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Brain PET in small structures is challenged by low resolution in-
ducing bias in the activity measurements. Improved spatial res-
olution may be obtained by using dedicated tomographs and
more comprehensive modeling of the acquisition system during
reconstruction. In this study, we assess the impact of resolution
modeling (RM) during reconstruction on image quality and on
the estimates of biologic parameters in a clinical study per-
formed on a high-resolution research tomograph. Methods:
An accelerated list-mode ordinary Poisson ordered-subset
expectation maximization (OP-OSEM) algorithm, including
sinogram-based corrections and an experimental stationary
model of resolution, has been designed. Experimental phantom
studies are used to assess contrast and noise characteristics of
the reconstructed images. The binding potential of a selective
tracer of the dopamine transporter is also assessed in anatomic
volumes of interest in a 5-patient study. Results: In the phan-
tom experiment, a slower convergence and a higher contrast
recovery are observed for RM-OP-OSEM than for OP-OSEM
for the same level of statistical noise. RM-OP-OSEM yields con-
trast recovery levels that could not be reached without RM as
well as better visual recovery of the smallest spheres and better
delineation of the structures in the reconstructed images. Sta-
tistical noise has lower variance at the voxel level with RM
than without at matched resolution. In a uniform activity region,
RM induces higher positive and lower negative correlations with
neighboring voxels, leading to lower spatial variance. Clinical
images reconstructed with RM demonstrate better delineation
of cortical and subcortical structures in both time-averaged
and parametric images. The binding potential in the striatum
is also increased, a result similar to the one observed in the
phantom study. Conclusion: In high-resolution PET, RM during
reconstruction improves quantitative accuracy by reducing the
partial-volume effects.
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PET is widely used in brain imaging to provide quan-
titative biologic images. However, it suffers from bias
because of the partial-volume effect (PVE) caused by the
low resolution of the images and from the noise because of
the statistical nature of the processes involved.

Brain PET recently benefited from the development of
scanners such as the ECAT high-resolution research tomo-
graph (HRRT) (Siemens Molecular Imaging) (1). The
HRRT is a dual-layer, crystal-detector scanner allowing a
depth-of-interaction (DOI) measurement for the incident
photons. It is characterized by an isotropic 2.5-mm intrinsic
spatial resolution. Spatial resolution in the reconstructed
images varies radially and tangentially from about 2.5 to
about 3 mm and axially from 2.5 to 3.5 mm in the 10-cm
field of view (FOV) covering most of the brain (2).
Therefore, this tomograph dedicated to brain imaging,
compared with whole-body tomographs with at best a
4.5-mm intrinsic resolution, reduces the biases caused by
PVEs in the small cerebral regions involved in specific
functional pathways.

However, the HRRT does not simultaneously offer suf-
ficiently increased sensitivity to maintain a level of noise
comparable to that of conventional tomographs. To limit
statistical noise in dynamic studies, iterative algorithms
with postreconstruction smoothing are usually required.

To avoid smoothing and thus further degrading resolution,
new iterative reconstruction schemes with more comprehen-
sive modeling of the acquisition system should be devised.
This could be done by considering a less-approximate system
matrix including, for instance, the depth-dependent resolu-
tion effect along a line of response (LOR).
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To avoid storing the large number of elements contained
in the system matrix, several parameterizations of the
system matrix have been proposed. Recent approaches
tackled the problem by including only geometric effects
in the system matrix and estimating resolution modeling
(RM) either in the image space (3,4) or in the projection
space (5–9). The parameters of these models have been
derived by analysis (7) or by experiment (3–5,9) or from
Monte Carlo (MC) simulations (6,10,11). In particular,
these models have been used for small-animal scanners,
where improved resolution is crucial (11).

RM in image space can be efficiently combined with list-
mode (LM) reconstruction in dynamic studies. Indeed, if
resolution degradation is modeled in projection space,
multiple lines of response should be forward-projected for
a single bin, and a neighborhood of bins should be back-
projected for each single event, leading to important losses
in computation time. Standard acceleration techniques of
the expectation maximization algorithm (by choosing an-
gular subsets) are not efficient if RM is also angularly
modeled.

