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The development of a successful PET or SPECT molecular imag-
ing probe is a complex, time-consuming, and expensive process
that suffers from high attrition. To address this problem, we have
developed a biomathematical modeling approach that aims to
predict the in vivo performance of radioligands directly from in
silico/in vitro data. Methods: The method estimates the in vivo
nondisplaceable and total uptake of a ligand in a target tissue us-
ing a standard input function and a 1-tissue-compartment model
with a parsimonious parameter set (influx rate constant K1, efflux
rate constant k2, and binding potential BPND) whose values are
predicted from in silico/in vitro data including lipophilicity, molec-
ular volume, free fraction in plasma and tissue, target density, af-
finity, perfusion, capillary surface area, and apparent aqueous
volume in plasma and tissue. The coefficient of variation of the
BPND (%COV[BPND]) metric, derived from Monte Carlo simula-
tions, is used to estimate the in vivo performance of candidate
compounds. A total of 28 compounds for 10 targets was evalu-
ated using our method to predict their in vivo performance and
validated against measured in vivo PET data in the Yorkshire/
Danish Landrace pig. Results: The predicted K1, k2, and BPND

values were generally consistent with the values estimated
from in vivo PET data. The model resulted in small %COV[BPND]
values for widely accepted good ligands such as 11C-flumazenil
(2.02%) and 11C-raclopride (2.55%), whereas higher values
resulted from poor ligands such as 11C-(R)-PK11195 (13.34%).
Of 4 candidates for the GlyT1 transporter, the model selected
11C-GSK931145 (2.11%) as the most promising ligand, which
was consistent with historical decisions made on the in vivo
PET data. Conclusion: A biomathematical modeling approach
has the potential to predict the in vivo performance of ligands
from in silico/in vitro data and aid in the development of molecu-
lar imaging probes.
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Molecular imaging of the central nervous system

(CNS) with PET and SPECT is predicated on the
availability of radioligands that bind to a particular
receptor, transporter, or enzyme of interest. A successful
in vivo imaging probe possesses a range of properties
including high selectivity for the target of interest, the
ability to be safely administered to humans at tracer doses,
the ability to reach the target site, low nonspecific binding,
suitable affinity such that a large enough specific-to-
nonspecific signal exists, suitably reversible kinetics to
facilitate quantitative analysis, and the ability to be
radiolabeled. Given these numerous and sometimes con-
flicting characteristics, it is not surprising that the discovery
and development process is challenging (1).

To date, the process usually concentrates on screening
compounds according to lipophilicity, affinity, selectivity
over assumed nearest pharmacology, target density, and
labeling feasibility. Lipophilicity, estimated as logD, is
assessed to determine the likelihood that a molecule will
penetrate the blood–brain barrier (BBB); as a rule of thumb
a value between 1 and 3 is chosen to maximize penetration
while trying to minimize nonspecific binding (2). Com-
pound affinity is used to determine whether the molecule
binds avidly enough to the target to produce a measurable
signal. The weakness of these approaches is that only some
of the characteristics required are considered, with little
deliberation given to the prediction of nonspecific binding
and optimal kinetics. Even for the properties that are
considered, there is little quantitative assessment of their
likely impact on the in vivo outcome measures of interest.
More recently, Patel et al. (3) have developed an in vitro no-
wash autoradiography assay to predict whether a candidate
compound has a suitable specific signal. However, the
authors acknowledged that this assay is still somewhat
simplistic and does not consider brain entry or the kinetics
of the compound.

Currently, even with in silico/in vitro screening of putative

tracers, followed by preclinical evaluation and translation to

humans, the process is expensive and time-consuming and
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suffers from a large amount of attrition. Thus, the discovery
and development of novel radioligands is still essentially
progressing by trial and error, with success often based on
empiricism and serendipity (4). Fowler (5) also highlighted
this in a commentary in The Journal of Nuclear Medicine and
suggested that more sophisticated approaches to prediction
are required: ‘‘Poor predictability has been a root cause of the
low yield of useful radiotracers relative to the number of
labeled compounds that have been painstakingly synthesized
and evaluated over the years.’’

In this article, we introduce a biomathematical modeling
approach that takes known physicochemical and pharma-
cological properties of candidate molecules to predict their
in vivo performance. The idea was to develop a quantitative
in silico method as a precursor to in vivo studies, aiming to
provide increased confidence in candidate molecules before
radiolabeling. Such an in silico screening tool would be
ideally positioned to leverage large databases of com-
pounds available in the pharmaceutical industry.

