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Head motion is difficult to avoid in long PET studies, degrading
the image quality and offsetting the benefit of using a high-
resolution scanner. As a potential solution in an integrated MR-
PET scanner, the simultaneously acquired MRI data can be
used for motion tracking. In this work, a novel algorithm for data
processing and rigid-body motion correction (MC) for the MRI-
compatible BrainPET prototype scanner is described, and
proof-of-principle phantom and human studies are presented.
Methods: To account for motion, the PET prompt and random
coincidences and sensitivity data for postnormalization were
processed in the line-of-response (LOR) space according to
the MRI-derived motion estimates. The processing time on
the standard BrainPET workstation is approximately 16 s for
each motion estimate. After rebinning in the sinogram space,
the motion corrected data were summed, and the PET volume
was reconstructed using the attenuation and scatter sinograms
in the reference position. The accuracy of the MC algorithm was
first tested using a Hoffman phantom. Next, human volunteer
studies were performed, and motion estimates were obtained
using 2 high-temporal-resolution MRI-based motion-tracking
techniques. Results: After accounting for the misalignment
between the 2 scanners, perfectly coregistered MRI and PET
volumes were reproducibly obtained. The MRI output gates
inserted into the PET list-mode allow the temporal correlation
of the 2 datasets within 0.2 ms. The Hoffman phantom volume
reconstructed by processing the PET data in the LOR space
was similar to the one obtained by processing the data using
the standard methods and applying the MC in the image space,
demonstrating the quantitative accuracy of the procedure. In
human volunteer studies, motion estimates were obtained from
echo planar imaging and cloverleaf navigator sequences every
3 s and 20 ms, respectively. Motion-deblurred PET images, with
excellent delineation of specific brain structures, were obtained
using these 2 MRI-based estimates. Conclusion: An MRI-
based MC algorithm was implemented for an integrated MR-
PET scanner. High-temporal-resolution MRI-derived motion
estimates (obtained while simultaneously acquiring anatomic
or functional MRI data) can be used for PET MC. An MRI-based
MC method has the potential to improve PET image quality,
increasing its reliability, reproducibility, and quantitative accu-
racy, and to benefit many neurologic applications.
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Simultaneous MR-PET data acquisition (1) permits tem-
poral correlation of the signals from the 2 modalities, opening
up opportunities impossible to realize using sequentially ac-
quired data. One such example is using the MRI informa-
tion for PET data motion correction (MC). Typically,
subject motion is difficult to avoid and can lead to degrada-
tion (blurring) of PET images and severe artifacts when
motion has large amplitude. In the case of neurologic PET
studies performed using stand-alone PET scanners, efforts
have been made to minimize these effects using different
techniques to restrain the subject’s head, but these methods
have had limited success (2,3). Alternatively, methods to
correct for head movements have been investigated (4–12),
and comprehensive reviews on this topic have been pub-
lished (13,14). The simplest technique consists of realign-
ing individual frames to a reference position and summing
them to create a single volume. In a variation of this method,
video cameras have been used to monitor the motion of the
head and a new frame started each time motion above a set
threshold was detected (4). Such image-based methods al-
low a frame-by-frame correction to be implemented but do
not account for motion within the predefined frame. Fur-
thermore, low statistics images obtained from short-duration
frames are sometimes used, making the coregistration less
accurate.

