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Several kinetic models have been proposed to assess the
underlying oxygenation status behind hypoxia tracer uptake
and have shown advantages, compared with static analysis, in
discriminating hypoxic regions. However, the quantitative
assessment of mathematic models that take into consideration
clinical applications and their biologic nature is still challenging.
We performed a feasibility study to assess hypoxia kinetic
models using voxelwise cross-analysis between the uptake of
the perfusion tracer 15O-H2O and the hypoxia tracer 18F-fluo-
roazomycin arabinoside (18F-FAZA). Methods: Five patients
with advanced head and neck cancer were included. For each
patient, dynamic sequences of 15O-H2O for 5 min and 18F-FAZA
for 60 min were acquired consecutively after injections of
approximately 1 GBq and 300 MBq of each tracer, respectively.
The compartment model, Thorwarth model, Patlak plot, Logan
plot, and Cho model were applied to model the process of
tracer transport and accumulation under hypoxic conditions.
The standard 1-tissue-compartment model was used to com-
pute a perfusion map for each patient. The hypoxia kinetic mod-
els were based on the assumption of a positive correlation
between tracer delivery and perfusion and a negative (inverse)
correlation between tracer accumulation (hypoxia) and perfu-
sion. Results: Positive correlations between tracer delivery
and perfusion were observed for the Thorwarth and Cho models
in all patients and for the reversible and irreversible 2-compart-
ment models in 4 patients. Negative correlations between tracer
accumulation and perfusion were observed for the reversible
2-compartment model in all patients and for the irreversible
2-compartment model and Cho model in 4 patients. When
applied to normal skeletal muscle, the smallest correlation var-
iance over all 5 patients was observed for the reversible 2-com-
partment model. Conclusion: Hypoxia kinetic modeling
delivers different information from static measurements. Differ-
ent models generate different results for the same patient, and
they even can lead to opposite physiologic interpretations. On
the basis of our assessment of physiologic precision and

robustness, the reversible 2-compartment model corresponds
better to the expectations of our assumptions than the other
investigated models.
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Kinetic modeling is an important method to assess the
underlying physiology behind tracer uptake in molecular
imaging (1). Four-dimensional spatial–temporal images
were acquired to observe the behavior of the radiotracer
in the region of study, and estimations of quantitative bio-
logic parameters can be achieved by fitting a mathematic
model to the time–activity curve of a region of interest or a
certain voxel. Compartment models define physiologically
different pools of tracer substance as compartments and set
up the relationship between these compartments using lin-
ear differential equations (1,2). Reference tissue models
were developed to avoid blood sampling by selecting a
region without specific binding of the ligand (3). Lineari-
zation can be applied to compartment models leading to
graphical models (4,5), which assume an equilibrium state
of the tracer and use linear regression to identify tracer
kinetics.

Although there are many well-developed models that
cover a broad range of applications, the performance of
these models depends on the precision and robustness of
both physiologic description and mathematic capability.
Understanding the merits and limitations of the different
models is important (6). The models can be evaluated using
a validated gold standard such as microsphere-based meas-
urement for myocardial blood flow models (6) and blood
sampling for reference tissue models (7). Mathematic per-
formance of the models can be assessed using computa-
tional simulations (8–10).
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Tumor hypoxia is considered a main resistance factor of
standard radiotherapy and some chemotherapy. It is char-
acterized by an oxygen tension below a certain level (11),
which can be measured with the Eppendorf polarographic
system (12). Although the electrode oximetry is widely
accepted as a gold standard for hypoxia detection, it is
limited by its invasiveness and is feasible only for easily
accessible tumors. Various indirect strategies have been
proposed to detect the tumor oxygen status noninvasively
(e.g., with PET) (13). Several hypoxia-specific tracers have
been proposed for tumor hypoxia imaging, such as
18F-fluoromisonidazole (18F-FMISO) (14,15), 18F-fluoro-
erythronitroimidazole (16), and 60/61/64Cu-diacetyl-bis(N4-
methylthiosemicarbazone) (17). 18F-fluoroazomycin arabinoside
(18F-FAZA) is a marker that accumulates quickly in cells
under hypoxic conditions (18,19).
In practice, hypoxia tracers diffuse over long distances