The biomathematical model incorporated quantitative
components accounting for BBB penetration, specific bind-
ing, nonspecific binding, and radiotracer kinetics. These
components were integrated within a tracer compartmental
framework and parameterized using in silico/in vitro data
enabling the simulation of in vivo datasets and the predic-
tion of the outcome measure of interest. Here, we used the
binding potential (BPND) as the outcome measure, which is
defined, at equilibrium, as the ratio of specifically bound to
nondisplaceable radioligand in tissue (6). Our approach
estimated the BPND through Monte Carlo simulations and

determined its magnitude and reproducibility metric as a
measure of in vivo performance. Validation of the approach
was investigated with a dataset of candidate radioligands
(n 5 28) for which there exists in silico/in vitro data and in
vivo PET data acquired in the Yorkshire/Danish Landrace
pig.

MATERIALS AND METHODS

The biomathematical modeling approach uses a 1-tissue-com-
partment model (1TCM) parameterized by in silico/in vitro data to
predict the in vivo behavior of a radioligand (Fig. 1). The in vivo
performance of candidate compounds was assessed through
Monte Carlo simulations using the coefficient of variation of
BPND (%COV[BPND]) metric. An in silico/in vitro/in vivo dataset
was introduced, and the validation of the individual model
components and their overall performance was investigated.

The Biomathematical Model
The approach uses a 1TCM to approximate both the non-

displaceable and total uptake of a ligand in a target tissue. Thus,
the assumption was that all compartments equilibrate rapidly.
Though this may not always be the case, given the overall
complexity of in vivo prediction, the assumption was reasonable
and allowed for a parsimonious description in terms of just 3
parameters (influx rate constant K1, efflux rate constant k2, and
BPND). These parameters were predicted from in silico/in vitro
data to account for brain entry, specific or nonspecific binding, and
kinetics. In conjunction with an appropriate plasma input function,
the in vivo kinetics can be simulated and the behavior of the
radioligand can be characterized.

FIGURE 1. Overview of the biomathe-
matical modeling approach.
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The BPND was chosen as the primary outcome measure of
interest, and the in vivo performance of the ligand was determined
from its %COV[BPND].

To approximate the in vivo behavior of the ligand, the K1, k2,
and BPND parameters predicted from in silico/in vitro data were
used in conjunction with the 1TCM to generate noiseless time–
activity curves for 90 min. Subsequently, 1,000 noisy realizations
were generated with the variance of noise proportional to radio-
activity divided by frame duration, and the 1TCM was fitted to
both the nondisplaceable and the total tissue data to derive
estimates of BPND as follows:

BPND 5
VT

VND
2 1; Eq. 1

where VT and VND are the volumes of distribution in the total and
nondisplaceable compartments, respectively. This Monte Carlo
simulation approach allows for the calculation of %COV[BPND]:

%COV ½BPND� 5
sðBPNDÞ
mðBPNDÞ

· 100%; Eq. 2

where s (BPND) is the SD, and m (BPND) is the mean of the BPND

estimates derived from the simulations. This metric is used to
assess radioligand performance, with a smaller %COV[BPND]
value indicating a better radioligand.

Models for the prediction of the parameter set (K1, k2, and
BPND) were developed using the physicochemical and pharmaco-
logical properties of the ligand, the target density, and additional
physiological parameters.

Prediction of K1

The influx rate constant K1 gives an index of the ease with
which a compound can transfer from plasma into the brain. Here,
the model developed by Renkin and Crone (7, 8) is used to predict
the brain uptake, which defined K1 in terms of perfusion (f),
permeability of the compound (P), and capillary surface area (S)
using the following equation:

K1 5 f 1 2 e2 PS
f

� �
; Eq. 3

where K1 and f are in units of mL/cm3/min, P is cm/min, and S is
cm2/cm3 of brain. In this model, f and S are known physiological
parameters (7,9). The permeability is the key property that deter-
mines the delivery of individual compounds across the BBB. We
have used an in silico model to predict the permeability of candidate
molecules from physicochemical properties (lipophilicity and mo-
lecular volume), assuming that the transport mechanism is passive
diffusion. The model is a simplification of the permeability predic-
tion model developed by Lanevskij et al. (10) and removes the flow
limit and hydrogen bonding terms, combines ionization with
lipophilicity using clogD (in silico logarithm of the octanol-water
partition coefficient), keeps the McGowan volume term Vx (the
actual volume of a mole when the molecules are not in motion
[cm3mol21/100] (11)), and replaces the bilinear function with a
parabola. The model predicts the permeability as follows:

P 5 102 0:121 ðc log D 2 2:298Þ 2 22:544logðVx 1=3Þ 22:525: Eq. 4

The coefficient estimates of the model were determined using
multilinear regression based on in vitro permeability data from 30

non–P-glycoprotein substrates, which were measured using the
MDCK-mdr1 cell line (Madin-Darby canine kidney transfected
with the multidrug resistance gene) (12). The model defines a
parabolic relationship between permeability and lipophilicity and
indicates an optimal clogD value of 2.3 (R2 5 0.58, P , 0.0001).

