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The high-resolution research tomograph (HRRT) is a dedicated
human brain PET scanner. At present, iterative reconstruction
methods are preferred for reconstructing HRRT studies. How-
ever, these iterative reconstruction algorithms show bias in
short-duration frames. New algorithms such as the shifted Pois-
son ordered-subsets expectation maximization (SP-OSEM) and
ordered-subsets weighted least squares (OSWLS) showed
promising results in bias reduction, compared with the recom-
mended ordinary Poisson OSEM (OP-OSEM). The goal of this
study was to evaluate quantitative accuracy of these iterative re-
construction algorithms, compared with 3-dimensional filtered
backprojection (3D-FBP). Methods: The 3 above-mentioned
3D iterative reconstruction methods were implemented for the
HRRT. To evaluate the various 3D iterative reconstruction tech-
niques quantitatively, several phantom studies and a human brain
study (n 5 5) were performed. Results: OSWLS showed a low and
almost linearly increasing coefficient of variation (SD over average
activity concentration), with decreasing noise-equivalent count
rates. In decay studies, OSWLS showed good agreement with
the 3D-FBP gray matter (GM)–to–white matter (WM) contrast ratio
(,4%), and OP-OSEM and SP-OSEM showed agreement within
6% and 7%, respectively. For various frame durations, both SP-
OSEM and OP-OSEM showed the fewest errors in GM-to-WM
contrast ratios, varying 75% between different noise-equivalent
count rates; this variability was much higher for other iterative
methods (.92%). 3D-FBP showed the least variability (34%).
Visually, OSWLS hardly showed any artifacts in parametric im-
ages and showed good agreement with 3D-FBP data for para-
metric images, especially in the case of reference-tissue kinetic
methods (slope, 1.02; Pearson correlation coefficient, 0.99).
Conclusion: OP-OSEM, SP-OSEM, and OSWLS showed good
performance for phantom studies. In addition, OSWLS showed
better results for parametric analysis of clinical studies and is
therefore recommended for quantitative HRRT brain PET studies.
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The high-resolution research tomograph (HRRT; CTI/
Siemens) is a dedicated human brain PET scanner using
high spatial resolution combined with high sensitivity (1,2).
The scanner has 8 detector heads that are arranged in an
octagon. Because of this geometry, gaps are present
between the detector heads, leading to missing data. This
is one of the main reasons that iterative reconstruction
algorithms, which do not require these missing data to be
estimated, are preferred for HRRT reconstructions (3). A
3-dimensional (3D) attenuation and normalization weighted
ordered-subsets expectation maximization (ANW-OSEM)
reconstruction method showed considerable bias for a homo-
geneous phantom (4). Therefore, a 3D ordinary Poisson
OSEM (OP-OSEM) reconstruction method was implemented
that showed considerably less bias, especially when randoms
were estimated by the variance reduction on a randoms (VRR)
algorithm (5). However, bias was still encountered for short-
duration (5–60 s) frames (6,7). These frames suffer from low
statistics, with high random fractions and scatter events,
requiring an iterative reconstruction method without non-
negativity constraint. However, this constraint is needed in
some iterative reconstruction algorithms to enable proper
convergence. The nonnegativity constraint causes bias in
short-duration frames.

Recently, we implemented a 3D filtered backprojection
(3D-FBP) algorithm optimized for the HRRT (8) to validate
new iterative reconstruction techniques. Missing data were
estimated by gap-filling strategies, which will be described
in more detail later in this article. 3D-FBP showed a higher
precision when used in combination with the VRR algo-
rithm (9).

