Clinical multimodality imaging: Pichler and colleagues offer a focus on PET/MRI instrumentation as the next generation of clinical molecular imaging, including technical evolution and the range of potential applications. Page 333

Monte Carlo method: Bolch provides a brief history and perspective on nuclear medicine uses of the Monte Carlo method, a class of computational algorithms that rely on repeated random samplings to compute physical quantities. Page 337

18F-FLT PET with CTLA4 blockade: Ribas and colleagues evaluate the role of whole-body molecular imaging in patients with metastatic melanoma receiving tremelimumab, a cytotoxic T-lymphocyte-associated antigen 4-blocking antibody. Page 340

18F-FDG uptake in normal breast: Mavi and colleagues investigate whether and how age, menopausal state, and tissue density are related to 18F-FDG uptake in normal glandular breast tissue. Page 347

Predictive PET in NETs: Campana and colleagues explore the use of standardized uptake values from 68Ga-DOTANOC PET imaging as accurate noninvasive markers for disease prognosis in patients with neuroendocrine tumors. Page 353

Arterial wall toxicity in NHL RIT: Hobbs and colleagues look at absorbed doses to the arterial wall in patients undergoing radioimmunotherapy for non-Hodgkin lymphoma to assess the potential for delayed toxicity. Page 368

Cost-effectiveness of PET and PET/CT: Buck and colleagues provide an educational overview and evaluation of methodologies for cost-effectiveness studies of PET and PET/CT in oncology. Page 401

Endocardial versus epicardial cell injection: Mitchell and colleagues compare the cell retention and clearance kinetics of subepicardial and subendocardial techniques for stem cell delivery to recently infarcted myocardium. Page 413
Enhanced melanoma uptake: Guo and colleagues examine the effect of the ring size of the radiolabeled lactam bridge–cyclized α-melanocyte–stimulating hormone peptide on its melanoma-targeting properties and discuss the implications for imaging and treatment. Page 418

68Ge calibration methodology: Zimmerman and Cessna describe a technique for calibrating 68Ge radioactivity content in a commercially available source for activity calibrators in a way that is traceable to the national standard and extend this approach to 18F calibration. . . Page 448

Labeling octreotide with 18F: Laverman and colleagues present a 2-step, 1-pot method for rapid and efficient labeling of peptides with 18F. Page 454

111In-NLS-trastuzumab radiosensitization: Costantini and colleagues elucidate the mechanisms by which methotrexate radiosensitizes HER2-positive human breast cancer cells to the 111In-trastuzumab modified with nuclear-localization sequence peptides and determine the potential sensitizing effects of paclitaxel and doxorubicin when combined with this radiopharmaceutical. Page 477

Targeting prostate cancer cells: He and colleagues evaluate the tumor-targeting capabilities of a radiolabeled internalizing human antibody fragment to provide high contrast in a mouse model of human prostate carcinoma. Page 427

Monte Carlo cellular dosimetry: Cai and colleagues compare Monte Carlo N-particle 111In self- and cross-doses to breast cancer cell nuclei with doses calculated by other methods and determine whether Monte Carlo results can predict cell survival. Page 462

68Ge calibration methodology: Zimmerman and Cessna describe a technique for calibrating 68Ge radioactivity content in a commercially available source for activity calibrators in a way that is traceable to the national standard and extend this approach to 18F calibration. . . Page 448

Labeling octreotide with 18F: Laverman and colleagues present a 2-step, 1-pot method for rapid and efficient labeling of peptides with 18F. Page 454

111In-NLS-trastuzumab radiosensitization: Costantini and colleagues elucidate the mechanisms by which methotrexate radiosensitizes HER2-positive human breast cancer cells to the 111In-trastuzumab modified with nuclear-localization sequence peptides and determine the potential sensitizing effects of paclitaxel and doxorubicin when combined with this radiopharmaceutical. Page 477

Knottin peptide-based ultrasound agent: Willmann and colleagues describe a new class of targeting ligands for contrast-enhanced ultrasound imaging of tumor angiogenesis using microbubbles conjugated to integrin-binding knottin peptides. Page 433

Benzamide PET of melanoma: Denoyer and colleagues evaluate the novel melanin probe 118F-MEL050 for PET imaging of primary and metastatic melanoma using murine models. Page 441

Monte Carlo cellular dosimetry: Cai and colleagues compare Monte Carlo N-particle 111In self- and cross-doses to breast cancer cell nuclei with doses calculated by other methods and determine whether Monte Carlo results can predict cell survival. Page 462

Animal models for dose assessment: Keenan and colleagues describe a series of anatomically realistic mouse and rat whole-body phantoms and use these models to facilitate dose calculations in various rodent species. Page 471

ON THE COVER

Monte Carlo N-particle simulation has been shown to compare well with 2 analytic methods in the calculation of subcellular S values. The radii of cells and nuclei have a profound effect on S values and may vary considerably. The cell and nucleus diameters of 6 commonly used breast cancer cell lines have been measured and reported for the first time.

See page 467.