A more sophisticated MC method consisted of obtaining
more detailed motion estimates using external monitors to
track the motion of sensors placed on the subject’s head.
For example, it was demonstrated that it is possible to
perform head MC using the Polaris optical tracking system
(5–8) combined with the line-of-response (LOR) rebinning
algorithm (15). In this algorithm, an LOR is transformed
using the rigid-body transformation provided externally and
rebinned into sinogram space. In these implementations,
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the LOR data were normalized before rebinning (i.e., pre-
normalization). However, postnormalization can also be
performed (16), but this requires the estimation of motion-
corrected time-weighted normalization (17). List-mode re-
construction can be performed by combining the optical
motion-tracking method with list-mode data acquisition
(7). Although this combined method has the potential of
producing the most accurate results, the estimation of the
sensitivity image through sampling is not trivial (18). Addi-
tionally, the precision of the optical tracking methods is
limited by the residual freedom of the reflectors positioned
on the subject’s head. A promising technique to address this
problem uses video cameras and structured light to observe
a portion of the patient’s face (12). However, all these meth-
ods require the optical sensors to have an unobstructed view
from outside the scanner, which is not feasible on an inte-
grated MR-PET scanner because of the presence of the radio-
frequency coils.
In a combined MR-PET scanner, the MRI data acquired

simultaneously with the PET data could be used to derive
high-temporal-resolution motion estimates, eliminating the
need for an optical tracking system. In this work, rigid-body
MRI-assisted MC was demonstrated on an integrated MR-
PET scanner. First, an implementation of an MC algorithm
based on the LOR rebinning method and using postnorma-
lization was proposed. Next, the quantitative accuracy of
the proposed method was compared with image-based MC
in phantom experiments. Finally, proof-of-principle studies
in human volunteers were performed.

MATERIALS AND METHODS

Integrated MR-PET Scanner
PET Scanner Geometry. The BrainPET prototype is a dedicated

brain scanner that can be operated inside the bore of the Siemens
MAGNETOM 3-T MRI scanner, a total-imaging-matrix system.
Briefly, there are 32 detector cassettes that make up the PET
gantry, each consisting of 6 detector blocks (Fig. 1). Each detector
block consists of a 12 · 12 array of lutetium oxyorthosilicate
crystals (2.5 · 2.5 · 20 mm) with a readout by magnetic field–
insensitive avalanche photodiodes. To minimize the potential for
interference with the MRI system, each cassette was individually
shielded. Because of the geometric constraints and limitations in
the number of electronic channels provided by the QuickSilver
architecture (i.e., maximum 192 channels) (19), there were 6-
mm gaps between adjacent heads in the same ring. Additionally,
there were 2.5-mm gaps between the blocks in the same cassette.

Data-Processing Workflow Without Motion Correction. Coin-
cidence event data were acquired and stored in list-mode format.
Each 48-bit event contained the addresses of the 2 crystals in
which the annihilation photons were detected. The LOR joining
these 2 crystals was positioned in the 3-dimensional (3D) space,
using the physical coordinates of the crystals. LOR were rebinned
into sinogram space using nearest-neighbor approximation and
axial compression (span, 9; maximum ring difference, 67). In such
a discrete remapping, more than one LOR is sent to a sinogram
bin. To account for this, the sinogram sampling density, called dwell
(DW) hereafter, is calculated by applying the same rebinning
algorithm to an LOR dataset filled with 1 count per LOR. A look-

up table, which contains the sinogram addresses for all LORs, was
precalculated to speed up the rebinning. The sinogram space con-
sisted of 1,399 sinograms; because of axial compression, the space
was organized in 15 segments. Each sinogram consisted of 192
angular projections and 256 radial elements. A set of sinograms—
prompt and random coincidences—was obtained after data rebin-
ning. The calculation of random coincidences was performed,
sorting the delayed coincidences into delayed single maps from
which the total singles rate and the variance-reduced randoms
were estimated (20).

The sensitivity data were acquired with a plane source scanned
in 16 positions (with a 22.5� angular step), at 4 h per position.
Each position provided the sensitivity for the LORs that were the
most perpendicular (611.25�) to the plane source, and the overall
sensitivity (LORS) was obtained by combining these files. The
normalization was obtained from the LORS sorted into the sino-
gram space and from the DW sinogram, using the following pro-
cedure. First, the sensitivity sinogram was divided by the DW
sinogram, and the resulting sinogram was scaled by dividing it
by the mean of the nonzero values. Next, to control the noise
propagation in the reconstruction, the bins with low sensitivity
(i.e., ,0.1) were discarded, and the thresholded sensitivity was
multiplied by the DW. Finally, the normalization sinogram was
obtained by taking the inverse of the nonzero elements of this
sinogram.