Prediction of k2

At equilibrium, under the assumption of passive diffusion, the
free concentration of the compound will be the same either side of
the BBB. The efflux rate constant k2 can then be predicted from
the influx rate K1, the free fraction in plasma fP, and the free
fraction in tissue fND, which are, respectively, the fraction of
unbound ligand in plasma and tissue that are free for binding. fP
and fND can be measured in vitro using equilibrium dialysis (12).
The model also incorporates the apparent aqueous volume in
plasma Vaq_P and in tissue Vaq_T to correct for the small volume
that cannot be reached by solvent in plasma and tissue, respec-
tively. Thus, it follows that at equilibrium,

fP � CP

Vaq P
5

fND � CND

Vaq T
; Eq. 5

where CP and CND are the concentrations in plasma and non-
displaceable compartments, respectively. The volume of distribu-
tion of the nondisplaceable compartment is defined as follows:

VND 5
CND

CP
5

K1

k2
: Eq. 6

Thus, k2 can be predicted as:

k2 5
Vaq P � K1

Vaq T
� fND

fP
: Eq. 7

Prediction of BPND

BPND reflects the capacity of tissue for ligand-binding site
interaction and includes terms for the target density (Bmax, con-
centration of binding sites), the equilibrium dissociation rate
constant (KD), and the free fraction in tissue (fND). Bmax measures
the target concentration of binding sites in units of fmol/mg of
protein, fmol/mg of wet tissue, or nM. KD is the reciprocal of the
affinity of the ligand for the receptor in units of nM. At tracer
dose, the in vivo BPND is defined as:

BPND 5 fND
Bmax

KD
: Eq. 8

Thus, given the in vitro estimates of Bmax, KD, and fND, we can
predict the in vivo BPND using Equation 8. Both Bmax and KD can
be derived from in vitro homogenate saturation binding measure-
ments by fitting the saturation binding data to a Michaelis–Menten
equation. Ki, derived from competitive binding experiments in
which the binding of a single concentration of labeled ligand in
the presence of various concentrations of unlabeled ligand is
measured, can be used as an estimate for KD if the ligand and the
blocker are the same. As the unit of Bmax from the homogenate
binding assay is generally in fmol/mg of protein, it can be
converted to nM by assuming that the brain density is around
1 g wet weight/mL, and 1 fmol/mg of protein can be approximated
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by 0.05–0.1 fmol/mg of wet weight (13). In this way, we have
refined our model for BPND prediction as:

BPND 5 fND
BHB

max

a � KD
; Eq. 9

where BHB
max is the Bmax measured from homogenate binding assays

in units of fmol/mg of protein, and a is the conversion coefficient
from protein to tissue in units of milligram of protein per milliliter
of tissue.

Model Validation
The In Silico/In Vitro/In Vivo Validation Dataset. The perfor-

mance of our approach is evaluated on a dataset containing 28
compounds for which the in silico/in vitro and in vivo data exist
(Table 1). For each compound, the in silico parameters such as
clogD and Vx were obtained from in-house in silico models. For in
vitro data, the Ki of 23 of 28 molecules were measured in-house
by competitive binding assays in human tissue at room temper-
ature. The KD of N-methylspiperone (NMSP) and raclopride were
measured in humans at 37�C and 23�C, respectively (14). KD

values of FLB-457, R-(2)-rolipram, and S-(1)-rolipram were
measured in rats at room temperature (15,16). Bmax values were
obtained from the literature (9/10 targets) except for the Bmax of
GlyT1 in the human cortex, which was measured in-house using
homogenate binding assays. Among those obtained from litera-
ture, the density of 5-HT2c was measured from rabbit homogenate
(17), the density of PDE4 was from rat homogenate (18), and the
density of the other targets was measured in human homogenate
(19–24) (one other exception is that the Bmax for D3 in human
pallidum was determined using autoradiography (25) in the absence
of any homogenate binding data). Free fractions fP and fND of all the
molecules were measured in Yorkshire/Danish Landrace pig blood
and brain tissue using equilibrium dialysis (12).