Yavuz and Fessler (10) showed that shifted Poisson
OSEM (SP-OSEM) reconstruction, compared with OP-
OSEM reconstruction, reduced bias and provided better
precision. Boellaard et al. (11) showed that an ordered-
subsets weighted least-squares (OSWLS) reconstruction
algorithm was a promising candidate for 3D brain PET
studies performed on the HR1 scanner (CTI/Siemens),
demonstrating lower variance and bias. Least-squares (LS)
reconstruction does not apply a nonnegativity constraint on
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a sinogram level and may therefore show performance
similar to that exhibited by FBP. Moreover, LS poses
several other advantages over FBP. First, by applying
attenuation correction as weights during LS reconstruction
(i.e., weighted LS) (12), images have a better signal-to-
noise ratio when obtained with LS than with FBP. Second,
weighted LS does not require the correction for missing
plane data in segments other than segment 0 (oblique lines
of responses) or due to gaps between the detector heads
(8). As a consequence, OSWLS might be a good alterna-
tive to 3D-FBP reconstructions. Therefore, implementa-
tion of these algorithms in the attempt to further reduce
bias and improve signal-to-noise ratio in HRRT studies is
of interest.

The purpose of the present study was to evaluate the
above-mentioned 3D iterative reconstruction techniques for
the HRRT in terms of quantitative accuracy under clinically
relevant conditions and to assess whether and to what
extent these algorithms suffer from bias as a function of
noise-equivalent counts (NECs) (13). Results were com-
pared with in-house–developed analytic 3D-FBP. Several
phantom studies and a human brain study using 11C-
flumazenil (n 5 5) were performed to evaluate the perfor-
mance of the various 3D reconstruction algorithms. To our
knowledge, this study was the first to assess all of these 3D
reconstruction methods in terms of quantitative accuracy
for the HRRT on human brain studies.

MATERIALS AND METHODS

Reconstruction Algorithms
All implementations of the reconstruction algorithms were

developed in-house. At the time of writing, commercial imple-
mentations exist for only OP-OSEM and ANW-OSEM, as pro-
vided by the manufacturer of the scanner.

OSEM. 3D-OSEM is an iterative reconstruction method based
on the maximum-likelihood principle and expectation maximiza-
tion algorithm (14). It can be accelerated by using ordered subsets
(15). Recently, the reconstruction code has been further optimized
(16) by using a rotated projector, symmetries in image and
projection space, and a vector-processor instruction set. Pseudo-
true coincidences (t) can be corrected for scattered coincidences
(s), attenuation (A), and normalization (N), an algorithm called
ANW-OSEM, which is described mathematically as follows
(4,17):
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where lj is the value for image voxel j, Mi,j is the system matrix
element for voxel j and sinogram element I, and [. . .]1 denotes
that all negative values are truncated to zero.

To avoid bias, an alternative approach, the current default
OP-OSEM (4,18,19) scheme, was attempted, reconstructing raw
prompt coincidences (p) and including all correction terms (as well as
correcting for delayed coincidences (d)) in the iteration:
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To our knowledge, no SP-OSEM (18) has been implemented
for the HRRT. Therefore, a 3D-SP-OSEM algorithm was imple-
mented to study its effects on quantitative accuracy as follows
(17,20):
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Further improvements were expected by using the VRR algo-
rithm (5), which estimates expected randoms (vi) from measured
delayed coincidences (9). The mathematic formulae are the same,
except that vi is used instead of di, and the trues (ti) are calculated
by pi 2 vi.

LS. LS can also be applied to the expectation maximization
algorithm and accelerated using ordered subsets (OSLS) (12):
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OSLS can also be weighted by attenuation (OSWLS) and is
written mathematically as:
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Again, in the latter method the pseudo-trues (ti) are calculated
by pi 2 vi. To speed up convergence, starting images were
initiated with a 2D-FBP image estimate of segment 0 data
smoothed with a gaussian kernel of 5.7 mm in full width at half
maximum (21).

3D-FBP. 3D-FBP requires all missing data to be estimated
before the 3D backprojection step. As previously reported (8), it is
recommended to estimate the missing data caused by the scanner
geometry using the constrained Fourier space method, which
iteratively estimates these missing sinogram data by applying
constraints in the Fourier domain (22). Additional missing (oblique
planes) data were estimated as for 3D reprojection (23). The
sinogram data were filtered using a Colsher filter (24) (cutoff at
the Nyquist frequency), without additional smoothing. 3D-FBP
should be used in combination with the VRR algorithm to improve
precision (9). A detailed description of 3D-FBP for the HRRT has
been described previously (8).