before reaching hypoxic cells, and the characteristic
diffusion time varies for different tumor cells (20); thus, a
static evaluation is not sufficient to discriminate hypoxia
from the background (21). In contrast, kinetic modeling is
able to assess the cellular reaction rate of the tracer accu-
mulation and thus is potentially more reliable for hypoxia
assessment. Casciari et al. attempted using a 4-compart-
ment model with 8 free parameters to determine the cellular
reaction rate of 18F-FMISO (22). A certain number of
parameters usually need to be fixed in real applications.
Thorwarth et al. proposed a specific model to identify the
tumor oxygen status by decomposing the time–activity
curve into perfusion, diffusion, and hypoxia-induced reten-
tion components based on the 2-compartment model (21).
Recently, Cho et al. proposed an empiric model that
assessed hypoxia by the slope of the late phase of dynamic
activities (23).
Although these models have been applied to hypoxia, the

behavior of the models in regard to oxygen status is
generally not clear. Immunohistologic studies with pimo-
nidazole as a hypoxia marker were used as a reference to
compare with static hypoxia tracer uptake (24,25) and the
modeling results of the Cho model (23) in preclinical stud-
ies. Voxelwise correlations between pimonidazole intensity
and 18F-FMISO counts were assessed in tumor regions (25).
Although a good positive correlation was reported, the sim-
ilar accumulation mechanisms between pimonidazole and
18F-FMISO make it difficult to interpret the correlation for
the assessment. In addition, such comparison is usually
difficult for clinical studies. Thus, it is still challenging to
evaluate different hypoxia models with regard to the clin-
ical relevance.
The correlation between blood supply and oxygen status

has been analyzed using specific PET tracers for hypoxia
and perfusion (26,27). In this study, we focused on the
application of kinetic models to tumor hypoxia and per-
formed a feasibility study based on a cross-analysis of the
uptake of the perfusion tracer 15O-H2O and the hypoxia
tracer 18F-FAZA to evaluate these models.

MATERIALS AND METHODS

Patient Data
Five patients, as shown in Table 1, with locally advanced squa-

mous cell head and neck cancer were investigated. Before the PET
study, all patients underwent CT or MRI. The study protocol was
approved by the ethics committee of the Technische Universität
München and was tolerated well by the patients.

Patients were positioned supine on a multiring whole-body PET
scanner (ECAT HR1; CTI/Siemens) and immobilized with indi-
vidually customized 3-point-fixation thermoplastic masks during
the whole study for 75–80 min. Approximately 1 GBq of 15O-H2O
was injected intravenously, and dynamic images were acquired for
5 min with the following protocol: 12 frames · 5, 6 · 10, and 6 ·
30 s. Arterial blood samples (9–17) were taken during the scan-
ning. At 10–15 min after the 15O-H2O study, dynamic data were
acquired for 1 h after an intravenous injection of around 300 MBq
of 18F-FAZA using the following protocol: 12 frames · 10, 6 · 30,
2 · 150, 4 · 300, and 3 · 600 s. Meanwhile, an additional 21–34
venous blood samples were acquired for each patient.

The images were obtained in 2-dimensional mode and recon-
structed using a filtered backprojection algorithm with the
Hanning filter at a cutoff frequency of 0.4 cycle/pixel. Attenuation
correction was performed using a transmission scan with 3
rotating 68Ge rod sources. Additionally, all measurements were
corrected for physical decay, random counts, and dead time. The
voxel size of the reconstructed images was 4.29 · 4.29 · 2.425
mm. A gaussian filter of 8 · 8 · 6 mm was applied to the PET data
before further analysis.

The tumors were contoured manually on the CT or MR images
using the BrainLab iPlan 4.0 system (BrainLab). The CT or MR
images, which were obtained without using the immobilization
mask, were coregistered with the summed images of all the
temporal frames of the 18F-FAZA PET data for each patient using
PMOD software (version 3.0; PMOD Technologies) based on
mutual information. The accuracy of the registration was proven
by a physician.

Model Assessment Criteria
Besides limited extravascular diffusion, the main cause for the

development of hypoxia is a decreased supply of oxygen, which is
strongly related to perfusion within a tumor (11). On the basis of
this knowledge, tumor cells are more likely hypoxic when perfu-
sion is low than when perfusion is high. We used this special
relationship between hypoxia and perfusion to evaluate various
kinetic models in patients with large tumors. In particular, we
hypothesized that the correlation between tracer delivery and per-
fusion was positive and the correlation between hypoxia and per-
fusion was negative (inverse).