All 28 compounds were evaluated in preclinical PET studies in
the Yorkshire/Danish Landrace pig (;40 kg), at Aarhus Univer-
sity Hospital, in accordance with the Danish Animal Experimen-
tation Act, under a license granted by the Danish Ministry of
Justice. The animals were anesthetized by induction with keta-
mine and midazolam (both intramuscularly and intravenously) and
maintained in deep anesthesia using isofluorane (1%22%; Ab-
bott) during scanning. Animals were placed supine in a Siemens
ECAT EXACT HR tomograph (CTI), with the head immobilized
in a custom-made head-holding device. For all scans, dynamic
brain data were acquired in 3-dimensional mode for up to 90 min
after the intravenous administration of the radiolabeled com-
pound. Measured attenuation and scatter correction were applied,
and the data were reconstructed using the reprojection algorithm
(26). The resulting images had a spatial resolution of 5–7 mm in
full width at half maximum (27). During the acquisition, 40 · 2
mL arterial blood samples were taken from the femoral artery to
assay radioactivity in arterial plasma, and a subset of 17 were
assayed for whole-blood radioactivity. Additional arterial samples
(6 · 5 mL) were drawn throughout the scan to determine the
fraction of unmetabolized tracer in plasma by high-performance
liquid chromatography and g-counting. Integrated PET images
were formed and used to rigidly register all the PET data to a
Landrace pig brain atlas. Time–activity curves were generated for
relevant regions of interest. Plasma parent input functions were
generated by interpolating the discrete plasma data using linear
interpolation and multiplying this by the continuous parent frac-

tion derived from fitting the discrete metabolite data to an
exponential approach to a constant. 1- and 2-tissue-compartmental
kinetic analyses (28) were applied to the time–activity curves to
derive regional estimates of the influx rate constant (K1) and total
and nondisplaceable volumes of distribution (VT and VND). VND

was obtained either from a reference region or from a blocked
scan. The least-squares fitting procedure included a fixed 5%
blood volume and was performed with a Levenberg–Marquadt
optimizer in Matlab (The MathWorks). The Akaike information
criterion (29) was used as the model selection criterion to
determine the most parsimonious kinetic model. k2 was calculated
as K1/VND and BPND as VT/VND 2 1.

Model Validation. First, the models to predict K1, k2, and BPND

were validated individually; second, the impact of the input
function was considered; and finally, the overall in vivo predictive
performance of the biomathematical approach was evaluated.

The K1 values of the 28 compounds in the dataset were
predicted using Equation 3, with permeability predicted using
Equation 4 in conjunction with fixed values for perfusion (0.6 mL/
cm3/min) (30) and capillary surface area (150 cm2/cm3 of brain)
(12). As in vitro estimates of K1 were expected to be lower
because they were estimated from an in vitro MDCK cell line, it
was necessary to introduce a scaling factor to account for global in
vitro/in vivo K1 differences of 3.43 (this was derived from a subset
of the validation dataset [n 5 13] for which there was high
confidence of passive diffusion (31)). In vivo K1 values of the full
set of compounds were quantified from the PET data and com-
pared with their predicted values.

k2 values of the compounds were predicted using the predicted
K1 values, the fP and fND estimates measured using equilibrium
dialysis, and the apparent aqueous volumes in plasma and tissue
(Vaq_P 5 0.98 solvent/mL of plasma and Vaq_T 5 0.9 solvent/mL
of tissue). In vivo k2 values obtained from the PET data were
compared with those predicted by the model.

Predicted BPND estimates in the validation dataset were
obtained using the KD or Ki of the compound, their individual
fND measurement, and Bmax from homogenate binding assays. To
convert the unit of Bmax from fmol/mg of protein to nmol/L, we
assumed that there was 0.1 milligram of protein per milligram of
wet weight (a 5 10 in Eq. 9). Predictions from in vitro assays
were compared with the in vivo PET BPND estimates.

The impact of the plasma input function was also evaluated.
The %COV[BPND] of the compounds in the dataset were calcu-
lated with 3 plasma input functions with different areas under the
curve (AUCs), including a bolus input with fast clearance (INP1,
AUC0–90 min 5 131 kBq min/mL), a bolus input with moderate
clearance (INP2, AUC0–90 min 5 264 kBq min/mL), and a bolus-
plus-infusion input (INP3, AUC0–90 min 5 367 kBq min/mL). The
in vivo PET K1, k2, and BPND values of the compounds were used,
and the %COV[BPND] values were calculated for each input
function.