The head attenuation map (m-map) was obtained using a
recently implemented MRI-based attenuation-correction method
(21). The scatter sinogram was obtained using a calculated method
based on the single scatter estimation method (22). The imple-
mentation has been revisited for improving the speed, allowing a
full 3D calculation (Inki Hong, private written communication,
September 16, 2009).

The images were reconstructed with the ordinary Poisson ordered-
subset expectation maximization 3D algorithm from prompt and
expected random coincidence, normalization, attenuation, and scatter
coincidence sinograms using 16 subsets and 6 iterations (23). The
reconstructed volume consisted of 153 slices with 256 · 256 pixels
(1.25 · 1.25 · 1.25 mm).

Data-Processing Workflow with Motion Correction. The list-
mode dataset was divided into n frames (LMFi, i 5 1,n) of variable
duration (Dti) according to the desired pharmacokinetic protocol.
MC was subsequently applied separately for each of these frames.

FIGURE 1. 3D rendering of BrainPET scanner (left) shows place-

ment of detector blocks inside gantry. Transaxial (upper right) and

axial (lower right) sections illustrate gaps between LSO arrays.

LSO 5 lutetium oxyorthosilicate.
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The head position at the beginning of the acquisition is usually set
as the reference position for the whole study. Assuming there are k
motion estimates available during LMFi, this frame was divided
into k subframes (LMFij, j 5 1,k). Rigid-body spatial transforma-
tion matrices (Tij) to the reference position for all these subframes
and frame durations (Dtij) were obtained from the MRI data. The
list-mode frames LMFij were histogrammed into the corresponding
LOR files (LORFij). The motion was accounted for in the LOR
space by moving the coordinates of all crystals based on Tij.
Specifically, it is applied to the physical coordinates of the 2 crys-
tals defining each individual LOR, and 2 points that define a new
line (LORcorr) were obtained. After this step, LORcorr was rebinned
into sinogram space, generating prompt (SPij_corr) and random
(SRij_corr) sinograms. A subframe-specific DW (SDWij_corr) was
also calculated to account for the different sampling density after
application of the spatial transformation. Because the radiofre-
quency coil was stationary with respect to the scanner, its attenu-
ation (LORC) cannot simply be combined with the subject’s head
attenuation anymore and instead was combined with the sensitiv-
ity in the LOR space (i.e., LORSC 5 LORS · LORC). Tij was then
applied to LORSC to obtain the subframe-specific sensitivity sino-
gram (SSCij_corr). The processing time for a subframe is currently
approximately 16 s on the BrainPET workstation (Xeon X5355
[Intel]; 2.66-GHz quad processor, 16-GB RAM).

The emission data from all the subframes were combined to
obtain the corrected prompt and random coincidence sinograms
(i.e., SPi_corr 5 S SPij_corr and SRi_corr 5 S SPRij_corr). Time-
weighted sensitivity (SSCi_corr 5 SDtij · SSCij_corr) and DW
(SDWi_corr 5 SDtij · SDWij_corr) sinograms were generated and
used to create the frame-specific normalization sinogram (SNi_corr).
The head attenuation (SAref) and scatter correction (SScatref) sino-
grams were estimated only in the reference frame. The motion-
corrected PET volume was reconstructed from these sinograms
(i.e., SPi_corr, SRi_corr, SNi_corr, SAref, and SScatref) using the standard
3D ordinary Poisson ordered-subset expectation maximization
algorithm.

MRI Motion Tracking. One MRI-based motion-tracking method
is to repeatedly acquire anatomic data during the PET data
acquisition and then coregister the individual MRI volumes to
obtain the motion estimates. The disadvantage, however, is that
motion estimates with a temporal resolution in the minute range
are obtained depending on the MRI sequence acquisition time and
they do not allow for intraframe MC. Furthermore, this method
cannot be used for sequences that do not provide anatomic infor-
mation (e.g., MRI spectroscopy).