Phantoms and Studies
For calibration of the various reconstruction techniques, a homoge-

neous phantom of 20-cm diameter was used and filled with an 18F-FDG
solution of 8 kBq/mL. In addition, this phantom was used with two
5-cm diameter and 20-cm-long inserts and filled with 18F-FDG
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solutions of 36 and 3 kBq/mL. The background compartment was filled
with a solution of 8 kBq/mL. A 3D anthropomorphic human brain
phantom (Hoffman phantom; Data Spectrum) (25) was used to
compare realistic activity-concentration distributions in clinical situa-
tions. The phantom was filled with an 11C solution of 66 kBq/mL for a
decay or linearity study or with an 18F-FDG solution of 50 kBq/mL to
study the effects of NECs on reconstructed activity concentrations for
various frame durations. For all phantom studies, an emission list-mode
scan of 1 h was performed. List-mode scans of the homogeneous
phantom were histogrammed in multiple frames with different dura-
tions (i.e., 5, 10, 30, 60, 300, 1,800, and 3,600 s). The list-mode scan of
the Hoffman phantom was histogrammed in 300-s frames (11C decay
experiment) or in multiple replicates (frames) with different durations
(18F-FDG experiment): 20 frames of 5, 10, 30, and 60 s; 12 frames of
300 s; and 1 frame of 1,800 and 3,600 s. Transmission scans were
performed after activity had decayed to background level.

Dynamic human 11C-flumazenil studies were used for clinical
evaluation. In 5 healthy volunteers, a 60.5-min list-mode scan was
acquired immediately after administration of 11C-flumazenil (363 6

42 MBq). Each emission scan was histogrammed in 17 time frames
with variable frame lengths (1 · 30, 4 · 15, 4 · 60, 2 · 150, 2 · 300,
and 4 · 600 s). Before emission scanning and tracer administration, a
6-min transmission scan was performed. During emission scanning,
continuous online arterial blood sampling was performed (26). At set
times (5, 10, 15, 20, 30, 40, and 60 min after injection), continuous
blood sampling was interrupted to collect manual blood samples.
These manual sample data were used for calibrating the (online)
blood sampler, for measuring plasma or whole-blood ratios, and for
determining metabolite fractions (27). The metabolite-corrected
arterial plasma time–activity curve was used as an input function
for kinetic analysis. A structural T1-weighted MR image was
acquired on a 1.5-T scanner (SONATA; Siemens Medical Solutions)
used for region-of-interest (ROI) definitions. The medical ethics
committee of the VU University medical center had approved the
study, and the subjects had given written informed consent.

Reconstructions
All studies were normalized and corrected for scatter, randoms,

attenuation, decay, and dead time. Emission scans were recon-
structed using the various 3D iterative reconstruction techniques
mentioned above. To assess convergence of all algorithms, the 10-
and 3,600-s frames of the inserts phantom experiment and the
3,600-s frame of the 18F-FDG Hoffman phantom experiment were
reconstructed with an increasing number of iterations (up to 30) and
16 subsets. The human brain study was reconstructed with different
numbers of iterations but with a smaller range, to investigate the
effects on dynamic human brain studies. All other experiments were
analyzed at the optimal number of iterations as found with the
convergence studies (as will be shown later in this article). In addition,
all studies were reconstructed using the 3D-FBP algorithm (8), which
was used as a reference for iterative reconstructions.

Parametric Analysis of Human Brain Study
Parametric images were generated using a basis-function-

method implementation of a plasma-input single-tissue-compartment
model (28,29) providing volume of distribution (VT) and delivery
(K1) images. Furthermore, reference-tissue parametric analysis was
performed using receptor parametric mapping with the pons as
the reference region providing relative delivery (R1) and binding
potential (BPND) images. Receptor parametric mapping is a basis-

function-method implementation of the simplified reference-tissue
model (30). These parametric methods were applied to assess
the effects of different reconstruction strategies on the (overall)
accuracy of kinetic analyses of PET data. Parametric images were
generated using PPET (31).