Finally the overall performance of the modeling approach was
assessed by estimating the %COV[BPND] values using a standard
input function (INP2) and the K1, k2, and BPND values predicted by
Equations 3, 7, and 9.

RESULTS

PET Data Analysis

PET data for 4 of the 28 compounds are shown in Figure
2, including examples displaying low brain penetration
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(Fig. 2B), high nonspecific binding (Fig. 2C), slow kinetics
(Fig. 2D), and good specific binding and kinetics (Fig. 2E).
The in vivo K1, k2, and BPND values estimated from the
PET data for all 28 compounds are listed in Table 1.

Validation of K1 Prediction Model

Scatter plots for the predicted and measured in vivo K1

are shown in Figure 3. The Pearson correlation coefficient
was r 5 0.402 (P 5 0.025) and reflected a reasonably good
correlation when considering the complexity of predicting
in vivo brain penetration.

Validation of k2 Prediction Model

Scatter plots for the predicted and measured in vivo k2

values are shown in Figure 4. There was good correlation
between the predicted and the in vivo k2 (r 5 0.85, P ,

0.0001). Three compounds that had nonquantifiable in vivo
k2 (mostly because of low brain penetration) and 1 com-
pound that had a large predicted k2 value (k2 5 5.75) driven
by a small fp (Table 1) were omitted.

Validation of BPND Prediction Model

Scatter plots for the predicted and measured in vivo
BPND are given in Figure 5. D3 and CRF1 data are omitted
from the plot because Bmax for D3 was measured using
autoradiography, and the in vivo BPND for CRF1 was not
quantifiable (Table 1). Because BPND estimates of ligands
can vary by 3 orders of magnitude, they are plotted using a
log scale. It shows that BPND values predicted from in vitro
Bmax, KD or Ki data are highly correlated with the measured
in vivo BPND (r 5 0.822, P , 0.0001).

TABLE 1. Predicting In Vivo Performance of Radioligands from In Silico/In Vitro Data