This study, therefore, explores the impact on image qual-
ity and quantification of image-space RM for the HRRT. As
resolution degradation in the FOV is limited for the HRRT
(because of DOI capability), the proposed method is imple-
mented as a shift-invariant convolution in image space. The
approach is tested with physical phantoms, and its impact is
assessed on parametric imaging in a clinical study.

MATERIALS AND METHODS

Reconstruction for the HRRT
The HRRT allows acquisition of data on 4.5 billion LORs

irregularly sampled in projection space in LM format. These data
are usually sorted into histograms and stored into regularly sampled
sinograms, with each LOR being attributed to its closest sinogram
element (bin). Angular axial compression is used to reduce the
sampling level of the data and lower statistical uncertainty in the
measured data. Estimates of scattered and random coincidences, as
well as normalization and attenuation correction factors, are avail-
able as sinograms. A model of the acquisition process compatible
with these binned correction factors has been developed and
included in an LM algorithm.

The forward model for an I-dimensional (I-D)–acquired vector
p (in which I is the number of LORs) follows a Poisson distri-
bution with mean ,p.:

,p. 5 ANXHf 1 s 1 r; Eq. 1

where f is a J-dimensional vector holding the coefficients of the
spatial basis functions (used to represent the spatial radioactivity
concentration), H is a J · J matrix modeling the point-spread
function (PSF) in the image space (3), and X is an I · J matrix
modeling forward projection along the LORs. A and N are I · I
diagonal matrices holding, respectively, attenuation factors and
the inverse of the LOR normalization factors, and s and r are the
I-D vectors of scattered and random coincidences that contribute
to the expected data.

The binning process may be represented as an R · I matrix B,
where R is the number of sinogram bins. This yields the following
forward model:

,pB. 5 BANXHf1Bs1Br: Eq. 2

Because the HRRT normalization factors are measured using a
direct normalization process in the sinogram space, they are
available only as R-dimensional vectors, and further approxima-
tions need to be performed. Unlike other correction factors, the
normalization factors are inherently high-frequency data (because
of crystal-efficiency variations). The attribution to an LOR of the
normalization factor corresponding to its closest sinogram bin is
not valid and would generate artifacts due to incorrect matching of
the resolution of the LOR forward-projected data and the resolu-
tion of the normalization matrix (12). The following approxima-
tion must be performed:

BNX � NBXB; Eq. 3

where XB is an R · J matrix modeling forward projection along
the center of the sinogram bins and NB is an R · R diagonal matrix
holding normalization factors. This results in the following esti-
mate:

,pB. 5 BANXHf 1 Bs 1 Br � ABNBXBHf 1 Bs 1 Br;

Eq. 4

where AB is an R · R diagonal matrix with the attenuation
correction factors for each sinogram bin. This approximation
implies that all LORs contributing to a bin are treated as a single
LOR located at the center of the bin. Following the derivation of
the OP-EM algorithm previously reported (13), the RM-OP-EM
algorithm based on sinogram corrections may then be written as:

fk11 5 fk
HTXB

T Bp

XBHfk 1 ðABNBÞ21 ðBs 1 BrÞ

n o

HTXB
TNBAB1R

; Eq. 5

where 1R is an R-D vector for which all elements are equal to 1.
The matrix B may be seen as a linear operator aligning each

LOR in the LM file to the center of the nearest sinogram bin.
The algorithm in Equation 5 may be implemented in list mode,

preserving the temporal resolution of the LM data:

fk11 5 fk

HT +
LM

m51

X T
B

Bdm

XBHfk 1 ðABNBÞ21 ðBs 1 BrÞ

n o

HTXB
TNBAB1R

; Eq. 6

where dm is an I-D vector with a single 1 on the LOR
corresponding to the event measured in the LM file, which
contains LM events.