Another method for tracking the motion is the one already
implemented on the Siemens Trio scanner—prospective acquisi-
tion correction (24). This method requires the collection of an
echo planar imaging (EPI) series and tracking of prospective
real-time motion by registration of each volume with the first in
the series. Thus, EPI-derived motion estimates are obtained every
time a complete volume is acquired, and these motion estimates
could be made available to the PET reconstruction algorithm.

Motion-tracking information during high-resolution anatomic
imaging with MRI can also be obtained using embedded clo-
verleaf navigators (CLNs), as we have previously demonstrated
(25). Briefly, a CLN (duration , 4 ms) is inserted every repetition
time (TR) of a 3D-encoded fast low-angle shot (FLASH)
sequence, providing an estimate of the rigid-body transformation
between the current position of the object relative to an initial
k-space map (this map is acquired at the beginning of the scan

in 12 s). These motion estimates are used by the MRI system to
compensate for motion in real time. A log file containing all the
transformations is produced.

These methods are suitable for tracking the head rigid-body
motion and were used in this work.

MRI and PET Data Correlation
Despite the simultaneous acquisition, the PET and MRI data

acquired with the BrainPET were not correlated by default, and
2 issues had to be addressed: the spatial coregistration of the
2 volumes and the temporal correlation of the 2 signals.

Spatial Correlation. The spatial misregistration between the
PET and MRI volumes comes from the fact that, due to physical
limitations, the center of the PET scanner field of view (FOV) does
not precisely coincide with the magnet’s isocenter. Furthermore,
the axial FOVs are not identical, and the MRI slices can be pre-
scribed in any orientation. Acquiring isotropic 3D MRI data in the
transversal orientation solves all these limitations, with the excep-
tion of the spatial mismatch issue. A solution to the spatial mis-
match problem is to obtain a transformation matrix (TMRI/PET)
by scanning a structured phantom visible on both PET and MRI
scans. A Derenzo 20-cm-diameter phantom with holes ranging
from 2.5 to 6 mm was filled with 50 MBq of 18F-FDG, and
PET and MRI data were acquired simultaneously. The 2 volumes
were coregistered based on mutual information using the Vinci
software package (26). The experiment was repeated 6 times after
the phantom was repositioned inside the scanner.

The MRI and PET scanners’ device coordinate systems follow
the same rules for defining the orientations of and the rotations
along each of the 3 orthogonal axes, and these same rules have
been adopted in this work. PET and MR images are both presented
using the radiologic convention.

Temporal Correlation. On this prototype scanner, no clock
synchronization between the 2 systems was implemented, and
PET and MRI data were acquired independently under the control
of different computers. Therefore, a synchronization method was
implemented by inserting MRI output triggers into the PET list-
mode data every time a motion estimate was obtained. Time marks
normally inserted into the PET list-mode data every 0.2 ms were
used to time stamp these MRI trigger events. Thirty-two different
gates can be encoded, and a mechanism that allowed the manual
switching between the inputs on which the gates were inserted
(e.g., each time a new sequence started, a different trigger was
inserted) was implemented.

To verify that all the trigger events were recorded, the following
experiments were performed. First, a pulse generator was used to
create trigger signals, and PET list-mode data were acquired with
a 68Ge line source. The events were recorded for different pulse
frequencies and acquisition times. As a next step, triggers were
obtained directly from the MRI scanner. Because the MRI output
signal was narrower (i.e., 10 ms) than the signal expected by the
BrainPET, a signal stretcher was built. List-mode data were
acquired with the line source and an MRI-visible phantom. The
number of trigger events recorded was analyzed for various se-
quences, acquisition times, and TRs.