In vitro measurement

In silico

properties

In vivo PET

data analysis

Biomathematical

model prediction

Compound Target ROI fP fND Bmax KD or Ki clogD Vx K1 k2 BPND K1 k2 BPND %COV[BPND]
11C-GSK224558 5-HT6 Striatum 0.123 0.014 21.50 (19) 0.50 3.40 2.98 0.40 0.04 0.52 0.39 0.05 0.58 3.55%
11C-GSK215083 5-HT6 Striatum 0.288 0.039 21.50 (19) 1.59 2.90 2.75 0.70 0.06 1.05 0.51 0.08 0.53 3.06%
11C-GSK00000A 5-HT6 Striatum 0.268 0.040 21.50 (19) 0.49 1.00 2.79 0.01 NQ NQ 0.37 0.06 1.76 2.33%
11C-GSK00000B 5-HT6 Striatum 0.010 0.004 21.50 (19) 6.92 4.60 3.24 0.16 0.04 0.00 0.13 0.06 0.01 .100%
11C-GSK00000C 5-HT6 Striatum 0.093 0.004 21.50 (19) 0.63 1.40 2.75 0.31 NQ NQ 0.46 0.02 0.14 16.87%
11C-GSK00000D NK1 Striatum 0.004 0.001 35.70 (20) 0.56 3.80 3.35 0.16 0.08 0.35 0.27 0.06 0.06 27.73%
11C- GSK00000E NK1 Striatum 0.010 0.001 35.70 (20) 0.11 4.00 3.90 0.09 0.03 2.93 0.21 0.02 0.32 12.32%
11C-GR205171 NK1 Striatum 0.299 0.065 35.70 (20) 0.01 0.90 3.00 0.32 0.04 21.7 0.32 0.08 232 .100%
11C-GSK00000F NK1 Striatum 0.026 0.001 35.70 (20) 0.79 2.20 3.06 0.33 0.05 0.50 0.52 0.02 0.05 34.09%
18F-GSK00000G NK1 Striatum 0.027 0.011 35.70 (20) 1995 4.90 3.52 0.00 NQ NQ 0.08 0.03 0.00 .100%
11C-GSK00000H NK1 Striatum 0.059 0.010 35.70 (20) 0.50 3.90 3.49 0.22 0.03 1.30 0.24 0.04 0.70 4.37%
11C-GSK00000I NK1 Striatum 0.013 0.001 35.70 (20) 0.14 3.90 3.49 0.35 0.04 0.49 0.24 0.03 0.35 7.67%
11C-GSK00000J NK1 Striatum 0.073 0.003 35.70 (20) 0.96 3.60 3.34 0.36 0.02 0.89 0.32 0.01 0.11 .100%
11C-R-(2)-rolipram PDE4 Frontal ctx 0.258 0.192 20.60* (18) 1.76* (16) 1.40 2.14 0.45 0.26 5.33 0.55 0.45 2.25 2.30%
11C-S-(1)-rolipram PDE4 Frontal ctx 0.300 0.194 20.60* (18) 12.4* (16) 1.40 2.14 0.20 0.07 0.75 0.55 0.39 0.32 6.95%
11C-GSK00000K D3 Pallidum 0.327 0.147 3.16y (25) 5.37 2.20 2.57 0.72 0.13 0.26 0.58 0.29 0.09 18.11%
11C-flumazenil BDZ Frontal ctx 0.630 0.553 70.00 (22) 2.20 0.90 2.09 0.48 0.43 5.96 0.43 0.41 17.6 2.02%
11C-GSK00000L CRF1 Striatum 0.036 0.012 17.05 (24) 64.6 0.90 2.99 0.67 0.08 NQ 0.32 0.12 0.00 .100%
11C-NMSP D2 Striatum 0.158 0.048 13.00 (21) 0.22z (14) 1.00 3.15 0.44 0.13 15.4 0.33 0.11 2.86 1.93%
11C-NMSP D2 Thalamus 0.158 0.048 0.91 (23) 0.22z (14) 1.00 3.15 0.32 0.09 0.45 0.33 0.11 0.20 8.09%
11C-FLB-457 D2 Striatum 0.476 0.211 13.00 (21) 0.02* (15) 0.80 2.52 0.68 0.22 9.29 0.34 0.17 137 27.75%
11C-FLB-457 D2 Thalamus 0.476 0.211 0.91 (23) 0.02* (15) 0.80 2.52 0.66 0.21 0.87 0.34 0.17 9.62 2.23%
11C-raclopride D2 Striatum 0.151 0.134 13.00 (21) 0.85 (14) 1.60 2.45 0.46 0.41 1.88 0.54 0.52 2.05 2.55%
11C-raclopride D2 Thalamus 0.151 0.134 0.91 (23) 0.85 (14) 1.60 2.45 0.45 0.40 0.40 0.54 0.52 0.14 15.80%
11C-GSK00000M GlyT1 Ctx 0.009 0.101 50.00 3.09 2.70 3.21 0.02 0.03 0.56 0.48 5.75 1.63 8.69%
11C-GSK931145 GlyT1 Ctx 0.279 0.100 50.00 1.51 3.80 2.98 0.07 0.07 0.62 0.30 0.12 3.31 2.11%
11C-GSK00000N GlyT1 Ctx 0.024 0.041 50.00 5.75 4.70 3.29 0.03 0.02 0.00 0.11 0.20 0.44 9.31%
11C-GSK00000O GlyT1 Ctx 0.129 0.016 50.00 1.05 3.60 2.87 0.19 0.03 0.07 0.36 0.05 0.76 2.93%
11C-PK11195 PBZR Frontal ctx 0.066 0.022 32.20 (37) 4.30 4.60 2.74 0.33 0.05 0.55 0.14 0.05 0.17 13.34%
11C-GSK00000P 5-HT2C Frontal ctx 0.067 0.009 3.70§ (17) 0.31 1.90 3.55 0.08 0.03 0.28 0.45 0.07 0.11 10.60%
11C-GSK00000Q 5-HT2C Frontal ctx 0.138 0.010 3.70§ (17) 0.83 1.90 3.65 0.09 0.01 0.65 0.44 0.04 0.05 24.53%

*Measured in rat.
yMeasured using autoradiography.
zMeasured at 37�C.
§Measured in rabbit.

fP and fND were measured in Yorkshire/Danish Landrace pig using equilibrium dialysis. Bmax, KD, or Ki were measured by homogenate

binding assays at room temperature in human tissue unless otherwise noted below. NQ denotes nonquantifiable in vivo estimate. Units
for Bmax, KD, and Ki are nM; unit for Vx is cm3mol21/100; units for K1 and k2 are mL/cm3/min and min21, respectively; fP, fND, clogD, and

BPND are unitless. Numbers in parentheses are references. ROI 5 region of interest; Ctx 5 cortex.
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Evaluation of Impact of Input Functions

The impact of 3 different plasma input functions on the
%COV[BPND] estimates was assessed. For all compounds
in the dataset, increased plasma clearance rates decreased
%COV[BPND] estimates (data not shown), which is consis-
tent with faster kinetics yielding better quantification re-
sults. However, the magnitude of this effect was small, with
values proportionally changing by less than 24% when the
input function with the fastest clearance rate was compared
with the bolus-plus-infusion input.