To accelerate reconstruction, only a subset of the LM data is
used for each update of the spatial-basis coefficients. A fast and
common approach in sinogram-based reconstructions is to use
subsets with the azimuthal angle (14). This approach cannot be
used in the case of an LM algorithm in which no histograms are
calculated a priori. Another possibility is to consider temporal
subsets of the LM data as previously described (15). The Poisson
data would ensure complete independence between the subsets.
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Such ordered-subset (OS) algorithms are known not to con-
verge but to generate image oscillations within an iteration due
to discrepancies (related to noise, for instance) between subsets
(14).

For sequential temporal subsets, variations between subsets
might arise from the temporal evolution of the physiologic
distribution of the tracer during an examination (or within a frame
in a dynamic study). To limit discrepancies between data subsets,
consecutive events in the LM file were assigned to different
subsets; that is, the subsets were defined by gating on detected
events.

When using temporal subsets, a scaling factor S must be
included in Equation 6:

fk
s11 5 fs

k

HT +
m2ðLMÞs

S X T
B

Bdm

XBHfk
s 1 ðABNBÞ21 ðBs 1 BrÞ

n o

HTXB
TNBAB1R

; Eq. 7

where the data are divided into S temporal subsets, and (LM)s

corresponds to the s-th temporal subset and to fk11
1 5 fk

s11. This
algorithm is referred to as RM-OP-OSEM in this article.

The factor S simply scales up the reduced number of counts
observed in a subset of the data, appropriately weighting the
scattered and random events to the prompts.

The RM-OP-OSEM algorithm may be seen as an algorithm that
simultaneously performs reconstruction and deconvolution (note
that RM in the image space is closely related to the Richardson-
Lucy deconvolution algorithm (16)). As observed in deconvolu-
tion, reconstruction with RM is associated with a ringing artifact
that appears near sharp intensity variations (17). Inappropriate
kernels can generate the ringing artifacts (7). For RM-OP-OSEM
with RM in image space, an MC simulation has shown that this
artifact is accentuated by overmodeling the resolution effects (i.e.,
when the convolution kernel is too broad) and that the artifact still
occurs when the convolution kernel perfectly matches the kernel
used for simulating the resolution-degrading phenomena (3). On
the other hand, when the kernel is underestimated, the resulting
images displayed intermediate resolution but fewer ringing arti-
facts.

The ringing artifact is related to errors in the convolution kernel
(due to its spatial truncation, for instance). In the case of one study
(3), the model for the convolution kernel may not be expected to
match exactly the PSF modeled in the MC simulation (as the
projection/backprojection operators include interpolation steps, in-
troducing further blurring). The ringing artifact is also related to
imperfect matching between continuous convolution, followed by
sampling and sampled convolution. The PSF of a tomograph acts
like a low-pass filter, and a limited level of aliasing occurs in the
sampled blurred image when the sampling interval is smaller than
twice the full width at half maximum (FWHM) of the PSF. On the
other hand, discrete deconvolution leads to more extensive aliasing
in the deconvolved image.

Implementation of the Algorithm
All data were first binned using a span of 9 (span refers to the

number of copolar angles that are summed on a Michelogram
(18)). This operation is described by matrix B in Equations 2–7.

An experimental image-space model of resolution was derived
from a point-source reconstruction. As described in one study (3),

the rationale is to perform a reconstruction with an algorithm that
inverts the geometric part (X in our equations) to fit a model to H
in the final image. A matched projector and backprojector were
implemented using the Siddon algorithm (19) to speed up LM
reconstruction.

