INVITED PERSPECTIVE

Cell-Level Dosimetry and Biologic Response Modeling of
Heterogeneously Distributed Radionuclides: A Step Forward

Historically, clinical response to
internal radionuclides has been related
to the macroscopic (i.e., whole-tumor
or whole-organ) absorbed dose, im-
plicitly assuming uniform distributions
of activity and energy deposition (/,2).
However, the actual biologic response
among cells within a tumor or organ
can vary substantially, depending on
spatial nonuniformities of these distri-
butions at the multicellular, cellular,
and subcellular levels (3-9). The mac-
roscopic, or mean, absorbed dose thus
may not be a reliable descriptor of the
biologic effect of internally deposited
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radionuclides, and its use may actually
confound the derivation of clinically
meaningful (i.e., predictive) dose—
response and dose—toxicity relation-
ships (2,4,10). For example, Behr
et al. (3) reported a preclinical study
comparing in mice the myelotoxicity
of monoclonal antibody CO17-1AA
(directed against human gastrointesti-
nal malignancies) labeled with a 3-par-
ticle emitter ('3'T or °°Y), an Auger- or
conversion-electron emitter (12 or
1), or an a-particle emitter (>!*Bi).
The maximum tolerated blood dose (as
a surrogate of the marrow-absorbed
dose) differed by nearly 3-fold among
the foregoing radiations: predictably,
the radionuclides emitting the shortest
(subcellular)-range radiations (namely,
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Auger or conversion electrons) and
therefore having the lowest dose per
decay to hematopoietic stem cell nuclei
had the highest maximum tolerated
blood dose (>2,400 cGy). O’Donoghue
(4) modeled the impact of dose
nonuniformity on radiocurability of tu-
mors, demonstrating that overall tumor
response is poorer (i.e., tumor cell sur-
vival is greater) as dose nonuniformity
increases. The calculated dose-response
curve was concave upward, indicating
that the tumor-sparing effect of such
nonuniformity is actually greater at
higher doses. Although some cells will
receive supralethal doses with increas-
ing tumor dose, others will still receive
sublethal doses and remain clonogenic.
The tumor may therefore not regress
even with mean tumor doses suffi-
ciently high to otherwise bring about
expectation of a significant therapeutic
response. The foregoing studies illus-
trate that, in light of dose nonuniform-
ity, clinically predictive dose-response
and dose—toxicity relationships based
on the mean absorbed dose may be dif-
ficult or impossible to derive.

Tissue culture models can be used
to grow cells in vitro in a manner that
simulates, to varying degrees, in vivo
tissue structure, and such models can
be used to characterize the impact of
nonuniform distributions of activity
and energy deposition on biologic
response. The study by Rajon et al.
(11) in this issue of The Journal of
Nuclear Medicine presents a theoretic
3-dimensional tissue-culture model
that more realistically recapitulates
the variability of cell activity than
previous models and, combined with
dose-response models, provides new
and important insights into the radia-
tion dose distribution and biologic
effect of heterogeneously deposited
internal radionuclides.
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Previously published cell culture
studies of biologic response to radio-
nuclides in situ have used 2-dimensional
(2D) (i.e., monolayer) or microscopic
3-dimensional (3D) (i.e., spheroid)
models. Although yielding important
dosimetric and radiobiologic insights,
both such cell culture models have
notable limitations in terms of accu-
rately simulating in vivo tissue structure
and response. Carlin et al. (/2), for
example, assessed the potential of ex-
pression of the sodium iodide symporter
(NIS) by genetic transduction of the
NIS gene as a means of therapeuti-
cally targeting radioiodine to tumor
cells, assaying the clonogenic survival
of NIS-transduced UVW (UVW-NIS)
glioma cells after exposure to 3T iodide
(B3117). Exposure of UVW-NIS cells to
I3I[= at an activity concentration of
4 MBg/mL reduced survival of 2D
monolayer cultures and of 3D spheroid
cultures to 21% and 2.5%, respectively.
The 10-fold-lower cell killing in 2D cul-
tures is likely attributable to the lack of
[B-particle cross-fire (because there are
no P-particle-emitting cells in planes
above and below the cell monolayer)
(13) and of a radiologic bystander effect
(14), effects that are likely important
in vivo. Although 3D spheroid cultures
may recapitulate the radiobiologic re-
sponse of avascular micrometastases
more accurately than 2D cultures (15—
20), the response of more macroscopic
structures (such as organs or bulk
tumors) is likely not reliably modeled
by spheroids. Spheroids are typically
only 100200 pm in diameter, consid-
erably shorter than the range of most
B-particles, and therefore a relatively
large portion of a [-particle’s energy
is deposited outside the spheroid. In
addition, spheroids typically approxi-
mate a hexagonal close-packed array
of water-equivalent spheres (i.e., cells)
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with water-equivalent intercellular space.
The actual microscopic structure of tis-
sue may differ widely from such an
idealized configuration.

