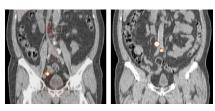
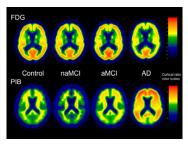
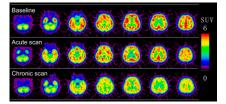

JNM

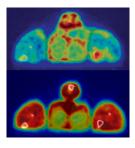



Timing vascular inflammation imaging: Menezes and colleagues report on studies to determine the ideal timing for PET/CT assessment of vascular uptake after injection of ¹⁸F-FDG. Page 854

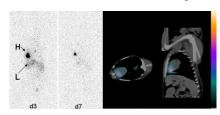

Prediction in neuroendocrine metastases:

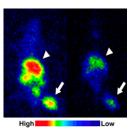
Antihistamines and cerebral H₁ recep-

¹⁸F-FDOPA PET in Parkinson disease:

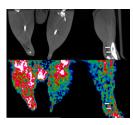

Jokinen and colleagues compare subregional striatal PET data from nonmedicated patients with early Parkinson disease and from healthy elderly volunteers to determine whether a simple ratio approach can reliably differentiate and identify early disease. Page 893

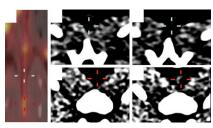
PET and 5-HT₄ receptors: Marner and colleagues evaluate a technique for PET imaging and noninvasive quantification of serotonin-4 receptors using a novel ligand, ¹¹C-SB207145, and arterial input calculations. *Page 900*


Identifying tracheal shine-through: Abdul-Fatah and colleagues describe a potentially confounding phenomenon resulting from the high energy and long range of positrons in ¹²⁴I PET/CT imaging in differentiated thyroid cancer. . . **Page 909**

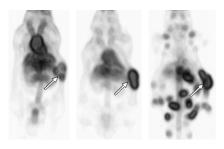

Skeletal muscle uptake of ¹⁸F-6FDG:

Spring-Robinson and colleagues evaluate the biodistribution of a nonphosphorylated glucose transport radiotracer for PET imaging, with a focus on sensitivity to insulin stimulation. Page 912

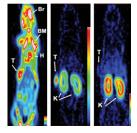



Quantifying cell survival with ¹¹¹In: Blackwood and colleagues detail studies on cell labeling with ¹¹¹In for SPECT monitoring of transplanted cell viability in a canine myocardial infarction model. Page 927

⁶⁴Cu-ATSM in muscles and tendons: Skovgaard and colleagues investigate exercise-related changes in oxygenation in rat skeletal muscles and tendons with hypoxiaselective ⁶⁴Cu-ATSM PET/CT and describe accompanying changes in gene expression of 2 hypoxia-related genes. Page 950



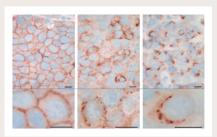
¹⁸F-FDG rate constants in mouse brain: Yu and colleagues evaluate various methods for estimating the metabolic rate of glucose use in the mouse brain with small-animal


PET and reliable blood curves derived by a microfluidic blood sampler. *Page 966*

⁸⁹Zr-trastuzumab for HER2 immunoPET:

Dijkers and colleagues describe the development of and comparative studies with a clinical-grade radiolabeled trastuzumab for HER2/neu immunoPET imaging, with applications in improved diagnosis, antibody-based therapy, and early antibody development. Page 974

¹⁸F-FAC PET in neuroinflammation: Marik and colleagues investigate the use of ¹⁸F-FAC as a specific PET tracer of glial cell metabolism in rodent models of glioblastoma, focal ischemia, and ischemia–hypoxia. Page 982 Radiolabeling using chelated Al-¹⁸F: McBride and colleagues detail an efficient and easy method for radiolabeling a diverse array of molecules with ¹⁸F for PET imaging. Page 991



Nonradiolabeled molecular imaging: Gore and colleagues review the physical limitations of and potential opportunities for molecular imaging with MRI, CT, and ultrasound and point to the most promising areas for multimodal contrast agents. . . Page 999

ON THE COVER

Peptide receptor imaging is based on agonist-induced internalization of peptide receptors in tumor cells. Compared with control rats (left), rats sacrificed at 2.5 min (middle) and 1 h (right) after TATE injection showed internalization of sst₂ in AR24J tumors on R2-88 immunohistochemistry. This molecular process is likely responsible for the uptake of sst₂ radioligands seen in vivo in sst₂-expressing tumors.