Hoffman Phantom Studies
A Hoffman phantom filled with approximately 50 MBq of 18F-

FDG was used to acquire MRI and PET data simultaneously in
5 positions. A multiecho magnetization-prepared rapid-acquis-
ition gradient echo (ME-MPRAGE) sequence was used to acquire
data in each case. The first frame was set as the reference, and the
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other 4 MRI volumes were coregistered to it using mutual infor-
mation (26). These transformations were used to correct exactly
the same PET data both in the LOR and in the image space. In the
first case, the procedure outlined in the “Data-Processing Work-
flow with Motion Correction” section was followed. The m-map in
the reference position was created by assuming uniform linear
attenuation coefficients throughout the phantom volume (i.e.,
0.096 cm21). In the second case, the 5 PET volumes were recon-
structed using the standard procedure. The m-maps for these posi-
tions were obtained from the reference m-map by applying the
inverse transformations. Subsequently, the reconstructed PET vol-
umes were moved back to the reference position and summed in
image space. A PET volume uncorrected for motion was also re-
constructed from all the data summed in the sinogram space. The
2 MC methods were compared by analyzing horizontal profiles
drawn on representative images and average activity in volumes of
interest.

Human Volunteer Studies
For testing the MC algorithm in a more realistic situation, 2

human volunteers were recruited to undergo combined MR-PET
brain examinations. As per our approved Institutional Review
Board protocol, the subjects injected with approximately 185 MBq
of 18F-FDG were scanned for approximately 90 min. After an
uptake period of approximately 25 min, the functional MRI and
CLN sequences were each run for approximately 15 min, and the
subjects were asked to move their heads 4 times in each case.
Anatomic data were collected in between these acquisitions.
PET and MRI data were acquired simultaneously throughout the
scan.

EPI-Derived Motion Estimates. The prospective acquisition-
correction sequence provides motion estimates in the MRI re-
ference frame (TMRI) every 3 s. To derive the estimates in the PET
reference frame (TPET), the first individual MRI volume was trans-
formed to account for the spatial mismatch, and then the subse-
quent volumes were retrospectively coregistered. In this way, the
motion estimates were obtained directly in the PET reference
frame. Each of the 300 subframes was processed using these esti-
mates, and a corrected volume was reconstructed. Additionally,
the data were reconstructed without MC.

CLN-Derived Motion Estimates. A series of motion estimates
with a sample rate of 50 Hz was obtained. However, 50 of these

estimates were averaged and used for correcting the corresponding
900 1-s PET subframes. The problem of correcting for multiple
receive radiofrequency coil elements for the navigator was circum-
vented by receiving the navigator signal using the birdcage while
collecting the image information from the 8-channel receive array.

The motion-corrected and uncorrected volumes were quantita-
tively compared. For this purpose, the list-mode data were divided
into 4 consecutive 3-min frames. These data were then processed
with and without MC, and the corresponding 8 volumes were recon-
structed. Brain structures were segmented from the ME-MPRAGE
data acquired in the reference position using an automated segmen-
tation algorithm (27). Time–activity curves were generated from the
average activity measured in brain structures of interest.

RESULTS

MRI and PET Data Correlation

Spatial Correlation. Representative PET images of the
Derenzo phantom are shown in Figure 2 (left). Even the
smallest structures (i.e., 2.5 mm) were resolved. A fusion of
the PET and MR images demonstrating the axial offset
between the 2 volumes is shown in the middle column.
Table 1 provides the transformations derived by the coreg-
istration of the PET and MRI data acquired after the phan-
tom was repositioned inside the scanner. The average
transformation obtained from these measurements was used
for subsequent studies. After this transformation was applied,
perfectly coregistered PET and MRI data were obtained
(Fig. 2, right).

Temporal Correlation. The number of gates recorded into
the PET list-mode data for different MRI sequences (e.g.,
EPI, CLN), using a wide range of TRs (e.g., 20 ms to 5 s),
measurements (e.g., 1 to 10) or acquisition times, perfectly
matched the expected values (e.g., the total number of
recorded gates equaled the acquisition time divided by the
TR).

