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PET allows the imaging of functional properties of the living tissue,
whereas other modalities (CT, MRI) provide structural information
at significantly higher resolution and better image quality. Con-
straints for injected radioactivity, technologic limitations of current
instrumentation, and inherent spatial uncertainties on the decaying
process affect the quality of PET images. In this article we illustrate
how structural information of matched anatomic images can be
used in a multiresolution model to enhance the signal-to-noise ratio
of PET images. The model states a flexible relation between function
andstructure in thebrainandreplaceshigh-resolution informationof
PET images with appropriately scaled MRI or CT local detail. The
method can be naturally extended to other functional imaging mo-
dalities (SPECT, functional MRI). Methods: The methodology is
based on the multiresolution property of the wavelet transform
(WT). First, the coregistered structural image (MRI/CT) is down-
graded to the resolutionof thePETvolumethroughappropriatefilter-
ing. Second, a redundant version of the WT is applied to both
volumes. Third, a linear model is applied to the set of local coeffi-
cientsofboth imagevolumesandresultingparametersare recorded.
The overall set of linear coefficients is then modeled as a mixture of
multivariate gaussian distributions and fitted through a k-means al-
gorithm. Finally, the local wavelet coefficients of the PET image are
substitutedby thecorrespondingvaluesof theMRI/CTsetcalibrated
according to the resulting clustering. The methodology was vali-
dated on digital simulated images and clinical data to evaluate its
quantitative potential for individual as well as group analysis. Re-
sults: Application to real and simulated datasets shows very
effective noise reduction (15% SD) while resolution is preserved.
Conclusion: The methodology is robust to errors in the coregistra-
tion parameters, practical to implement, and computationally fast.
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The application of PET to image radiotracer distribution
in humans is limited largely by scanner sensitivity (1).
Although in the recent past counting statistics have been
steadily increasing with the introduction of new technologies
such as 3-dimensional PET (2) and new scintillator materials
such as lutetium oxyorthosilicate (3), increased sensitivity
has been outstripped by improvements in the spatial resolu-
tion of the detectors. In the near future, further improvements
in count statistics may be brought by improvements in
scanner technology (1). However, poor signal-to-noise ratio
(SNR) is likely to distinguish PET from CT and MRI in the
years to come.

Computational approaches may play an important role in
PET noise-reduction as long as the increase in the SNR is not
associated with a resolution loss and their implementation is
practical and fast. In particular, PET denoising approaches
based on the wavelet transform (WT) (4–6) have consistently
been reported to increase accuracy and precision of PET
images in a wide variety of contexts (7).

The WT is a recently introduced mathematic tool for the
treatment of signals with nonstationary behavior (e.g., a
hammer blow, a plane flyover noise, etc.) (8). The counterpart
of the WT is the Fourier transform that achieves optimal
encoding of periodic signals. In PET, the WT is applied to the
spatial distribution of the radiotracer after reconstruction,
and it converts the original pixel values in wavelet coeffi-
cients that represent signal intensity at different locations at
different resolutions. The resulting multiscale representation
has interesting properties (5), among which the one relevant
to the present work is the ability to concentrate signal in a few
coefficients at different scales while the noise remains
homogeneously distributed. This separation between signal
and noise may be exploited to increase image SNR if one
is able to remove the noise in the wavelet space before
transforming back the data into images. Alpert et al. (7) have
shown through accurate simulations of dynamic PET se-
quences that in the case of neuroreceptor studies one could
ideally achieve a 2-fold increase in the SNR of the 4-dimensional
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dataset and 1.5 SNR improvements in the derived parametric
map. However, ideal performance implies the knowledge
of the distribution of the ‘‘true’’ wavelet coefficients as
opposed to the distribution of those due to noise. Recently,
we have shown that, through a multiscale description of the
physiology of the organ imaged by PET, a hierarchical filter
can be derived that is able to produce SNR improvements in
parametric images close to the predicted optimal mentioned
above (9).

In this work we further explore the possibility of using
information on the object imaged by the PET procedure to
enhance image quality without resolution loss. In particular,
we make use of a coregistered structural/anatomic image
and postulate a stochastic model between the wavelet dis-
tribution of the structural image (MRI or CT) and the
wavelet distribution of the functional image (PET).

This work builds on previously published results on the
use of coregistered MRI or CT datasets for the partial-
volume correction of PET images (10). By substituting the
high-resolution wavelet coefficients of the PET volume
with those of the MRI volume, Boussion et al. were able to
increase the resolution of the PET volume, whereas the ap-
propriate scaling between PET and MRI/CT coefficients at
the finest resolution was obtained by assuming a global lin-
ear relationship between PET and MRI/CT wavelets at lower
resolutions (10).

In the procedure introduced here, we adopt the inverse
approach where, after degradation of the matched MRI/CT
volume to the resolution of the PET, we substitute the PET
wavelets with the corresponding MRI/CT wavelets after
appropriate scaling. Differently from before, however, we re-
lax the assumption of a simple scalar relation between struc-
ture and function and postulate a stochastic model to relate
structural and functional information.