A 1-mm point source of about 37 MBq of 18F was placed in air,
1 cm off the center of the transaxial plane. This point source was
reconstructed using the algorithm without RM (without H in
Eq. 7) but still including the random-events correction. Isotropic
and stationary resolution kernels for the HRRT were then found
through fitting the following functions:

f ðrÞ 5
1

N
fexpð2arÞ1bg Eq. 8

f ðrÞ 5
1

N
fb expð2a1rÞ1ð1 2 bÞexpð2a2rÞg; Eq. 9

where N was calculated such that the kernel is normalized to 1,
and the fit parameters are a and b for Equation 8 and a1, a2, and b

for Equation 9. The exponential with an offset model (Eq. 8) and
the 2-weighted-exponential model (Eq. 9) were intended to model
both the central fast-decaying part and the much slower decaying
tails observed in the reconstructed images. The fitting/optimiza-
tion process modeled the 3-dimensional convolution of the point
source with the kernel (either Eq. 8 or Eq. 9), and the parameters
of the kernel were estimated through least-squares fitting of the
data with the model.

The resolution kernel was then implemented in the preceding
LM OP-OSEM algorithm (the kernel provides the elements for
matrix H), using temporal subsets according to Equation 7.

To assess the impact of a stationary model of resolution on a
tomograph with spatially variant resolution, 3 point sources of about
a 0.4-mm diameter each were placed at different axial locations in
the FOV of the HRRT (offset by 1, 5, or 10 cm). About 1.4 million
events were acquired, and RM-OP-OSEM was used for reconstruc-
tion with RM described by either Equation 8 or Equation 9.

Because the truncation of the kernel leads to an imperfect
model of resolution, its impact on the ringing artifact was also
investigated. The quality of the deconvolution was assessed using
the ratio between the activity in the periphery of the point source
divided by all of the activity, defined according to the following
formula:

Q 5
½Iði; jÞ�30 2 ½Iði; jÞ�2

½Iði; jÞ�30

; Eq. 10

where ½Iði; jÞ�2 and ½Iði; jÞ�30 correspond to the overall activity in a
box of 2-voxel width (i.e., the 8 central voxels, the best spatial
resolution according to the Shannon theorem) and the overall
activity in a box of 30-voxel width around the point, respectively.
Ideally Q should be close to 0, and a higher Q indicates the
spreading of activity from the original position of the point source
due to imperfect deconvolution.

Finally, a mini-imaging system (Deluxe Phantom; Data Spec-
trum) with hot inserts was filled with 18F, and images were
acquired on the HRRT at 2 different axial positions: off-centered
by 0 and 4 cm (each acquisition of about 270 million events). This
procedure investigated possible artifacts (ringing or deformation)
in the image due to imperfect deconvolution.
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Noise and Contrast Recovery Characterization
The RM-OP-OSEM algorithm was compared with the

manufacturer-supplied sinogram-based OP-OSEM algorithm,
which does not include any specific RM for the HRRT (20). This
algorithm does not use the Siddon algorithm but rather a point-
lattice forward projector and backprojector with bilinear interpo-
lation (21).

Datasets were acquired on the HRRT and reconstructed into
256 · 256 · 207 images (isotropic voxel volume, ;1.8 mm3) from
LM data using RM-OP-OSEM. The datasets were also binned
(using span 9) and reconstructed using the OP-OSEM algorithm.
The scatter sinograms were estimated using the single-scatter
simulation method (22), and random sinograms were derived from
smoothed delayed-coincidence window data (23).

Reconstruction with these 2 algorithms was accelerated. The
OP-OSEM algorithm was originally optimized for parallel recon-
struction on a dedicated GHz processor (Xeon 3.0; Intel) (21). The
RM-OP-OSEM algorithm was parallelized, and reconstruction
was performed on a cluster (10 nodes of AMD OPTERON 2.4-
GHz quadri-processors).

A cylindric contrast phantom (inner length, 187 mm; inner
diameter, 196 mm) filled with 18F (initial activity, 55 MBq) was
scanned for 4 h on the HRRT. A cold transmission scan was
performed the next day. This phantom included 4 hot spheres and
2 cold spheres of 0.5–20 cm3 embedded in a warm background
(with an activity ratio of about 2.4 between the hot spheres and the
background). The resulting LM file of about 3.5 billion events was
then split into 36 pseudogated files (each second of data for every
36 s was assigned to a different subset), leading to 36 statistically
independent realizations of the same object. Scatter and random
sinograms were estimated for each of the 36 realizations.