Data Analysis
ROI Definition. For the homogeneous phantom study without

inserts, a circular ROI was positioned in the center of the phantom,
ranging over 38 planes and staying away from the edges by least 3
mm (volume, ;1 L). For the phantom with 2 inserts, 3 ROIs were
positioned in the background and within the inserts, ranging over
100 planes and staying away from the edges by at least 6 mm
(volume, ;1.3 L and ;60 mL, respectively). For the Hoffman
phantom, two 3D ROIs were identified manually (i.e., gray matter
[GM; volume, 43.4 mL] and white matter [WM; volume, 37.2
mL] regions) to study bias in the GM and WM regions and the
contrast between GM and WM.

For the human brain study, ROIs were defined using a GM and
WM segmentation of the coregistered structural MRI scan to
derive GM and WM subregions of 15 different manually defined
ROIs, that is, the pons (reference region) and left and right regions
of the thalamus, frontal lobe, temporal lobe, parietal lobe, occip-
ital lobe, caudate, and putamen. For all regions, GM data were
used, except for the pons, for which all data were used. Coregistra-
tion of the MR image was performed using VINCI (Max Planck
Institute for Neurologic Research). GM or WM segmentation was
performed using Statistical Parametric Mapping (SPM) (version 5;
Wellcome Department of Cognitive Neurology, University College
London). All ROIs were drawn manually using DISPLAY (Mon-
treal Neurologic Institute). These ROIs were projected onto the
parametric images to derive regional average pharmacokinetic
parameters.

Assessment of Quantitative Accuracy
To study the various 3D iterative reconstruction techniques

quantitatively, all images were compared with those using 3D-FBP,
except for the images from the homogeneous phantom studies, which
were normalized by dividing the reconstructed activity concentration
by the true activity concentration. True activity concentrations were
derived by measuring three 0.5-mL samples in a calibrated well
counter. Coefficient of variation (COV; percentage) was calculated as
the ratio of SD of the reconstructed activity concentration over all
replicates to the observed average activity concentration. The aver-
age activity concentration was calculated as the average over all
replicates.

The Hoffman phantom data were normalized to the measured
activity concentration per region using the 3D-FBP image with the
highest scan statistics. This procedure was followed because the
slabs separating the compartments of the Hoffman phantom are
about the same size as the scanner resolution and slice thickness,
resulting in a variable partial-volume effect. Consequently, shift-
ing the Hoffman phantom axially by half the detector width will
result in a different image. Therefore, normalization to true
activity concentration was not accurate.

True kinetic parameters were not known for the human brain
study. Therefore, data were normalized by dividing them by the
data obtained by 3D-FBP reconstructions. Consequently, only the
relative difference in activity concentration with respect to those
seen in the data obtained with 3D-FBP can be evaluated.
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RESULTS

Convergence of Different Algorithms

Figure 1 shows convergence rates of various iterative
reconstruction algorithms for the homogeneous phantom with
hot and cold inserts at low (10 s) and high (3,600 s) NECs. All
reconstruction algorithms had converged using 10, 16, 7, and
16 iterations for ANW-OSEM, OP-OSEM, OSWLS, and
SP-OSEM, respectively. At low NEC, ANW-OSEM showed
a bias of 29% for the hot and of 370% for the cold inserts. All
other iterative reconstruction algorithms showed bias
(21%247%) for cold regions after convergence, but hardly
any bias (,2%) for the hot insert. 3D-FBP showed a bias
of 224% for the cold and of 7% for the hot inserts. At high
NEC, all reconstruction algorithms showed only limited bias
after convergence (;5% for hot, ;210% for cold inserts).
For cold regions, however, OSWLS hardly showed any bias
(,3%) after convergence was reached.

Figure 2 shows bias versus COV for various iterative
reconstruction algorithms in the case of the homogeneous
phantom with hot and cold inserts at low (10 s) and high (3,600
s) NECs. After convergence (at a minimal or constant bias
level), increasing the number of iterations increased COV at
high NECs and increased both bias and COV at low NECs.