Furthermore, we assumed the following for physiologic robust-
ness assessment: the correlation of underlying physiologic char-
acteristics for normal muscle is relatively consistent.

On the basis of this assumption, the resulting correlation
between 18F-FAZA and 15O-H2O should behave similarly for dif-
ferent patients. The SD s of the correlation coefficients for all
patients was computed and compared between each model. The
model, which results in low s, is expected to be more physiolog-
ically robust.

Static Analysis
A voxelwise correlation of the static uptake between 18F-FAZA

(at 1 h after injection) and 15O-H2O (at 40–70 s after injection) is
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shown in Table 1. In this study, we use the Pearson correlation
coefficient r as the index for the correlation of 2 datasets. The
value of this coefficient ranges from21.0 to 1.0. The correlation
type is described by the sign of the coefficient, and the strength
of the correlation is represented by the magnitude of the coef-
ficient.

Input Function
To construct a suitable input function for kinetic modeling, both

image-based carotid artery selection (28) and blood sampling of
arterial or venous blood were considered. Blood sampling was
corrected for delay and then used for the correction of an
image-derived input function. We took the peak part of the input
function from the image-based method and the rest from blood
samples. After that, a 3-parameter exponential model (Eq. 1) was
applied to fit the corrected raw input data (29):

CINðtÞ 5 ðA1t � A2 � A3ÞeL1t 1A2e
L2 t 1A3e

L3t; Eq. 1

where CIN(t) is the arterial input function. A1, A2, and A3 and L1,
L2, and L3 are parameters to fit and represent the magnitudes and
spectra, respectively, of the exponential functions.

One example of the fitted blood input function for our
computation is shown in Figure 1, together with the averaged
time–activity curves of whole tumors and in the musculature of
the neck region (behind the cervical spine).

Dynamic 15O-H2O Modeling
The left half of Figure 2 illustrates the transport mechanism of

15O-H2O. It is a freely diffusible tracer, which passes through the
blood vessel walls rapidly and quickly diffuses through the inter-
stitial and intracellular space. During this process, 15O-H2O is
inert and thus not metabolized. The 1-compartment model (30)
was applied, which assumes a compartment of extravascular space
in addition to the blood compartment (intravascular space). The

linear relationship between the blood compartment and the tissue
compartment is described in the following equation:

dCDðtÞ
dt

5 K1CINðtÞ � k2CDðtÞ; Eq. 2

where CD(t) is the concentration of free ligands in the interstitial
and intracellular space and K1 is a measured perfusion parameter
that equals the product of blood flow and extraction.

Dynamic 18F-FAZA PET Modeling
The right half of Figure 2 illustrates the transport mechanisms

of 18F-FAZA. It is a relatively large molecule, which diffuses
slowly through capillary walls and in the interstitium. Once it
reaches hypoxic areas, 18F-FAZA is trapped in the intracellular
space by oxygen reduction of the 2-nitroimidazoles. To demon-
strate this dynamic process, several models that have been used to
analyze tumor hypoxia were applied, including the compartment
model (22), Patlak plot (31), Logan plot (27), Thorwarth model
(21), and Cho model (23).

2-Tissue-Compartment Model. The high number of free param-
eters in the 4-compartment model (22) makes voxelwise fitting
difficult. For this reason, we applied the standard 2-tissue-com-
partment model (1) to model the process of 18F-FAZA delivery
and accumulation.

The 2-tissue-compartment model assumes 2 compartments in
the tissue space. The first compartment is for the free 18F-FAZA
concentration CD(t) in the interstitial space and intracellular
space, and the second is for the trapped 18F-FAZA concentration
CA(t) in the intracellular space. K1 stands for the rate of diffu-
sion from plasma to tissue and k3 for the tracer accumulation
rate. k2 and k4 are the rate constants representing the transport
rate from interstitium to plasma and the dissociation rate of the
trapped ligands, respectively.

