For a completely uniform nuclear medicine flood image, consisting of

purely white noise, all frequencies are equally represented in the NPS,
resulting in a relatively constant value across all frequencies. However,

flood images are never completely uniform; they include both a quantum
noise component and a nonquantum structured component (image

artifacts) that are represented by increased amplitude, or spikes, in the
NPS. Statistically speaking, such structured patterns are not always

“noise” because they may not signify a stochastic process. However,
they are often referred to as “structured noise” because they are fre-

quently quantified with noise metrology, and they can further influence
visual perception in a way similar to stochastic noise.

In this work, we developed a program to estimate structured noise
information from nuclear medicine uniformity images using the NPS

methodology. The program consists of the following steps.

A 2D NPS of the input flood image is generated. The quantum

component of the flood image—estimated in terms of the variance as-
sociated with the number of counts in the image—is then subtracted,

resulting in a 2D NPS of only the structured noise within the image,
represented as peaks above the white quantum noise. To account for how

noise texture is perceived by human observers, the 2D NPS is further
filtered with a 2D human visual response function (21) with the equation

VðrÞ 5 r1:3 � exp�2cr2
�
;

where r is the radial spatial frequency and c is a scale factor selected
to yield the maximum for the function at 4 cycles per degree at

a typical viewing distance of 150 cm and a typical image display size
of 6.5 cm. The original 2D NPS of the input flood image is also

filtered with the same human visual response function. Finally, the
SNI is computed as the ratio of noise corresponding to the struc-

ture—that is, the integral of the filtered 2D NPS—to the total noise

in the flood image with the equation

SNI 5

Ð 
NPSstructure; filtereddudvÐ
 NPSinput; filtereddudv

:

The resulting SNI spans from 0 to 1, with values close to

0 indicating images with nearly perfect uniformity (no structure)
and values close to 1 indicating the presence of strong nonuniformities

(structure magnitude significantly larger than that of quantum noise).

To capture different scales of nonuniformities that may be present
in a flood image, a total of 8 regions of interest (ROIs) are used in the

SNI analysis. Operating on the central 90% of the full image,
identified with a line profile analysis, the image is divided into 2

equally sized overlapping square ROIs (Fig. 1A). Six additional
smaller ROIs, with a linear dimension equal to half that of the larger

ROIs, are defined to sample more localized regions within the image
(Fig. 1B). Together, these 8 ROIs provide a reasonable sampling of

both the large-scale artifacts spanning the entire field of view and
the small-scale artifacts that may affect only a small portion of the

full image area. After the SNI analysis is performed on all 8 ROIs
within the image, the highest ROI score is reported as the SNI for

the image.

Validation

To validate the SNI metric, we performed an observer study with 5
expert nuclear medicine physicists. Fifty-five daily flood-field unifor-

mity images—all acquired with similar acquisition parameters (57Co
planar flood source, 256 · 256 acquisition matrix, 4 · 106 total

counts), from multiple g-camera models (Millennium series [·5],
Infinia series [·3], and Discovery series [·1], all from GE Healthcare),

and with various degrees of structured and nonstructured nonunifor-
mities—were collected, randomized, and sent to the observers on 2

separate occasions. The expert observers were instructed to critically
review each image using an image display size of about 6.5 cm and to

FIGURE 1. The 8 ROIs used in the SNI analysis. (A) Two large ROIs.

(B) Six small ROIs.
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assign a score of 1–5 (Fig. 2) on the basis of only the visual appear-

ance of the flood image and their knowledge of the relationship be-
tween g-camera uniformity and clinical performance.

A Pearson product moment correlation analysis was performed on
each set of expert observer results to assess both intraobserver

consistency and interobserver consistency. Intraobserver consistency
assessed the agreement of each observer’s original and repeated

responses. Interobserver consistency assessed the agreement of each
observer’s average image score with the average score from all

responses. On the basis of the results of the analysis, we used the
average of the scores from all 10 responses in our comparison and

referred to this value as the average expert observer score.
The threshold value for defining unacceptable images according to

the average expert observer score was determined on the basis of the

scoring criteria provided to the observers (Fig. 2); we established the
threshold at 3.25, which we judged to ensure the inclusion of all

visually apparent nonuniformities of clinical significance.
To compare the performance of the SNI metric with that of

quantitative uniformity metrics in clinical use, we used the GE
Xeleris Flood Uniformity Protocol (GE Healthcare) (22), which is

a commercially available uniformity analysis program modeled on
the National Electrical Manufacturers Association standard. It is

a robust program capable of estimating the integral detector uni-
formity from nuclear medicine flood images across multiple man-

ufacturer platforms. With this program, we calculated the esti-
mated integral uniformity in both the useful field of view