In the current study, a theoretic
model of a macroscopic, heterogene-
ous 3D cell population (specifically, a
cylinder 1.32 mm in diameter and 1.25
mm in height) was constructed, and
cell-level Monte Carlo radiation trans-
port simulations were performed to
assess self- and cross (nonself)-doses
to individual cell nuclei for monoener-
getic 10-, 30-, 100-, 300-, and 1,000-
keV electrons and for uniform and
nonuniform activity distributions
among the cells. Novel features of this
cell culture model and dosimetric
analysis include a structurally hetero-
geneous, more realistic milieu com-
prising water-equivalent cells, a
Cytomatrix carbon scaffold (mass den-
sity, 2 g-cm™~3) in the form of irregular
ligaments, and a water-filled extra-
cellular space; empirically validated
modeling of the differential radiobio-
logic effectiveness between cell self-
and cross-doses (corresponding to
mean lethal doses Ds;; of 400 and
120 cGy, respectively, for low—linear-
energy-transfer radiations) (27-23);
and a lognormal distribution of activ-
ity among cells, with quantitative
assessment of the effect on overall sur-
vival of varying degrees of nonuni-
formity of the activity per cell (i.e.,
corresponding to values of 0.6, 1.0,
and 2.0 of the so-called shape param-
eter o of the lognormal probability
density function) (22,24,25). On the
basis of the calculated cell nuclei
doses and previously published mod-
els of cell killing, survival curves were
derived and characterized in relation
to the electron energy and the non-
uniformity of the activity distribution.
Nonuniformity of the cell activities
and the finite ranges of particulate
radiations produce dose nonuniformity
at the cellular level, which in turn
results in variations in the overall sur-
vival fraction of the cell population.
Energy-dependent changes in the
shape of the survival curves—increas-
ingly concave up (consistent with the
results of O’Donoghue (4))—are most
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pronounced at low electron energies,
at which attenuation is significant even
at microscopic dimensions and self-
dose thus predominates. At high elec-
tron energies, cross (or nonself)-dose
dominates and mitigates the depend-
ence of the survival curves on energy.
This significant cross-dose contribu-
tion, particularly at higher electron
energies, represents a notable differ-
ence dosimetrically between the cur-
rent macroscopic model and the more
microscopic spheroid models, for
which the B-particle cross-dose contri-
bution is minimal.

It is unrealistic to suggest that the
analysis by Rajon et al. (/) is adaptable
to individualized planning of radionu-
clide therapy; the necessary input data
are not available, and perhaps unknow-
able, in a routine clinical setting, and the
computations times are prohibitively
long. Nonetheless, this analysis does
provide some practical guidance for
targeted radionuclide therapy of bulky
tumors with specific patterns of uptake
of a particular radiopharmaceutical. For
example, for tumors with cells that
exhibit a relatively uniform uptake (cor-
responding to a shape parameter o of 0)
and for radionuclides emitting low-
energy electrons (i.e., Auger or conver-
sion electrons with energies on the order
of 10 keV), mean tumor cell nuclei
doses of only 10 Gy can achieve a
highly significant therapeutic effect
(several logs of cell killing), with min-
imal irradiation of hematopoietic stem
cells in marrow. On the other hand, if
tumor cell uptake is notably nonuni-
form (corresponding to a shape pa-
rameter o of 1 or 2), radionuclides
emitting B-particles with mean ener-
gies of at least 100 keV and mean
tumor cell nuclei doses of at least 30
or 40 Gy, respectively, are required to
achieve therapeutically effective
tumor cell killing overall. Projecting
forward, a catalog of shape parameter
values for different histologic types of
tumors and different radiopharmaceu-
ticals could perhaps be compiled by
quantitative autoradiography of tumor
specimens surgically harvested after
tracer administrations to a limited
number of patients. The individually
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optimized radionuclide or cocktail of
radionuclides (25), tumor dose, and
administered activity could then be
prescribed for a patient’s specific his-
tologic tumor type (i.e., shape param-
eter value) using mean tumor doses
per unit of administered activity
derived on a case-by-case basis from
routine quantitative imaging studies.
With increasingly realistic dosimetric
analyses—such as the method pro-
posed by Rajon et al. (//)—and the
biologic insights they provide, such a
hypothetical leap forward warrants at
least some consideration.

Pat Zanzonico
Memorial Sloan-Kettering Cancer Center
New York, New York
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