Overall Prediction of In Vivo Performance

The predicted %COV[BPND] values of 28 compounds
using a standard input function are given in Table 1. The in
vivo performance prediction shows that widely accepted
good ligands such as 11C-flumazenil and 11C-raclopride had
small %COV[BPND] values of 2.02% and 2.55%, respec-
tively, whereas poor imaging probes were identified by a
higher %COV[BPND] such as 11C-(R)-PK11195 (13.34%,
low signal) and 11C-GR205171 (.100%, near-irreversible
kinetics). For targets with multiple regions of interest at
varying densities, the model predicts the performance of
the radioligand for each region. For example, 11C-FLB-
457 was rated by the model as a good D2 ligand in the
thalamus (2.23%) but a poor D2 ligand in striatum
(27.75%). Within a specific target, the model was able to
rank the candidates according to their %COV[BPND]
values, and the results were generally consistent with
the historical decisions made by scientists after evaluation
of the in vivo PET data of all the candidate compounds.
For example, of 4 candidates for the GlyT1 transporter,
the model selected 11C-GSK931145 (2.11%) as the best
ligand.

FIGURE 2. Coregistered Landrace pig
brain atlas and PET images (transverse,
coronal, and sagittal slices), with corre-
sponding time–activity curves for stria-
tum (s), frontal cortex (1), and
cerebellum (d) for 4 candidate CNS
radioligands. (A) Landrace pig brain
atlas. (B) 11C-GSK00000A targeting
serotonin 5-HT6 receptor. (C) 11C-
GSK00000D targeting NK1 receptor.
(D) 11C-GR205171 targeting NK1 re-
ceptor. (E) 11C-raclopride targeting D2

receptor. PET images are integral im-
ages over 90 min. %ID/L 5 percentage
injected dose per liter.

FIGURE 3. Relationship
between predicted K1

values and those measured
in vivo for validation data-
set (r 5 0.402, P 5 0.025).
Line of identity is shown.
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DISCUSSION

Motivated by the limitations of current approaches to
radioligand discovery and development, we have intro-
duced a biomathematical modeling approach that uses in
silico/in vitro data of candidate molecules to predict their in
vivo performance. The model incorporates components
accounting for BBB penetration, specific binding, nonspe-
cific binding, and kinetics and derives a relevant outcome
metric (%COV[BPND]) from Monte Carlo simulations as a
measure of in vivo performance. This approach is able to
select promising ligands from a set of candidates, consis-
tent with the decisions made by scientists after the evalu-
ation of in vivo PET data. In addition, the ranking of
different radioligands across targets is generally consistent
with their known performance; that is, 11C-flumazenil and
11C-raclopride are ideal whereas 11C-(R)-PK11195 and
11C-GR205171 are not.

Nevertheless, given the complexity of radioligand design
and in vivo biological systems, there are several limitations
to our current model. For example, one of the weaknesses is
that it assumes passive diffusion across the BBB. However,
it is known that the endothelial membranes of the BBB
contain several transport proteins that can actively transport
compounds into the brain (e.g., transporters for amino acids
and monocarboxylic acids) or efflux compounds from the
brain (e.g., P-glycoprotein). Although several permeability
models have been developed over the past few decades
(10,32–34), none was able to accurately predict permeabil-

ity for all the transport mechanisms because of the com-
plexity of these active and facilitated transport systems in
the BBB. We are aware that in our validation dataset there
exist several compounds that are likely to cross the BBB
actively, and these have been identified in a recent study
combining equilibrium dialysis assays with in vivo PET
data (31). To investigate this further, we excluded those
compounds predicted to have active transport mechanisms
and reassessed the correlation between the predicted and
measured in vivo K1. The result showed that the correlation
coefficient improved from 0.40 to 0.59 (Fig. 6A). Thus, if it
were possible to add a model to predict active and passive
transport, then the overall performance could be improved
further.

Similarly, because the prediction of k2 was based on the
predicted K1 values under the assumption of passive diffu-
sion, the correlation coefficient between the predicted and
measured in vivo k2 was also improved from 0.85 to 0.93
(Fig. 6B) when we excluded those compounds predicted to
have active transport mechanisms. In the validation of the
model to predict k2, free fractions in plasma and tissue were
measured using pig homogenate to be consistent with the in
vivo PET data from pigs. Although the free fraction in
tissue is generally constant across species (35), the free
fraction in plasma can vary widely.