Convergence rates of various iterative reconstruction
algorithms for the Hoffman phantom are shown in Supple-

mental Figure 1 (supplemental materials are available
online only at http://jnm.snmjournals.org). Every recon-
struction algorithm converged within 16 iterations to an
acceptable GM-to-WM contrast ratio (comparable or better
than that of 3D-FBP). The numbers of iterations required to
obtain a resolution similar to 3D-FBP were equal to those
seen in the inserts phantom study, that is, consistent with
the numbers of iterations described above. All reconstruc-
tion algorithms showed hardly any bias (,1%) in GM and
WM after convergence.

Homogeneous Phantom: Varying NECs

Figure 3 shows results obtained from the homogeneous
phantom study without inserts. ANW-OSEM showed a
large bias in reconstructed activity concentration, amount-
ing to 66%296% for short frame durations (5–60 s) or
low NECs. OSWLS decreased this effect to 2%219%.
SP-OSEM showed bias of 0%29% for these frames.
Similarly, OP-OSEM showed only 0%28% bias. 3D-
FBP showed almost no bias (,2%) for all NEC or frame
durations tested (5–3,600 s), but showed high COV
(4.4�102%21.5�103%) and SD (32–110 kBq/mL) for short-
duration (5–60 s) frames. OSWLS showed the least, almost
linear, increase in COV (1.3�102%22.2�102%) with decreas-
ing NECs (shorter frames).

FIGURE 1. Homogeneous phantom with inserts. Effects of increasing number of iterations of various reconstruction
algorithms on cold insert with low (10 s) and high (3,600 s) NECs and on hot insert with low and high NECs. Note that OP-OSEM
and SP-OSEM overlap.
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Homogeneous Phantom with Hot and Cold Inserts:
Varying NECs

Background activity concentrations showed trends sim-
ilar to those seen in Figure 3A for all reconstruction
algorithms. The hot and cold inserts showed trends similar
to those shown later for the Hoffman phantom in Figures
4A and 4B. However, all reconstruction algorithms over-
estimated the activity concentration of the hot insert by 5%
at high NECs (300–3,600 s). 3D-FBP underestimated the
activity concentration of the cold insert by 14%219% at
high NECs.

Hoffman Phantom: Varying NECs by Varying Frame
Durations

All reconstruction algorithms showed no bias (,1%) in
activity concentration distribution at high frame lengths
(1,800 and 3,600 s; NEC . 3.6�108 counts). In Figure 4,
results obtained for the brain phantom (18F-FDG experi-
ment) are shown for all other frame durations (NEC).
Performance of all iterative reconstructions depends on
NEC (i.e., on frame length). Both OP-OSEM and SP-
OSEM showed less bias in activity concentration than did
other iterative methods. However, they still showed differ-
ences in activity concentration distribution as a function of
NEC, with a 75% change in the GM-to-WM contrast ratio
between long- and short-duration frames (P , 0.001). This
is similar for most iterative methods with changes of 92%
(OSWLS, P , 0.001) up to 105% (ANW-OSEM, P ,

0.001). In all cases 3D-FBP provided the most accurate
results, independent of the underlying noise level (with a
maximum GM-to-WM contrast ratio error of 9%, which
was not statistically significant; P . 0.5, except 30 s [P .

0.05]). However, 3D-FBP showed a large SD of up to 41%
in GM-to-WM contrast ratio at low NEC, whereas iterative
reconstruction methods showed less SD at low NECs
(,10%).

Hoffman Phantom: Decay Study

Supplemental Figure 2 shows results obtained from the
11C-decay study. Most reconstruction methods had a constant
GM-to-WM contrast ratio with decreasing NECs (between
8% and 10% maximum error in the GM-to-WM contrast
ratio), except for ANW-OSEM, which showed a considerable
change of 20% in the GM-to-WM contrast ratio. OSWLS
(0%24% difference), OP-OSEM (1%26% difference), and
SP-OSEM (3%27% difference) showed good agreement
with the first observed 3D-FBP GM-to-WM contrast ratio
(2.34).