(UFOV) (center 90% of the full field) and the central field of view
(CFOV) (center 75% of UFOV linear dimensions) for use in our

analysis.
For the estimated integral UFOV and CFOV metrics, thresholds

of 6.0% and 5.0%, respectively, were applied; these thresholds are
commonly used in clinical settings (23,24). For the SNI metric, a thresh-

old of 0.50 was empirically determined. With the established thresholds,
the sensitivity, specificity, positive predictive value, and negative pre-

dictive value were computed. Additionally, the strength of the relation-

ship of each uniformity analysis metric with the average expert observer

score was evaluated with Spearman rank correlation analysis (25).
Receiver operating characteristic (ROC) curves (26) were gener-

ated to provide an additional evaluation of each metric. We gener-
ated the ROC curves by using the average expert observer score

cutoff of 3.25 and by varying each uniformity metric across all
cutoff thresholds to assess all possible combinations of specificity

and sensitivity that the metric is able to achieve. This strategy
allowed a full assessment of each uniformity metric independently

of the cutoff value used and independently of the number of accept-
able or unacceptable images used, as determined by the expert

observers. The area under the ROC curve was used to evaluate each
uniformity metric.

RESULTS

The Pearson product moment correlation coefficients for the
observer assessments in the 2 trials and for the 5 expert observers
are shown in Table 1. There was strong agreement between each
observer’s original and repeated visual assessments (average r,
0.80). There was a higher degree of agreement when each observ-
er’s average score was compared with the overall average score
(average r, 0.91), indicating that all 5 observers had a similar
impression of the clinical quality of uniformity images. On the
basis of the results of these assessments, all 10 sets of observer
scores were used in our analysis.
Spearman rank correlation coefficients were used to show the

strength of the relationship between each uniformity analysis
metric and the average expert observer score. The Spearman rank
correlation coefficients of the SNI, estimated integral UFOV, and
estimated integral CFOV were 0.86, 0.59, and 0.58, respectively.
These results indicated that the SNI had a much stronger
correlation with the average expert observer score than did the
integral UFOV and the integral CFOV.
When established thresholds were used to create a confusion

matrix (Fig. 3), the SNI performed at 100% sensitivity for identi-
fying both structured and nonstructured nonuniformities; for the
integral UFOV and CFOV uniformity metrics, the sensitivities
were only 62% and 54% (Table 2). The SNI also outperformed
the other metrics in overall positive predictive value (87%); for the
traditional integral UFOV and CFOV uniformity metrics, overall
positive predictive values were only 67% and 50%. Additionally,
the SNI exhibited superior specificity and negative predictive
value.
Figure 4 shows the results of the ROC analysis. The area under

the ROC curve was an indicator of how well each metric per-
formed (27), with an area of 1.0 indicating perfect agreement with
the expert observer score. The SNI metric showed better agree-
ment with the average expert observer score than the integral
CFOV and UFOV metrics; the areas under the ROC curve for
the SNI, integral CFOV, and integral UFOV were 0.99, 0.81,
and 0.77, respectively.

TABLE 1
Pearson Product Moment Correlation of Expert Observer

Responses

Observer

Correlation 1 2 3 4 5 Average SD

Intraobserver 0.86 0.66 0.78 0.83 0.86 0.80 0.086

Interobserver 0.92 0.78 0.95 0.95 0.95 0.91 0.075

FIGURE 2. Image descriptions used by expert observers.
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DISCUSSION

Daily uniformity evaluations of a g camera are an essential element
of nuclear medicine quality control and are typically performed by

nuclear medicine technologists and overseen by qualified medical

physicists (28). Most facilities do not have a qualified nuclear medicine

physicist readily available to evaluate the daily uniformity images

before clinical use. Furthermore, meticulous visual inspection of uni-

formity images can be challenging in busy clinics; the result may be

that confidence is placed solely on the values generated by traditional

pixel value–based analysis programs that often fail to capture subtle

structures and patterns, which may be clinically unacceptable. Our

strategy provides a more robust assessment of nonuniformity detection,

enabling more efficient and accurate quality control evaluation.
The newly developed SNI, derived from the 2D NPS, identified

structured patterns present in nuclear medicine flood-field unifor-
mity images. The SNI showed excellent correlation with expert
visual perception and statistically outperformed traditional ana-

lytic methods, according to all types of evaluation performed. The
SNI offers a novel way to accurately quantify artifacts in
uniformity images and, especially in the absence of an expert

observer, may reduce the need for subjective visual analysis.
Human visual assessment, which is currently the gold standard