Linear differential equations were used to model the relation-
ships between these compartments considering diffusion only:

TABLE 1. Patient Characteristics and Voxelwise Correlations Between Static Uptake of 18F-FAZA (at 1 Hour After
Injection) and 15O-H2O (at 40–70 Seconds After Injection) in Tumor Region

Patient no. Sex Age (y) Tumor location Tumor volume (cm3) r

1 M 44 Oropharynx/hypopharynx 48.83 0.517
2 M 48 Oropharynx 75.30 0.431

3 M 49 Nasopharynx 111.85 0.272

4 F 61 Tonsillar fossa 25.51 0.445

5 M 56 Base of tongue 256.29 0.340

FIGURE 1. Blood input curves and
time–activity curves of whole tumor
region and 1 normal muscle region for
patient 2.
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dCDðtÞ
dt

5 K1CINðtÞ � ðk2 1 k3ÞCDðtÞ1 k4CAðtÞ
dCAðtÞ
dt

5 k3CAðtÞ � k4CAðtÞ:
Eq. 3

In addition, we took into consideration the irreversible version of
the 2-tissue-compartment model, where k4 is set to 0.

Thorwarth Model. The Thorwarth model is derived from the
irreversible 2-tissue-compartment model and is dedicated to
hypoxia modeling (21). It decomposes the measured time–activity
curve CT(t) into perfusion, diffusion, and retention curves. Here,
w0, wD, and wA are the corresponding weights of each component
according to the following equation:

CTðtÞ 5 w0CINðtÞ1wDCDðtÞ1wACAðtÞ

CDðtÞ 5
Z t

0

e�k̃3ðt�tÞCINðtÞdt

CAðtÞ 5
Z t

0

ð1� e�k̃3ðt�tÞÞCINðtÞdt

; Eq. 4

where k̃3 is the modified accumulation rate constant.
To compare the Thorwarth model under the same condition as

the other models, we used the same input function instead of using
the reference tissue originally proposed by this model.

Graphical Models. The Patlak model (4) is a linearization of the
irreversible 2-compartment model, which fits the equation:

CTðtÞ
CINðtÞ 5 slope

R t

0 CINðtÞdt
CINðtÞ 1 intercept; Eq. 5

in equilibrium states. Here, slope represents the trapping rate of
the tracer in the tissue.

The Logan model (5) is a linearization of the reversible
2-compartment model, which fits the equation:

R t

0 CTðtÞdt
CTðtÞ 5 DV

R t

0 CINðtÞdt
CTðtÞ � 1

K2
; Eq. 6

in equilibrium states. Here the distribution volume DV is an index
of the metabolic rate of the ligand.

Cho Model. The 2-tissue-compartment, Thorwarth, and graph-
ical models require correct input of blood activity. However, it is
difficult to acquire precise information for blood activity. Cho
et al. assumed that the retention slope of the last phase of the
dynamic scan is a key factor in determining tumor hypoxia and
proposed an empiric model (23). This model extracts the tracer
delivery index, “early,” by averaging the activities in the first
frames. The tracer accumulation index, “late,” is determined
from the slope of a straight-line fitting of the last frames. Consid-
ering an acquisition time of 1 h for our 18F-FAZA study, we set the
first 4 min to be the early phase and the last 40 min to be the late
phase.

Voxelwise Model Assessment
Voxelwise computing was performed for each investigated

kinetic model, and the correlation of the hypoxia kinetic features
and water perfusion was compared voxel by voxel for each patient
(Fig. 3).

In addition to cross-analysis in tumor regions, the correlation of
the modeling results for 18F-FAZA and 15O-H2O was investigated
in the musculature of the neck region (behind the cervical spine) to
test the physiologic robustness of the model.

Voxelwise comparison and modeling of the compartment model
and the graphical model were done using the PMOD software. The
Thorwarth and Cho models were implemented using the in-house–
developed software MobiTUM (version 1.0).

RESULTS

The residual activity of 15O-H2O ranged from 200 to
1,000 Bq/mL at the start of the 18F-FAZA acquisition. After
1 h, there was around 800–2,000 Bq of 18F-FAZA activity
per milliliter in the blood circulation. A series of 18F-FAZA
images (patient 2) is shown in Figure 4.

The correlations between the kinetic features of different
models for 18F-FAZA and the perfusion of 15O-H2O flow in
the tumor region are shown in Tables 2 and 3. Table 2
shows the correlation between the modeling results of
18F-FAZA delivery and perfusion, and Table 3 shows the

FIGURE 2. Illustration of different transport mechanisms
between 15O-H2O and 18F-FAZA.