Contrast recovery and noise characteristics were investigated
using the following figures: a contrast recovery coefficient (CRC)
for each sphere against background statistical noise (SN) for
various numbers of iterations, mean and variance of the voxels
over all realizations (the number of iterations was selected such
that the 2 algorithms had similar levels of noise for the smallest
hot sphere), and covariance of a central voxel after summing 10
planes in the background region above the spheres.

The summed images of the 36 realizations from RM-OP-
OSEM and OP-OSEM reconstructions were thresholded to obtain
volumes of interest (VOIs) around the spheres. These VOIs were
then eroded by 1 pixel to avoid PVEs due to sampling (boundary
between structures inside a voxel). Background VOIs of the same
volume as the spheres were defined by axially shifting the VOIs in
the background region above the spheres so that these regions
were located at the same radial distance from the center of the
FOV. The CRC for hot and cold spheres was calculated for each
realization i, using the following equations:

CRChot;i 5
Si=Bi 2 1

CRref 2 1
Eq. 11

CRCcold;i 5
Bi 2 Si

Bi
; Eq. 12

where CRChot;i and CRCcold;i correspond to the CRC of hot and
cold spheres; Si and Bi are the mean signal in the sphere and in the
background, respectively; and CRref is the independently mea-
sured (using a g-well counter) contrast ratio between the hot

spheres and the background. For each sphere, the overall CRC and
background SN for each sphere were then found using:

CRC 5 ,CRCi. Eq. 13

SN 5
stdðBiÞ
,Bi.

; Eq. 14

where , . represents the mean and stdð Þ the SDs across all
realizations i.

The statistical significance of the CRC differences between
the 2 algorithms was evaluated for similar levels of noise. A
Kolmogorov-Smirnoff test with Lilliefors correction was first per-
formed to assess normality of the samples, followed by an F test on
equal variance between samples (both tests were rejected if values
were below 5%), and finally a 1-way ANOVA with repeated mea-
sures was conducted to obtain P values.

Clinical Protocol
Five healthy volunteers (32.6 6 4 y) were injected with 11C-

PE2I (292 6 48 MBq), a selective dopamine transporter (DAT)
radioligand. A dynamic time series was acquired for 1 h (5 · 60 s,
5 · 120 s, 2 · 150 s, and 8 · 300 s successive frames) and recon-
structed using the same protocol as described in the previous sec-
tion. For each reconstruction, the number of iterations was selected
so that the average activity in the central nuclei had converged in
all frames.

The binding potential (BP) of 11C-PE2I to the DAT was com-
puted using a simplified reference tissue model with the cerebel-
lum as the nonspecific binding region (24). The BP values were
obtained in anatomic VOIs in which 11C-PE2I specifically binds to
DAT (ventral striatum [VS], putamen [Pu], and caudate [Ca]).
These VOIs were manually drawn on MR images registered to the
PET images. The VOIs presented small volumes (between 4 and
7.5 cm3) and were expected to be particularly prone to PVEs that
would influence their BP values.

RESULTS

Experimental Data

Experimental Resolution Modeling and Point Sources.
The fit parameters for the kernels were found to be a 5

10.7 cm21 and b 5 3.11 1025 for Equation 8 and b 5

0.023, a1 5 5.41 cm21, and a2 5 15.13 cm21 for Equation
9. Figure 1 displays the fits obtained after convolution of
the kernel with the size of the point source. The model
described in Equation 9 better describes the tails but also
the central part of the point source (the single-exponential
fit has slightly elevated values in the central part to
compensate for the difference in the tails, which it could
not accommodate).