for determining the clinical quality of uniformity images, is

a subjective descriptor; it relies on the expertise of the reviewer as

well as the viewing conditions. We attempted to standardize our

observer study by providing detailed descriptors in the scoring

scale (Fig. 2) and specifying the displayed image size. Even

among the 5 expert observers in our controlled study, we found

1 observer with slightly less agreement in the perceived clinical

quality of the flood images (Table 1). This finding confirms the

subjective nature of visual assessment and provides a strong ar-

gument for the need for an objective and reproducible method of

characterizing flood-field uniformity. The SNI metric not only

provides a method for accurately identifying nonuniformities but

also does so in an objective and reproducible manner.
Plots of each evaluated uniformity metric against the average

observer score (Fig. 3) visually confirmed that the SNI showed the

strongest correlation with expert visual perception. Additionally,

when only the distribution of the average observer score was

considered, a noticeable gap in the distribution between 3.0 and

3.5 was found. This finding suggests that the observers were in

general agreement that images with an average score of less than

3.0 were acceptable for clinical use, whereas images with an av-

erage score of greater than 3.5 were unacceptable. These data

further support our established threshold of 3.25, which falls at

the midpoint of the gap.
Despite the clinical utility of the SNI metric, we recognize that

it is not without limitations. Because the texture of the image

described by the NPS is dependent on the size of the ROI analyzed

(29), the choice of ROI size is important; the ROI should be

slightly larger than the structure that one wishes to capture. Be-

cause of differences in the characteristic sizes of numerous g-cam-

era artifacts, nonuniform structures may vary in size. To account

for these differences, the SNI program analyzes 8 separate regions

with 2 different sizes of ROIs, thereby accurately allowing for the

detection of a wide variety of common artifacts encountered in

clinical settings (Fig. 5). Although the sizes of the selected ROIs

have been optimized with an initial training set of images, they

may not provide the best representation of all possible artifacts;

further work is needed to determine whether some structured pat-

terns could be better represented by different sizes of ROIs.
Additionally, the visual response is determined in part by the

distance of an observer from a displayed object. Although the
human visual response filter attempts to account for this effect, it
may not fully represent an actual observer’s visual response func-

FIGURE 3. Relationship between average expert observer score and

SNI (A), estimated integral UFOV uniformity metric (B), and estimated

integral CFOV uniformity metric (C); established threshold values are

included. Quadrants of each graph illustrate false-positive results (upper

left), true-positive results (upper right), true-negative results (lower left),

and false-negative results (lower right).

TABLE 2
Uniformity Metric Performance Based on Average Expert Observer Visual Assessment

Parameter Artifact index Estimated integral UFOV Estimated integral CFOV

Sensitivity 100 62 54

Specificity 95 90 83
Positive predictive value 87 67 50

Negative predictive value 100 85 88

Values are reported as percentages.
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tion. For example, the visual response filter is defined at a given
distance, whereas a human observer may move closer or farther
from the screen in an attempt to visualize subtle artifacts. It may
be possible to mimic this activity by defining a series of visual
response functions for various distances. Although the parameters
for the 2D human visual response filter have been reasonably
optimized, full clinical implementation of the SNI metric may
result in further fine tuning of the parameters. It should be noted

that changing any of the acquisition and filter parameters or ROI
sizes may require adjustment of the SNI threshold value.
Finally, the parameters for the SNI analysis were chosen

to minimize the likelihood of missing an artifact in an image;
however, it is not possible to completely duplicate the perfor-
mance of human observers. Therefore, the SNI offers an
improvement in the integral UFOV and CFOV uniformity metrics
but may not completely eliminate the need for visual assessment
of flood images by qualified personnel. We envision that the SNI
metric can be incorporated easily into clinical practice as an
integral part of a quality control program; thresholds can be set
low enough to ensure that all potential artifacts are flagged for
review by qualified personnel while avoiding the need to review
images with a high degree of uniformity. This integration would
substantially reduce the time that busy hospital staff members
spend reviewing inconsequential flood images. In addition, the
SNI metric may provide additional objectivity for compliance with
commissioning requirements.

CONCLUSION

Uniformity image analysis with traditional pixel value–based
methods is not reliable because the tendency to miss subtle
nonuniformities that may be visually apparent and clinically sig-
nificant. This results in the need for additional meticulous and
subjective visual assessment. A metric that we derived from the
2D NPS—the SNI—outperformed currently established pixel
value–based methods in both identifying nonuniformities and cor-
relating with expert visual analysis, thereby possibly reducing the
need for additional visual assessment. This metric provided an
accurate and objective uniformity evaluation and may be espe-
cially useful if integrated into daily quality control programs in
which qualified medical physicists are unable to verify g-camera
flood quality before performing patient studies.
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