FIGURE 3. Procedure for quantitative
comparison of hypoxia kinetic models.
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correlation between the modeling results of the 18F-FAZA
accumulation and perfusion.
The Cho model shows strong positive correlations

between the 18F-FAZA delivery and 15O-H2O perfusion
for 4 patients (patients 1–3 and 5) and a weak positive
correlation for 1 patient (patient 4). Both the reversible
and the irreversible 2-compartment models show positive
correlations for 3 patients (patients 1, 2, and 5) and a weak
positive correlation for 1 patient (patient 3). The Thorwarth
model depicts positive correlations for 3 patients (patients
1, 2, and 5) and weak positive correlations for 2 patients
(patients 3 and 4). Overall, the Cho model presents the
strongest positive correlations among the models.
The reversible 2-compartment model shows a negative

correlation between the 18F-FAZA accumulation and 15O-
H2O perfusion in all patients (patients 1–3, negative;
patients 4 and 5, weak negative). The irreversible 2-com-
partment model and Cho model also show a negative cor-

relation in 4 patients (patients 1–3, negative; patient 5,
weak negative). An example of the resulting parametric
images of the models (patient 2) is depicted in Figure 5.
The time–activity curves of a region of interest and 2 indi-
vidual pixels on the selected slice are displayed, with the
corresponding fitted model curves. The voxelwise correla-
tions between estimated 18F-FAZA kinetic parameters of
the reversible 2-compartment model and 15O-H2O perfu-
sion in the tumor region for patient 2 are illustrated in
Figure 6 (left side).

Kinetic models show different correlations from those
shown by the static analysis (Table 1) for all patients. On
average, the static assessment reveals a positive correlation
between 18F-FAZA accumulation and 15O-H2O perfusion,
whereas the reversible and irreversible 2-compartment
models and the Cho model show negative correlations
between blood supply and tracer accumulation.

Different kinetic models reveal different results. Clear
negative correlations between hypoxia tracer accumula-
tion and perfusion for the reversible and the irreversible
2-compartment models and the Cho model were observed
for patients 1–3. In contrast, the Thorwarth model, Patlak
plot, and Logan plot revealed positive correlations for these
patients.

Table 4 shows the modeling results for the correlation
between the 18F-FAZA delivery and 15O-H2O perfusion,
and Table 5 shows the correlation between the 18F-FAZA
accumulation and 15O-H2O perfusion in the musculature
of the neck region behind the cervical spine. A scatterplot
of estimated delivery and accumulation parameters of
18F-FAZA by the reversible 2-compartment model and
15O-H2O perfusion in the muscle region for patient 2 is
illustrated in Figure 6. Overall, the reversible 2-compart-
ment model shows the smallest variance considering both
relations.

DISCUSSION

Using the cross-study of the kinetic modeling of the
hypoxia tracer 18F-FAZA and the perfusion tracer 15O-H2O,
we investigated the relationship between tracer delivery and
perfusion and between tracer accumulation and perfusion.

FIGURE 4. Six frames of 18F-FAZA PET of a slice for
patient 2. Regions of interest outline region of tumor, and t
denotes time of start of frame.

TABLE 2. Voxelwise Correlations Between 18F-FAZA Delivery and Corresponding 15O-H2O Perfusion in Tumor Region
for Each Patient

Patient no. Reversible 2-compartment: K1 Irreversible 2-compartment: K1 Thorwarth: w0 Cho: early
1 0.359/0.231 0.337/0.188 0.507/0.447 0.854/0.795

2 0.684/0.744 0.724/0.768 0.523/0.584 0.867/0.911

3 0.144/0.103 0.138/0.095 0.183/0.164 0.851/0.791
4 20.025/0.003 20.014/20.002 0.109/0.182 0.291/0.152

5 0.352/0.349 0.332/0.326 0.372/0.388 0.694/0.705

Values after slash (/) indicate computation result when performing half-voxel shift in x direction for registration. Each column of table

denotes 1 Pearson correlation coefficient between specified kinetic parameter of 18F-FAZA modeling and kinetic parameter K1 of 15O-

H2O modeling.
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Correlation Between 18F-FAZA Delivery,
Accumulation, and Perfusion

After the tracer (either 18F-FAZA or 15O-H2O) was

injected into the body, it was transported by the blood flow

through the vascular system to capillaries and postcapillary

venules and finally diffused into the interstitium and intra-

cellular space, as shown in Figure 2. Because the tracer was
delivered via blood flow, it was reasonable to postulate a
positive correlation between drug delivery and perfusion.
The results of the 4 models (the reversible and irreversible
2-compartment, Thorwarth, and Cho models) confirmed
positive correlations in 4 of 5 patients (Table 2).