Figure 2 shows the impact of a stationary kernel on recon-
struction of the miniphantom. Resolution was improved, and
only limited deformation of the rods occurred. The images
demonstrate the improvement in resolution after RM: the
apparent width of the rods decreased, whereas the intensity in
the central part increased. Overall, activity remained identi-
cal, because of a normalized resolution kernel.
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Truncated and imperfect resolution kernels affect recon-
structed images. Ringing artifacts are found in images at
locations corresponding to the periphery of the kernel and
are reduced when the size of the kernel is increased (Fig. 3).
The values of the periphery-to-total activity ratio defined in
Equation 10 were calculated in the reconstructed images
after convergence (15 iterations of 16 subsets) for various
kernels and point-source positions and are reported in Table
1. The values show that Equation 9 performs better than
Equation 8 and that the size of the kernel significantly affects
the quality of deconvolution. Furthermore, only limited
degradation occurred on the HRRT due to space-varying
resolution compared with the size and model of the resolu-
tion kernel.

Contrast Phantom. Figure 4 compares the trade-off
between SN and CRC for RM-OP-OSEM and OP-OSEM
for the spheres in the contrast phantom. Slower conver-

gence occurs with RM-OP-OSEM (as seen for the 2-cm3

sphere, for instance; Fig. 4A). For a given level of noise,
higher CRC is achieved with RM-OP-OSEM than with
OP-OSEM, to levels that cannot be attained without RM.
The difference in CRC between OP-OSEM images with 12
iterations and RM-OP-OSEM images with 12 or 16 itera-
tions is significant for the largest 5 spheres (P , 0.05 for
the 1-cm3 sphere, P , 0.001 for the 4 largest spheres using
ANOVA). Figure 4B shows that postfiltering simulta-
neously reduces image noise and CRC (the curves are
shifted toward the bottom and the left) by degrading spatial
resolution. This latter approach cannot match the improve-
ments because of RM.

FIGURE 1. Fitted profiles after convo-
lution with size of point source (zoom,
·2.5; pixel size, ;0.5 mm). Kernels are
displayed in linear (A) and logarithmic (B)
scales.

FIGURE 2. Qualitative impact of RM at 2 axial locations at
center (A) and at 4 cm off center of FOV axially (B). Images
without RM were reconstructed using 12 iterations of 16
subsets, whereas images with RM were reconstructed using
40 iterations of 16 subsets.

FIGURE 3. Axial, sagittal, and coronal planes of 3 point
sources reconstructed with different resolution kernels (using
15 iterations of 16 subsets), with zoom on 1 point source in last
column. Panels A, B, C, and D are reconstructed with
3-parameter kernel of size 33, 53, 93, and 153 voxels and E
with 2-parameter kernel of size 153 voxels. Note that color scale
was stretched to assist visualization of artifacts.
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A visual inspection of the images in Figure 5A shows
that RM-OP-OSEM offered better recovery of the smallest
sphere than did OP-OSEM and better delineation of the
contours between structures. This figure also shows that
RM significantly reduced the voxel variance to a level
comparable with the level that was obtained after post-
reconstruction smoothing with a 2-mm FWHM gaussian
kernel, typically used for visualization. This is confirmed in
Figure 5B, which also demonstrates that higher positive and
lower negative correlations with adjacent voxels are ob-
served when RM is used, leading to lower spatial variance.

Clinical Study. Time-averaged RM-OP-OSEM images
obtained for 1 subject are displayed in Figure 6A and show
improved delineation of the cortex and of the binding-
specific regions compared with OP-OSEM images. The
average activities in these small regions were also higher
than the activities in OP-OSEM images. The corresponding
time–activity curves indicated an increase of activity con-
centration for late time frames in the small regions of
interest (VS, Pu, and Ca increased by 13%, 15%, and 12%,
respectively) compared with the activity concentrations
derived from the OP-OSEM images as illustrated in Figure
6B. Unlike the small structures, the large nonspecific region
(cerebellum) shows only a 2% increase in activity.