Clinical Example

For a single patient, time–activity curves reconstructed
with various techniques are shown in Supplemental Figure 3.
ANW-OSEM showed a bias of 10%261% in GM,
24%2109% in WM, and 26%2100% in the pons for
short-duration frames (15–60 s). Other iterative reconstruc-
tion techniques reduced bias in the GM, WM, and pons to

FIGURE 2. Homogeneous phantom with inserts. Effects of increasing number of iterations of various reconstruction
algorithms on bias and COV in background and cold and hot inserts with low (10 s) and high (3,600 s) NECs. Arrows indicate
suggested optimal number of iterations for various iterative reconstruction algorithms.
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within 3.9%, 15%, and 11%, respectively. OSWLS showed
the best correspondence with the 3D-FBP pons time–activity
curve (,8%). Axial parametric images are shown in Figure
5. Images of 3D-FBP are noisy, especially for K1 parametric
data (and for R1 data; data not shown). Therefore, no good
comparison could be made between 3D-FBP and 3D iterative
reconstruction techniques for K1 and R1. Visually, ANW-
OSEM, compared with the other reconstruction methods,
showed a clear underestimation in BPND. OSWLS showed
the fewest artifacts. Correlation between several parametric
analyses are summarized in Tables 1 and 2. All results are
compared with 3D-FBP parametric data. VT (Table 1)
showed a slight positive bias for ANW-OSEM with respect

to 3D-FBP (slope with intercept fixed at origin, 1.03),
whereas other iterative reconstruction methods showed a
slight negative bias (slope with fixed intercept at origin, 0.92–
0.93). Using more than the recommended number of itera-
tions did not show significant improvement (P . 0.05),
whereas a lower number of iterations showed poorer perfor-
mance (P , 0.05). For BPND (Table 2), ANW-OSEM showed
a considerable negative bias with respect to 3D-FBP (slope
with intercept fixed at origin, 0.48) and low correlation
(Pearson correlation coefficient [r] 5 0.91). Both OP-OSEM
and SP-OSEM showed less bias with respect to 3D-FBP
(slope with fixed intercept, 1.12–1.14) and a higher correla-
tion (r 5 0.96). OSWLS showed the best correspondence

FIGURE 3. Results of various reconstruction methods for
homogeneous phantom: a reconstruction over true activity
concentration at different NECs (A), with corresponding COV
(B) and SD (C). Note that OP-OSEM and SP-OSEM overlap.

FIGURE 4. True activity concentration for various reconstruc-
tions of Hoffman phantom at different NECs (randoms fraction,
;17.6%) for GM (A), WM (B), and GM-to-WM contrast ratio (C).
NotethatOP-OSEMandSP-OSEMoverlap.ErrorbarsindicateSD.
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with 3D-FBP (slope with intercept fixed at origin, 1.02)
and highest correlation (r 5 0.99). Using a higher-than-
recommended number of iterations for OSWLS showed only
a slight improvement relative to 3D-FBP (slope with fixed
intercept, 1.00; r 5 0.98, P , 0.001).

DISCUSSION

Convergence

A GM-to-WM contrast ratio comparable to the one for
3D-FBP was found as an acceptable compromise between

computation time, GM and WM convergence, resolution
effects (due to partial-volume effects), and noise. A further
increase in the GM-to-WM contrast ratio would imply an
increase in bias in GM and WM, in number of iterations
(computation time), and in noise. Results from the inserts
phantom experiment indicated that convergence was
reached at the same number of iterations (Figs. 1 and 2)
as was observed using the Hoffman phantom data (Sup-
plemental Fig. 1). Both ANW-OSEM GM and WM con-
verged to within 1%, compared with 3D-FBP, using 10

FIGURE 5. Parametric VT, K1, and BPND images for human 11C-flumazenil study. Each column represents a different
reconstruction method. BFM 5 basis function method; RPM 5 receptor parametric mapping.