Hoffman Phantom Studies

A representative prompt sinogram is shown in Figure 3
(upper left). These data were obtained by summing the
individual prompt sinograms corresponding to the 5 posi-
tions of the phantom. Also shown in Figure 3 were the
corresponding normalization sinogram (lower left) and
prompt and normalization sinograms after application of

FIGURE 2. Simultaneously acquired MR-PET data using Derenzo

phantom: representative PET images (left) and fused MR-PET

images before (middle) and after (right) accounting for spatial mis-
match between the 2 scanners. Images in transaxial and coronal

orientations are shown in each case.

TABLE 1
Spatial Mismatch Between PET and MRI Scanners

Rotation (degrees) Translation (mm)

Experiment no. x y z x y z

1 0.04 20.07 20.68 22.05 1.45 8.16

2 0.01 20.08 20.67 22.11 1.41 8.19

3 0.05 20.05 20.60 22.13 1.50 8.24
4 20.01 20.11 20.67 22.15 1.43 8.06

5 0.02 0.00 20.60 22.18 1.45 8.22

6 0.05 20.07 20.67 22.08 1.43 8.13
Average 0.03 20.06 20.65 22.12 1.44 8.16

SD 0.02 0.04 0.04 0.05 0.03 0.07
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the MC (right column). Because of motion, most of the
sinogram space has been filled with data; the percentage
of empty bins was reduced from 44% to 2%.
A representative MR image of the Hoffman phantom

acquired in the reference position is shown in Figure 4A
(upper left). The transformations for the subsequent vol-
umes are given in Table 2. The corresponding PET image
reconstructed without MC and images obtained after appli-
cation of the MC in LOR space and in the image space are
also shown in Figure 4A (upper right, lower left, and lower
right, respectively), demonstrating substantial improve-
ment. On the basis of the profiles drawn on the transaxial
image (Fig. 4B) and the average activity measured in vol-
umes of interest (Table 3), the 2 MC methods produced
similar results, suggesting that the proposed LOR-based
MC is as accurate as the image-based method.

Human Volunteer Studies

EPI-Derived Motion Estimates. A plot of the trans-
formations obtained every 3 s from the EPI data is shown in

Figure 5A. The amplitude of the motion was less than 66
mm and 66�. In addition to voluntary motion, a slow drift
can be observed in the third time interval. The changes
observed immediately after the subject moved at some of
the other time points (e.g., first and fourth) are probably due
to the subject slowly drifting to a more comfortable posi-
tion.

The reconstructed PET images before and after MC and
the corresponding MRI anatomic slices are shown in Figure
5B. An overall blurring of all the brain structures and a
reduction in the gray matter uptake can be observed in
the uncorrected data. After MC, excellent delineation of
specific brain structures can be appreciated. The processing
time was approximately 80 min.

CLN-Derived Motion Estimates. A plot of the trans-
lations and rotations applied to the PET data is shown in
Figure 6A. Slightly larger amplitude movements were
recorded in this case. The transformation matrices in the
MRI reference frames (TMRI) were derived from these aver-
age values. This matrix was then combined with the
TMRI/PET matrix to obtain the transformation in the PET
reference frame (TPET) as follows: the translations between
the 2 coordinate systems were first removed, the rotations
were then applied, and finally the translations were reintro-
duced.

Representative images reconstructed before and after
MC are shown in Figure 6B. The substantial improvement
in image quality is evident. The processing time was ap-
proximately 4 h. Representative time–activity curves are
shown in Figure 7. The expected 18F-FDG kinetics in the
cortex were observed only after MC.

On visual inspection, the CLN-based correction seems to
produce slightly blurrier images than the functional MRI–
based one (Figs. 5B and 6B), possibly due to the larger
amplitude of the motion observed in the former case. It
was previously reported that the accuracy of the CLN esti-
mates decreases for translations larger than 10 mm or rota-
tions larger than 10� (25). A quantitative comparison
between the 2 MC methods was not possible because the

FIGURE 3. Representative prompt (upper) and normalization
(lower) sinograms before (left) and after (right) spatial transforma-

tions are applied. Empty bins were filled with data after transforma-

tion was applied.