As reported in Table 2, BP values obtained with RM-OP-
OSEM were higher than those obtained with OP-OSEM.
An increase was observed for all 5 subjects in all 3 VOIs,
leading to a significant difference of BP values in these
structures (P , 0.05, Wilcoxon nonparametric test). This

increase ranged from about 10% in the VS to about 20%–
25% in the Ca and Pu.

RM also resulted in better delineation of cortical and sub-
cortical structures for BP parametric maps. Postreconstruc-
tion filtering of the images before the parametric analysis leads
to lower BP values due to degradation of spatial resolution.

DISCUSSION

This work demonstrates that RM in the reconstruction
process improves spatial resolution (giving better delinea-
tion of structures), improves contrast recovery, and also
improves the noise properties of the images.

A 20%–40% increase of contrast recovery was observed
in a contrast phantom, and activity concentration estimates
were increased by 12%–15% in the anatomic VOI in the
clinical study. These results were confirmed in the para-
metric imaging study: BP values were significantly in-
creased by 10% in the VS to 20%–25% in the Ca and Pu.
The smaller increase in the VS might be because of several
phenomena: higher PVEs due to sampling in this smallest
and thinnest region of the striatum that cannot be recovered
by any of the 2 algorithms, significant spill-in from Pu and
Ca in this region partly recovered with RM (as previously
reported in a 11C-raclopride study using a geometric trans-
fer matrix as correction for PVEs (25)), and possible errors
in segmentation. These increased BP values are also con-
sistent with a previous study on the HRRT (26) that
reported an increase of about 30% in BP values for the

FIGURE 4. Impact of RM on CRC and noise properties, without (A) and with (B) postreconstruction smoothing. Each color
corresponds to different sphere. RM-OP-OSEM curves are represented by filled symbols and solid lines and OP-OSEM curve by
hollow symbols and dashed lines. Iteration numbers are shown for smallest sphere in A.

TABLE 1
Periphery-to-Total Activity Ratio (Eq. 10) of Point Source

2 weighted exponentials Single exponentialKernel size

(offset axially) 3 · 3 · 3 5 · 5 · 5 9 · 9 · 9 15 · 15 · 15 15 · 15 · 15

1 cm 0.79 0.29 0.08 0.01 0.04

5 cm 0.78 0.28 0.08 0.01 0.04
10 cm 0.91 0.32 0.09 0.02 0.04
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Ca and Pu, attributable only to the improved resolution of
this tomograph (compared with BP values derived from the
HR1 tomograph).

For noise properties, RM increased positive correlations
with adjacent voxels and decreased the negative correla-
tions in a homogeneous region as previously reported (27).
These results further indicate that RM has a significant
impact on image quality by increasing spatial homogeneity
in uniform activity concentration regions while increasing
contrast recovery in small structures. In this work, we did
not study the impact of data noise on RM. For the clinical
study, we followed the protocol defined previously (26)
(with frame duration of at least 1 min; that is, about 8

million events at least per frame). The data did not require
any postreconstruction smoothing, and thus resolution was
not degraded after reconstruction. The advantages of RM
are still impaired by data noise, and other reconstruction
techniques need to be devised to work at lower count
studies.

The proposed method used a simple experimentally
derived model of resolution. First, the spatial resolution
was chosen to be spatially invariant because the HRRT
offers DOI measurement and consists of detector panels
that limit spatial-resolution degradation over the FOV. This
first hypothesis is reasonable for this tomograph. For a
scanner with a more significant degradation of resolution,

FIGURE 5. Impact of RM on noise properties. (A) Mean (first row) and variance images (second row) over all 36 realizations, for
OP-OSEM (first column, 12 iterations of 16 subsets), OP-OSEM (12 iterations of 16 subsets) with 2-mm FWHM gaussian
postreconstruction smoothing (second column), and RM-OP-OSEM (last column, 16 iterations of 16 subsets). (B) Covariance in
summed planes on homogeneous background region.