TABLE 1. Human 11C-Flumazenil Brain Study:
Parametric VT

Reconstruction
method

No. of
iterations Slope Intercept r

Slope (fixed

intercept
to origin)

ANW-OSEM 5 0.93 0.37 0.95 0.99
10 0.97 0.42 0.97 1.03

16 0.83 1.29 0.96 1.03

OP-OSEM 8 0.96 20.45 0.95 0.89

16 0.98 20.44 0.97 0.92
20 0.89 0.15 0.96 0.91

SP-OSEM 8 0.96 20.49 0.95 0.88

16 0.98 20.33 0.97 0.93
20 0.89 0.12 0.96 0.91

OSWLS 3 0.92 20.07 0.96 0.91

7 1.00 20.47 0.97 0.93

16 0.90 0.18 0.96 0.92

TABLE 2. Human 11C-Flumazenil Brain Study:
Parametric BPND

Reconstruction

method

No. of

iterations Slope Intercept r

Slope (fixed

intercept

to origin)

ANW-OSEM 5 0.50 0.09 0.85 0.52

10 0.48 0.15 0.91 0.51

16 0.44 0.27 0.93 0.50
OP-OSEM 8 1.23 20.58 0.90 1.09

16 1.23 20.45 0.96 1.12

20 1.12 20.14 0.94 1.08

SP-OSEM 8 1.22 20.60 0.89 1.08
16 1.23 20.39 0.96 1.14

20 1.18 20.29 0.96 1.11

OSWLS 3 1.14 20.37 0.98 1.05

7 1.13 20.46 0.99 1.02
16 1.06 20.27 0.98 1.00
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iterations. The convergence rate of OP-OSEM was about
1.6 times slower than that of ANW-OSEM, which is slightly
better than what has been reported in a previous study using the
manufacturer’s OP-OSEM (4), in which OP-OSEM was said
to converge about 2 times more slowly than ANW-OSEM.
Convergence was reached for OP-OSEM using 16 iterations.
This convergence is 2 times slower than the version used by the
manufacturer, which converges after 3–11 iterations (7), in
which 8 iterations were found to be optimal (9) when using the
same criteria as used in this study. SP-OSEM also requires
1.6–1.7 times more iterations than does ANW-OSEM, which
is slightly faster than the number of iterations reported in
previous studies (17). In these 3D studies performed on an
ECAT EXACT HR1 scanner (CTI/Siemens), 15 iterations
were used for SP-OSEM and 4 for ANW-OSEM. OSWLS
converged to an acceptable GM and WM activity concen-
tration after 7 iterations. Although the number of iterations
required for sufficient convergence was similar for both the
Hoffman and the inserts phantom studies, clinical data were
analyzed for various numbers of iterations to further study and
demonstrate convergence properties.

Phantom Studies

3D-FBP showed good correspondence to the true activity
concentration in short-duration frames of the homogeneous
phantom (,2%). Although 3D-FBP showed some bias in
cold and hot inserts, observed 3D-FBP biases were less
dependent on NEC than biases seen with iterative methods
(Supplemental Figs. 1 and 2; Figs. 3 and 4). However, these
biases disappeared using the same phantom with contrasts
similar to the Hoffman phantom (1:2; data not shown).
Moreover, 3D-FBP provided a GM-to-WM contrast inde-
pendent of NEC (Fig. 4C; Supplemental Fig. 2) in the
Hoffman phantom studies, which resemble clinically rele-
vant activity concentration distributions. Deviations in the
GM-to-WM contrast were not statistically significant (P .

0.5). 3D-FBP was, therefore, chosen as a reference recon-
struction method for further evaluations of Hoffman phan-
tom and clinical studies.

OP-OSEM showed the lowest positive bias (,8%), but
COV (,5.1�102%) was twice as high as that for OSWLS
(,2.2�102%). In addition, OSWLS showed almost linearly
increasing COV at low-frame durations, whereas this var-
iation was larger for all other methods. However, OSWLS
showed a higher positive bias (,15%) than did OP-OSEM.
The performance of SP-OSEM was similar to that of
OP-OSEM, as can be seen from Figure 3. This result is
consistent with data from Ahn and Fessler (18), in which
SP-OSEM only slightly improved bias over OP-OSEM in
2D simulations. However, as also observed previously (19,32)
for simulated 2D transmission and emission scans, SP-OSEM,
compared with OP-OSEM, reduced SD up to 11%.

