ner using As^{74}. The increase in sensitivity is obtained even though the phantom was set up to simulate our clinical condition where brain pictures are obtained in 4 to 10 minutes with a dose of 350 to 750 microcuries of G^{88}-EDTA. Shealy, et al., however, found that 2 to 3 millicuries of $\mathrm{Ga}^{\text {as }}$-EDTA was sometimes an inadequate dose with their positron scanner.

We agree the search should continue for better agents, but our results indicate $\mathbf{G a}^{\mathbf{a s}}$-EDTA to be as effective as the other agents now in use.

Alexander Gottschalk and Hal O. Anger Donner Laboratory of Medical Physics and Biophysics University of California, Berkeley 4, California
 REFERENCES

1. Anger, H. O., and Gottschalk, A.: Localization of Brain Tumors with the Positron Scintillation Camera. J. Nuclear Med. 4:326, 1963.
2. Sweet, W. H., Mealey, J., Brownell, G. L., and Aronow, S.: Coincidence Scanning with Positron-Emitting Arsenic or Copper in the Diagnosis of Focal Intercranial Disease. In Medical Radioisotope Scanning, Vienna, International Atomic Energy Agency, 1959, p. 163.
3. Silverstone, B. and Glllespie, G. G.: Localization of Brain Tumors with Radioactive Mercury. Tufts Folio Medica IX:77-82 (July-Sept. 1963).
4. Gottschalk, A., and Anger, H. O.: Sensitivity of the Positron Scintillation Camera for Detecting Simulated Brain Tumors. Amer. J. Roengenol. Radium Therapy and Nuclear Med. (in Press). Also in Donner Laboratory Semiannual Report, Spring 1963, UCRL11033, p. 126.

TO THE EDITOR

In his correction to the paper entitled "The Use of a Modified Radioactive Test for Evaluating the Peripheral Circulation", that appeared in the Journal, April 1964, p. 319, Dr. Kanner indicates that the corrected result for the integration of the equation:

$$
\begin{equation*}
N=N_{F}\left(1-e^{-\lambda t}\right) \tag{1}
\end{equation*}
$$

should be

$$
\begin{equation*}
\text { Area }=N_{F}\left(t-\frac{T_{j}}{0.69}\right) \tag{2}
\end{equation*}
$$

However, equation (2) is not the correct integral of equation (1). Integration of equation (1) leads to the equation

$$
\begin{align*}
\text { Area } & =\int_{0}^{t} N d t=N_{F} \int_{0}^{t}\left(1-e^{-\lambda_{t}}\right) d t \\
& =N_{F}\left[t-\frac{T}{0.69}\left(1-e^{-\lambda_{t}}\right)\right] \tag{3}
\end{align*}
$$

If desired, the accuracy of this amended result can be confirmed by comparing the derivatives of the equations (2) and (3) to equation (1).

Bergene Kawin, Ph.D.
VA Hospital
Fort Howard, Maryland 21052