Species differences should be carefully considered, par-
ticularly in the prediction of BPND. Most of the homoge-
nate-binding Bmax, KD, or Ki data used in our validation

FIGURE 4. Relationship
between predicted k2

values and those measured
in vivo for validation data-
set (r 5 0.85, P , 0.0001).
Line of identity is shown.

FIGURE 5. Relationship
between predicted BPND

values and those measured
in vivo for 8 targets in val-
idation dataset (r 5 0.822,
P , 0.0001). Line of iden-
tity is shown.

FIGURE 6. Relationship between pre-
dicted and measured in vivo data
partitioned according to likely passive
diffusion and active transport status. (A)
Relationship between predicted K1

values and those measured in vivo (r 5

0.59, P 5 0.017, active transport com-
pounds excluded from correlation). (B)
Relationship between predicted k2

values and those measured in vivo (r 5

0.93, P , 0.0001, active transport
compounds excluded from correlation).
Line of identity is shown.
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dataset were obtained in humans rather than in pigs, and
these parameters may vary across species. Different in vitro
assay conditions may also cause discrepancies between the
predicted BPND values and those measured in vivo. First,
the binding of ligands to their targets can be a temperature-
dependent process, and ideally the incubation should be
conducted at body temperature (37�C). In our validation
dataset, however, the Ki values of most of the compounds
were measured in human tissue at room temperature, which
may lead to some discrepancy. Second, the difference in
buffer may affect the final estimation as well. A physio-
logical buffer (e.g., Tris-HCl or N-(2-hydroxyethyl)piper-
azine-N9-(2-ethanesulfonic acid) buffer at pH 7.4, with high
concentration of Na1) should ideally be used to approxi-
mate the in vivo conditions. In addition, target density and
affinity measured in the in vitro open cell environment
using homogenate binding assays may be different from
those estimated in vivo because of the complex in vivo
environment that may involve target internalization and
endogenous competition (e.g., D2 receptor (36)). Thus, care
should be taken when using in vitro estimates to quantify
the in vivo situation. For example, as shown in Table 1,
there is a discrepancy between the prediction of NMSP in
the striatum and actual in vivo experience. The predicted
BPND value (2.86) is smaller than the in vivo value (15.4).
This discrepancy could be explained by an underestimation
of the affinity or the tissue free fraction. Another potential
discrepancy between some of the predicted BPND values
and those measured in vivo is due to the conversion
coefficient from protein to wet weight a, which was
assumed to be 10.

In addition, in our validation only the impact of clearance
of the input function was considered, which was shown not to
be critical on the overall outcome measure BPND and its
associated performance metric (%COV[BPND]). Neverthe-
less, there are several factors that will lead to different
plasma concentrations, and the ability to predict the
plasma time course would further improve the accuracy
of the biomathematical model. Prediction of the time
course would require a prediction of the dosimetry profile
and metabolism. Although predicting full dosimetry may
be difficult, it may be possible to get some idea about
metabolism through in silico/in vitro assays involving liver
microsomes, for those compounds metabolized via the
liver. The ability to predict metabolism has further con-
sequences for the development of CNS radioligands
because the production of radiolabeled lipophilic products
that enter the brain may compromise radioligand quanti-
fication. Thus, if it were possible to screen out compounds
that produce lipophilic metabolites, it would further re-
duce attrition in the development process.

Another limitation of our current approach is the lack of
explicit selectivity screening. The model could easily be
extended to take additional affinity (and associated Bmax)
data from other targets to accordingly account for the
selectivity of the radioligand. Finally, it would also be

useful to capture information on radiolabeling feasibility of
candidate molecules and include this in the overall predic-
tion of success.

The approach discussed here has focused on CNS radio-
ligand discovery and development. Nevertheless, this bio-
mathematical framework could be generalized to develop
radiotracers for disease understanding, diagnosis, and mon-
itoring of therapies in other organs in addition to the brain.
Appropriate modifications would necessitate an under-
standing of the underlying biological system and the
desired outcome measure. For example, the development
of a radiotracer for oncology applications in the body may
require additional components to screen for metabolites and
could choose an irreversible uptake rate constant as the
outcome measure of interest.

CONCLUSION

A biomathematical modeling approach to CNS radioli-
gand discovery and development has the potential to predict
the in vivo performance of ligands from in silico/in vitro
data before any in vivo work. This would enable us to target
the right molecules for radiolabeling, efficiently leverage
large compound databases, and significantly reduce the
attrition in the development of successful CNS imaging
probes.
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