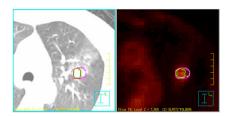
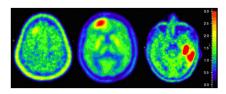
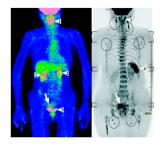
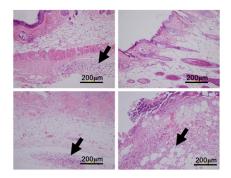

THIS MONTH IN


JNM

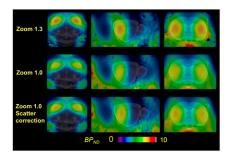

¹⁸F-FLT and targeted therapy: De Saint-Hubert and colleagues provide a brief overview of this tracer's effectiveness in measuring proliferative changes during therapy and preview 2 articles on this topic in this issue of JNM... Page 1499

Serial PET and tumor response: Quarles van Ufford and colleagues report on a meta-analysis determining the added value of baseline ¹⁸F-FDG PET in serial PET imaging to predict clinical response to systemic cytotoxic neoadjuvant treatment of solid extracerebral tumors... Page 1507

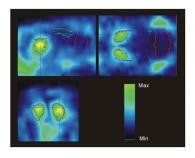

Automatic vs. manual contouring: Wu and colleagues compare autocontouring and manual methods for PET target definition of gross tumor volume in non-small cell lung cancer..... Page 1517

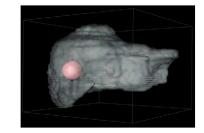

PET/MRI and hippocampal metabolism: Cho and colleagues describe ¹⁸F-FDG PET and high-resolution MR imaging of the hippocampus in healthy humans, including metabolic quantification of each hippocampal substructure. ... **Page 1545**

Whole-body DWI and PET: Kwee and colleagues provide an educational overview of the basic principles, clinical applications, and limitations of diffusionweighted MRI and compare and correlate its capabilities with those of ¹⁸F-FDG PET. Page 1549

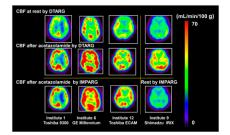


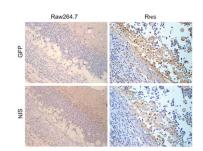
IGF-1R imaging: Heskamp and colleagues describe a noninvasive, in vivo imaging method employing radiolabeled antibodies and immunoSPECT/immunoPET to visualize insulinlike growth factor 1 receptor expression in vitro and in small-animal models of breast cancer...... Page 1565


Inflammation and ^{99m}Tc-HDP extravasation: Lim and colleagues conduct studies in mice to explore the mechanisms underlying reported ^{99m}Tc-HDP injection site reactions in patients. **Page 1573**


Octamouse for PET: Rominger and colleagues report on procedures for obtaining 8 simultaneous PET brain recordings from mice using an acrylic anesthesia distributor, with the dopamine $D_{2/3}$ ligand ¹⁸F-fallypride serving as a test substance for brain receptor imaging. *Page* 1576

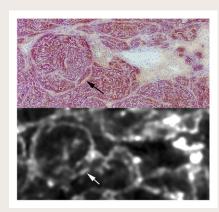
PET and phosphodiesterase: Celen and colleagues describe ¹⁸F-JNJ41510417, a selective and high-affinity radioligand for in vivo PET brain imaging of phosphodiesterase-10A, and review potential applications in neuropsychiatric disorders. Page 1584




Human ⁸²Rb dosimetry: Senthamizhchelvan and colleagues reevaluate ⁸²Rb biodistribution and dosimetry in dynamic PET/ CT using in vivo biokinetic measurements from healthy humans. Page 1592

Bioimaging of α -particles: Bäck and Jacobsson describe and assess the characteristics of the α -camera, a quantitative imaging technique developed to detect α -particles in tissues ex vivo, and review potential applications in α -radioimmunotherapy. . . Page 1616

Rest-stress CBF with quantitative SPECT: Iida and colleagues report on multi-institutional validation of a technique that reconstructs quantitative SPECT images and assesses cerebral blood flow at rest and after acetazolamide challenge from a single SPECT session. Page 1624



ON THE COVER

The α -camera, a novel technology for the ex vivo detection of α -particles in tissues, provides rapid, quantitative imaging of α -emitting radionuclides on a near-cellular scale. The high-intensity areas in the α -camera image shown here correspond to stroma surrounding tumor cells, as seen on the histologic section. The promising characteristics of the α -camera suggest that it can assist in the development of targeted radiotherapy approaches.

See page 1620.