FIGURE 4. MRI-based MC in Hoffman

phantom using ME-MPRAGE–derived mo-
tion estimates: (A) MR images in reference

position (upper left), uncorrected PET im-

ages (upper right), data corrected in LOR

space before image reconstruction (lower
left), and data corrected in image space after

each individual frame was reconstructed

(lower right). (B) Profiles drawn at indicated

location demonstrated good agreement.
a.u. 5 arbitrary units.
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activity was not in a steady state. These aspects will be
investigated in future phantom studies.

DISCUSSION

Motion correction is highly desirable when a high-
resolution PET scanner is used with patients. A solution
to this problem is offered by the simultaneous acquisition of
MRI and PET data in an integrated MR-PET scanner.
In this work, an LOR-based MC method for the BrainPET

scanner has been proposed. This solution allows the use of
the standard frame-based reconstruction toolbox and ad-
dresses the challenge imposed by the transaxial gaps pres-
ent between the PET detectors blocks. Because an iterative
reconstruction was used, low-count frames may introduce
bias in the low-uptake regions (due to positivity constraints).
This bias could be minimized by combining the data in
LOR space before reconstruction. Furthermore, this method
allows the proper handling of the regions that are not inside
the PET FOV during the whole scan. For example, if the
subject moves outside the FOV for 50% of the time, a sharp
transition would be observed in the final image between the
region that was inside the FOV for the whole study and the
one that was temporarily outside. Performing the MC in
LOR space leads only to a noise increase in this region
while the average signal is maintained; however, a correc-
tion applied after image reconstruction leads to a 50% de-
crease in the average signal in the same region.
Three MRI-based motion-tracking methods were used in

this work.
First, an image-based approach was used for deriving the

motion estimates by spatially coregistering the MRI vol-

umes. Compared with the PET image-based method, the
coregistration of high-resolution MRI volumes is likely
more accurate. In this work, the image-based method (using
high-count frames) was used to validate our MC implemen-
tation. In phantom experiments, the proposed MC imple-
mentation was tested for a wide range of transformations,
likely exceeding those normally observed in clinical studies.
Although our phantom data results seem to suggest that
the quantitative properties of the MC images are preserved,
likely more work is required for a complete character-
ization.

Second, a method using EPI-derived motion estimates
was tested in human volunteers. This method is also image-
based because the motion estimates are derived by co-
registering the individual EPI volumes acquired every TR.
This approach is particularly attractive because it allows the
simultaneous acquisition of functional MRI and PET
data—of interest for several research applications.

Third, a method using CLN was presented in this work.
Similar to the EPI-based method, a CLN-based method has
the advantage of not interfering with the standard MRI data
acquisition. Furthermore, the high-temporal-resolution mo-
tion estimates can be used to correct the PET data in short
frames—a process that could be important for performing
MC in the early phase of a dynamic PET study to sample
the radiotracer input function.

In principle, it could be possible to obtain MRI motion
estimates from the start to end of a PET acquisition. How-
ever, this is not trivial because a typical MRI protocol
consists of multiple sequences acquired sequentially, which
poses at least 2 challenges. First, intersequence realignment
is necessary. For this purpose, a 3D scout (e.g., AutoAlign
(28)) could be run between scans to monitor the head posi-
tion. Second, motion tracking needs to be implemented for
all standard MRI sequences. The initial CLN implementa-
tion (25) is not suitable for non–steady-state and 2-dimen-
sional sequences. In these cases, a solution would be to
separate the navigator from the imaging acquisitions using
spatial–spectral radiofrequency pulses. For the navigator,
the radiofrequency pulse could excite only the fat in the
3D slab, and for imaging, the radiofrequency pulse would
excite only water in the required slice. Proper design of the