FIGURE 6. Time-averaged images (A) and corresponding VOI time–activity curves (B) for subject. In A, images across striatum were
reconstructed with OP-OSEM (first row, 12 iterations of 16 subsets), OP-OSEM (12 iterations of 16 subsets) followed by a post-
reconstruction smoothing with 2-mm FWHM gaussian kernel (second row), and RM-OP-OSEM (last row, 15 iterations of 16 subsets).
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more complex models taking into account spatially variant
anisotropic resolution may be used in RM techniques
operating in image space, as previously demonstrated (4).

However, the major advantage of using a shift-invariant
resolution kernel is the ability to perform the convolution
step in the Fourier domain to speed up the reconstruction
process, which is crucial when the resolution kernel is not
separable. The reconstruction of 1 frame in the clinical
examination lasted about 1.5 h for 12 iterations of 16
subsets of the OP-OSEM algorithm and 4 h for 16 iterations
of 16 subsets of the RM-OP-OSEM algorithm. Early tests
show that reconstruction of typical scans would be accel-
erated by a factor of 2–3, using fast Fourier transforms
compared with image-based 3-dimensional convolution.

In this work, we focused only on image improvements
enabled by RM. LM reconstruction with Siddon projectors
was chosen to enable fast reconstructions in low-count
dynamic examinations. In particular, RM-OP-OSEM does
not take advantage of the higher spatial resolution of LM
data because it uses binned sinograms for the corrections.
However, we found in a simulation that span-3 or span-9
data binning resulted in only limited spatial-resolution
degradation for the HRRT and that RM had a greater
impact on resolution (12).

Although alternative component-based techniques have
been proposed (28) to derive LOR normalization estimates
from low–scan-time acquisitions, corrections using binned
sinograms are still widely used. Implementing these tech-
niques would be beneficial for the RM-OP-OSEM algo-
rithm, because one would obtain slightly better spatial
resolution and realigning of LORs would no longer be
necessary.

Imperfect deconvolution was studied using a simple
criterion showing that the choice of the number of voxels
used to represent the kernel is crucial to limit ringing
artifacts during reconstruction. Throughout iterations, de-
convolution errors cannot be distinguished from recon-
struction errors as RM is within the system matrix. When
images converge, these errors can be further estimated by
computing the error spectrum related to the ratio between
the true (inverse filter when it exists) and the modeled
deconvolution filters (29) or by using the approach de-
scribed by Qi et al. (30) (it would require inversion of the
Fisher information matrix, typically containing 107·107

elements for the HRRT).

In addition, we did not study the effects of nonlinearities
because of the use of the EM algorithm. In particular,
resolution in the air (infinite contrast) is known to be better
than resolution in a warm background (2). However, it is
safer to underestimate the resolution rather than to overes-
timate it, as shown by Reader et al. (3): the former leads to
a reconstructed image with blur (but less blur than without
resolution modeling), whereas the latter leads to artifacts.

In this work, early stopping of the EM algorithm was
used to ‘‘regularize’’ the reconstructions, and the impact of
RM for given levels of noise or contrast was considered. In
the clinical study, the stopping criterion was chosen so that
the signal in the anatomic VOIs had converged for each
frame. Even if other stopping criteria are considered (e.g.,
as described by Selivanov et al. (7)), it seems that RM
should be included in maximum a posteriori algorithms.
This approach has already been used and has proved
beneficial (31). Early stopping of the reconstruction algo-
rithm implies that the signal has not converged at the voxel
level. The parametric maps derived from the reconstructed
images can thus be used to investigate potential inhomo-
geneities in subregions but not to provide a parametric
analysis at the voxel level.

CONCLUSION

An iterative algorithm including experimental shift-
invariant RM has been developed to take into account the
resolution characteristics of the HRRT, and the resulting
improvements in contrast recovery of small structures and
noise properties in images have been demonstrated. RM
also significantly affected the quantification of compart-
mental parameters used in kinetic modeling. This approach
makes greater use of the high spatial resolution available
with new tomographs, which is required for clinical dy-
namic brain PET.
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