All methods showed similar performance for the Hoff-
man phantom, with various frame durations, although both
OP-OSEM and SP-OSEM showed a lower bias (,75%,
P , 0.001) in GM-to-WM contrast ratio between short- and

long-duration frames. For the Hoffman phantom decay
study, ANW-OSEM performed poorly, with a change in
the GM-to-WM contrast ratio of 20%. In a previous study
(9), we reported a high-contrast change in the GM-to-WM
contrast ratio (54%) using the manufacturer’s implementa-
tion of OP-OSEM. Using the in-house–implemented OP-
OSEM with the same convergence criteria, the same ROI
definitions, and the same scan of the Hoffman phantom, we
obtained a good (and stable) GM-to-WM contrast ratio
(10%), as we did with most other reconstruction methods
(between 8% and 10%). SP-OSEM, OP-OSEM, and espe-
cially OSWLS showed good agreement with 3D-FBP
GM-to-WM contrast ratios (,7% difference).

Human Brain Study

ANW-OSEM showed considerable bias (,109% in
WM) for short-duration frames (15–60 s) or low NEC. Other
iterative reconstruction techniques reduced bias (,15%),
which is consistent with the phantom studies (Figs. 1–4;
Supplemental Fig. 1).

Parametric images, reconstructed with 3D-FBP, were
noisy, consistent with the phantom data in which a high
COV (,1.5�103%) was observed in the short-duration
frames of the homogeneous phantom. Therefore, 3D-FBP
is not recommended routinely for quantitative brain studies
and should be used only to validate iterative reconstruction
methods.

Parametric data derived from ANW-OSEM showed that
bias had a large effect on parametric results, especially for
reference-tissue models in which large underestimations
were observed. This is primarily due to bias in the pons
time–activity curve (Supplemental Fig. 3C). Consequently,
reducing bias, currently observed in iterative reconstruction
techniques at low frame durations, is essential for quanti-
tative brain studies.

Visually, OSWLS showed the fewest artifacts in the
parametric images. In general, OSWLS showed better
correspondence to parametric results obtained with 3D-
FBP, especially for reference-tissue models (Table 2; slope
with intercept fixed at origin, 1.02; r 5 0.99). This result is
also consistent with phantom data and the data of Boellaard
et al. (11). On the basis of correspondence between GM-to-
WM contrast ratios (within 4% when compared with 3D-
FBP) over different NECs, low bias in GM regions (,11%,
P , 0.001), linearly increasing COV, and good correspon-
dence with the 3D-FBP parametric data (slope with inter-
cept fixed at origin, 1.02 [reference tissue] and 0.93 [plasma
input]; r 5 0.97–0.99), OSWLS is recommended for 3D
HRRT brain scans.

Additional Remarks
11C-flumazenil has the advantage of high extraction and

therefore good scan statistics. Use of other tracers with
lower extraction, for example, 11C-PK11195, most likely
will result in higher bias due to poorer scan statistics. Some
bias is still observed for iterative reconstruction methods in
short-duration frames that could influence parametric data
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analysis and could be worse for tracers with low extraction,
especially for reference-tissue models in which reference
tissue has a low uptake (no specific binding). Also, bias
related to contrast, as is still observed for all iterative
reconstruction methods, could cause problems with image-
derived input functions (33). Therefore, future research
should be directed at removing systematic bias, for exam-
ple, by using iterative reconstructions that allow negative
image values, such as negative maximum likelihood (34).

The resolution of clinical scanners will be improved over
the next few years. These scanners will therefore likely
contain large and sparse sinograms as a result of using smaller
crystals and, consequently, may suffer from bias when using
iterative reconstructions with nonnegativity constraints. This
work may, therefore, be important for future high-resolution
PET scanners as well.

CONCLUSION

ANW-OSEM showed high bias in reconstructed activity
concentration and parametric images, especially in the case
of reference-tissue models. OP-OSEM, SP-OSEM, and
OSWLS showed good performance for phantom studies.
In addition, OSWLS showed better results for clinical
parametric data and is therefore recommended for HRRT
brain studies. Future improvements are expected by allow-
ing negative image values in iterative reconstructions.
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