TABLE 2
Hoffman Phantom MRI-Derived Motion Estimates

Rotation (degrees) Translation (mm)

Frame no. x y z x y z

1 0 0 0 0 0 0

2 20.26 1.2 11.84 20.34 3.17 21.25
3 4.03 2 10.06 2.29 0.82 7.16

4 10.25 24.21 2.55 5.35 24.45 18.94

5 4.34 23.68 1.23 9.06 2.37 8.29

TABLE 3
Quantitative Comparison of LOR-Based and Image-Space–Corrected Volumes in Hoffman Phantom

LOR rebinning MC Image space MC

Location Mean SD Mean SD No. of voxels

Frontal cortex 2.36 0.26 2.32 0.26 1,371

Occipital cortex 2.27 0.62 2.29 0.61 1,816
Thalamus 3.05 0.36 2.97 0.36 1,058

Putamen 2.58 0.29 2.58 0.3 820

Cerebellar cortex 3.02 0.20 2.89 0.18 1,608
Frontal white matter 0.92 0.14 0.92 0.15 1,396

Ventricles 0.56 0.08 0.56 0.08 412
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spatial-spectral pulse could make this approach suitable for
2-dimensional FLASH and 2-dimensional turbo spin-echo
sequences (the standard sequences routinely acquired in
patient care). A different approach could be used when
acquiring morphologic 3D MPRAGE data. In these se-
quences, there is a recovery period of several hundred milli-
seconds in which a navigator could be inserted.
The other challenge to the routine use of this method

relates to the prohibitive computational time required for
processing a long PET study. However, this could be signi-
ficantly improved by exploiting the fact that the procedure
is highly parallelizable (i.e., each subframe can be processed
independently on a computer cluster). Furthermore, depend-
ing on the study, a threshold for relevant motion could be
used (e.g., observing the motion of a virtual point above the
nasion), which would reduce the number of subframes that
have to be processed.
MRI-based MC has the potential to improve PET as a

quantitative method. First, the nominal spatial resolution of
the scanner can be achieved. Second, the mismatch between
the attenuation and emission volumes can be eliminated.
Third, better estimates of the radiotracer arterial input func-
tion can be obtained using image-based approaches from
motion-corrected data. Together these improvements can
increase the reliability and reproducibility of the PET data,

potentially benefitting several neurologic applications that
require precise quantification or involve uncooperative
subjects.

CONCLUSION

A novel implementation of a rigid-body LOR-based MC
algorithm is proposed for the BrainPET scanner. The
quantitative accuracy of the method was first demonstrated
in phantom experiments using motion estimates derived
from coregistered high-resolution MRI volumes. Proof-of-
principle MRI-assisted PET MC was demonstrated in human

FIGURE 6. MRI-based MC in healthy volunteer using CLN-derived

motion estimates. (A) Plot of motion estimates: translations along
(black) and rotations about (gray) 3 orthogonal axes are shown. (B)

PET data reconstructed before (left) and after MC (right). PET image

quality substantially improved after MC. deg. 5 degrees; SUV 5
standardized uptake value.

FIGURE 5. MRI-based MC in healthy volunteer using EPI-derived

motion estimates. (A) Plot of motion estimates: translations along

(black) and rotations about (gray) 3 orthogonal axes are shown. (B)
PET data reconstructed before (left) and after MC (middle). PET

image quality substantially improved after MC. Corresponding MR

images are provided as reference (right). Images in transverse
and coronal orientations are shown in each case. deg. 5 degrees;

SUV 5 standardized uptake value.

FIGURE 7. Time–activity curves obtained from PET data acquired

during CLN sequence before and after MC. a.u. 5 arbitrary units.
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volunteers using 2 different MRI methods for tracking the
motion. The MRI-assisted MC method allows one to take
advantage of the high temporal resolution of the motion
estimates provided by the MRI scan and, ultimately, to
recover the nominal spatial resolution of the BrainPET
scanner.
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