TABLE 3. Voxelwise Correlations Between 18F-FAZA Accumulation and Corresponding 15O-H2O Perfusion in Tumor
Region for Each Patient

Patient no.

Reversible 2-

compartment: k3

Irreversible 2-

compartment: k3 Thorwarth: wA Patlak: slope Logan: DV Cho: late

1 20.462/20.356 20.674/20.636 0.435/0.596 0.487/0.622 0.598/0.672 20.558/20.647

2 20.490/20.499 20.344/20.352 0.528/0.589 0.348/0.436 0.526/0.606 20.600/20.627
3 20.441/20.428 20.506/20.492 0.152/0.144 0.162/0.135 0.297/0.264 20.404/20.326

4 20.156/0.029 20.094/0.087 0.578/0.637 0.556/0.641 0.416/0.548 20.067/0.053

5 20.107/20.128 20.167/20.173 0.451/0.435 0.535/0.527 0.581/0.576 20.242/20.261

Values after slash (/) indicate computation result when performing half-voxel shift in x direction for registration. Each column of table

denotes1 Pearson correlation coefficient between specified kinetic parameter of 18F-FAZA modeling and kinetic parameter K1 of 15O-

H2O modeling.

FIGURE 5. One slice of CT image and parametric images of reversible and irreversible 2-compartment models for patient 2.
Parametric images are computed within region determined by CT. Time–activity curves of tumor region of interest and 2 pixels
(arrows) are displayed on right, with corresponding model results. ROI 5 region of interest.
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The oxygenation status of tumors depends on cellular
oxygen consumption and oxygen supply to the respiring
cells. The latter is mainly caused by convective transport
through capillaries and by diffusion from microvessels to
oxygen consumption sites (11,32,33). A functionally dis-
turbed microcirculation and deteriorated diffusion condi-
tions are the primary factors of tumor hypoxia. Our
hypothesis of a negative correlation between hypoxia and
perfusion is based on this fact. The results from the rever-
sible and irreversible 2-compartment models and the Cho
model support this hypothesis in 4 of 5 patients (Table 3).
Although the Thorwarth model is based on the irreversible
2-compartment model, it recombines the fittable parameters
of the irreversible 2-compartment model. Supposing an
ideal fit by these 2 models yielding the same model curve,
the parameter wA in the Thorwarth model equals the prod-
uct of K1 and k3/(k2 1 k3) in the irreversible 2-compartment
model. Thus, the Thorwarth model is not able to uncover
the negative correlation between 18F-FAZA and 15O-H2O
perfusion. Similarly, the graphical models yield mixed
kinetics and cannot discriminate the negative correlation
and lead to opposite results.
For patient 4, no clear correlation was observed between

18F-FAZA delivery or accumulation and blood perfusion

for the reversible and irreversible 2-compartment models
and Cho model. The 18F-FAZA uptake is influenced by
the existence of acute hypoxia (34). The intensity of 18F-
FAZA in a PET voxel represents the mixed uptake of tumor
microenvironment (34). The uptake varies on a microscopic
scale, even within the same acquisition duration including
morphologic and functional abnormalities of blood vessels
(11), red blood cell fluxes (35), and dynamics of tumor
hypoxia (36,37). Besides, although 18F-FAZA is an effec-
tive hypoxia tracer, it still has difficulty reaching all
hypoxic areas distant from tumor microvessels (20).

Physiology Consistency of Normal Skeletal Muscle

In our study, we analyzed both the 15O-H2O and the 18F-
FAZA dynamic uptake for normal musculature of the neck
region (behind the cervical spine), which are skeletal
muscles preferentially containing type I fibers (high capil-
lary density, high oxidative capacity, and low glycolytic
activity) (38). Muscle fibers and blood capillaries are usu-
ally uniformly structured (38). Our measurements were per-
formed on resting muscles. Therefore, it is reasonable to
assume that they have a consistent physiology and thus
coherent tracer kinetics for 15O-H2O and 18F-FAZA. On
the basis of this assumption, the observed variance in the

FIGURE 6. Scatterplots of voxelwise
correlation between estimated pa-
rameters of reversible 2-compartment
model for 18F-FAZA and K1 of 1-com-
partment model for 15O-H2O in tumor
and muscle regions for patient 2.

TABLE 4. Voxelwise Correlations Between 18F-FAZA Delivery and Corresponding 15O-H2O Perfusion in Region of
Muscle for Each Patient

Patient no. Reversible 2-compartment: K1 Irreversible 2-compartment: K1 Thorwarth: w0 Cho: early
1 0.412 0.344 20.131 0.436

2 0.230 0.112 20.068 0.320

3 0.888 0.929 0.414 0.931
4 0.598 0.682 0.117 0.720

5 0.349 0.182 20.066 0.046

s 0.257 0.347 0.222 0.345

Each column of table denotes 1 Pearson correlation coefficient between specified kinetic parameter of 18F-FAZA modeling and

kinetic parameter K1 of 15O-H2O modeling. s is SD of normalized correlations of all patients in column.
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correlations between 15O-H2O and 18F-FAZA modelings
should be due to the poor physiologic robustness of the
models. However, this variation may also be due to muscle
activities, such as that caused by emotional stress (39).

Physiologic Precision and Mathematic Accuracy

The physiologic precision and numeric accuracy are 2
sides of kinetic modeling. An increase in model complexity
can improve the ability of physiologic description and
enhance the understanding of multifaceted mechanisms.
However, this increase may decrease the accuracy of
mathematic computation and lead to instability of quanti-
tative assessment.
In our study, the reversible 2-compartment model has

smaller physiologic variance for normal muscle; thus, it is
more physiologically robust. However, the 2-compartment
model had mathematic instability during the optimization
procedure, which is not found for the graphical and Cho
models.
Nonlinear optimization in voxelwise fitting (reversible

and irreversible 2-compartment models, Thorwarth model)
is sensitive to noise. Even using the gaussian convolution, it
is still possible to see singularities in parametric images
(Fig. 5). However, in the outlined tumor regions, the fitting
result is relatively continuous. One additional initial setting
of doubled magnitude was tested for patients 2 and 4, and
the influence of the initial values on the correlations was
observed. Slight changes below 5% in the resulting corre-
lations were observed, except for patient 4, for whom the
correlation between K1 of the irreversible 2-compartment
model and 15O-H2O perfusion changed from 20.014 (in
Table 2) to 20.004. Despite this, the characteristics of the
correlations remained unchanged for all patients.
Although an immobilization mask was continuously used

during the whole study, uncertainty (,2 mm) may still exist
in spatial registration of the sequential 18F-FAZA and
15O-H2O PET images because of motion during the long
acquisition (34). This may compromise the voxel-by-voxel
correlation analysis. The influence of this registration
uncertainty was tested by applying a half-voxel shift in
the x direction to the registration between the 18F-FAZA
and 15O-H2O images (Tables 2 and 3). The resulting voxel-

wise correlation was affected by the alignment of the
images, especially for low correlations. However, the char-
acteristics of the investigated correlations were not changed
within the accuracy range of this study.

Furthermore, we have not evaluated the 1-compartment
model for 15O-H2O perfusion (6), because our purpose was
to compare only the hypoxia kinetic models.

Our results suggest that consideration of both the precise
physiologic background and the mathematic accuracy is
needed for a successful modeling of tumor hypoxia.

Our feasibility study is limited by the small number of
patients because our imaging protocol is complex. Never-
theless, we proved the possibilities of physiologically assess-
ing mathematic models with clinical relevance, achieved by a
cross-study of correlated biologic characteristics, which can
be tracked through molecular imaging techniques.

CONCLUSION

Although kinetic modeling has advantages over static
assessment (21), the behavior varies greatly for different
models of hypoxia evaluation. Different models even lead
to opposite interpretations in some situations. According to
our criteria for physiologic precision and robustness assess-
ment, preference should be given to the reversible 2-com-
partment model.

Although only positive or negative relations were
considered here, concrete quantitative knowledge of the
correlations is important for the definition of more reliable
evaluation criteria. The dilemma of physiologic precision
and mathematic accuracy requires a thorough investigation
of both tumor pathophysiology and mathematic models
before the application of kinetic analysis. A large clinical
study is desired for further model assessment. Theoretic
simulation is another way to improve the understanding of
kinetic modeling and the underlying physiology.
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