The performance of the resulting procedure was evalu-
ated through simulations using a digital phantom and in the
clinical setting, which obviously entails the presence in real
terms of factors such as coregistration errors and unknown
relations between structure and function. Clinically, the
SNR improvement brought by the new algorithm was as-
sessed in whole-body PET/CT and as improvement in
detection of microglial activity in a group of Huntington’s
disease (HD) patients imaged with PET and [11C]-(R)-
PK11195.

MATERIALS AND METHODS

The computational procedure consists of 3 steps. First, the
coregistered MRI/CT volume is degraded to the resolution of the
PET scanner. In all instances we applied to the MRI/CT volume
an isotropic gaussian kernel so that final image resolution
matched the one of the PET scanner (simulated or real). Second,
the WT is applied to both PET and MRI/CT volumes. Third, the
wavelet coefficients of the PET volume are replaced by those of
the MRI/CT volume after appropriate scaling. The scaling
between MRI/CT and PET coefficients is obtained by application

of an appropriate stochastic model. Detailed implementation is
as follows:

WT Regression Model
The application of the WT to tomographic images has been

described in detail previously (5) and will be summarized here.
The dyadic wavelet transform (DWT) consists of the iterative

application of 2 conjugate filters, the high-pass filter (H) and the
low-pass filter (L) and subsequent decimation. At each iteration, the
output of filter H is decimated and stored as the wavelet coefficients
for that resolution, whereas the decimated output of filter L, the
residuals, is passed to the following stage for subsequent filtering
and decimation. The inversion of the procedure returns the original
data-vector.

The 2-dimensional DWT is obtained by separate application of
the DWT to rows and columns. This operation generates 4
quadrants. The HH quadrant (diagonal details) collects the deci-
mated output of the H filter applied to both rows and columns of
the data matrix. The HL quadrant (horizontal details) contains
the coefficients resulting from the application of the H filter to the
rows and the L filter to the columns. The LH quadrant (vertical
details) is obtained when the L filter is applied to the matrix rows
and the H filter to the matrix columns. Finally, the LL quadrant
contains the residuals obtained from the L filter operated on both
rows and columns. The coefficients in the quadrants HH, HL,
and LH represent the 2-dimensional DWT for the particular reso-
lution.

Formally, let I(s) be the image matrix that, for ease of
comprehension, we assume to be square N·N (note that the
application of the DWT requires dimension N to be a power of 2)
and is indexed by s:s 5 (x,y). We define the DWT operator W and
W21 its inverse. Application of the DWT to the image produces:

IðwÞ 5 WðIðsÞÞ 5 Ui½HHiðwÞHLiðwÞLHiðwÞ�: i 5 1; 2; . . . ;D

Eq. 1

The index w:w 5 (x,y) spans the dimension N/2i·N/2i, i is an
index of the resolution levels, U is the union operator, and D is the
top wavelet resolution level such that 2D 5 N. The 3 coefficients
for quadrants HHi(w), HLi(w), and LHi(w) correspondent to pixel
s can be recovered from the correspondence:

w 5 bs=2ic; Eq. 2

where bAc is the floor operator that rounds the elements of A to the
nearest integer less than or equal to A.

In the context of tomographic images however, the traditional
DWT is usually discarded in favor of redundant WT approaches
(5,10). In this work we used the cycle-spinning DWT (WTCS) that
applies iteratively the WT to a series of shifts, column wise and row
wise, of the original image (5). This procedure generates a WT
representation that preserves the original signal content of the image
to the expense of a bigger storage matrix. A detailed description of
the WTCS is contained in (5); here the procedure is only sketched.
The first-resolution level is obtained by application of the DWT to
the original image and to the 3 images obtained, respectively, by a
single pixel shift applied to the rows, then to the columns, then to
both. The second resolution level is generated by the DWT applied
to the 4 residual quadrants LL obtained from the previous step and to
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their shifts (3 each for a total of 16 transforms), etc. If we define the
WTCS operator as Wcs and Wcs

21 is its inverse then:

IðwÞ 5 WcsðIðsÞÞ 5 Uij½HHijðwÞHLijðwÞLHijðwÞ�:
i 5 1; 2; . . . ;D j 5 1; 2; . . . ; 4i:

Eq. 3

Consider now a functional image F(s) (PET, SPECT) and the
correspondent structural image S(s) (CT, MRI). Application of the
WTCS generates:

FðwÞ 5 WcsðFðsÞÞ; Eq. 4

and

SðwÞ 5 WcsðSðsÞÞ: Eq. 5

The procedure developed here models the relation between wavelet
coefficients of a functional volume F(w) and those of structural
volume S(w) one resolution at a time. Therefore, what follows must
be intended to be applied to F(w) and S(w) for a fixed index i. The
procedure should be applied only at the finest resolution levels (the
first 3 in this work), as noise is not an issue at lower resolutions.

For a resolution i, we postulate for every pixel s a linear
relationship between the correspondent wavelets in the functional
image and those in the structural image—in other words:

½HHijðwÞHLijðwÞLHijðwÞ�F 5 aiðwÞ � ½HHijðwÞHLijðwÞ
LHijðwÞ�S1biðwÞ1eðwÞ:

j 5 1; 2; . . . ; 4I

w 5 bs=2ic: Eq. 6a

The linear relation between the wavelet of the functional image
and the one of the structural image is the first order approximation
used by Boussion et al. (10); in their work this relation was
established globally on the image whereas here it is applied
locally.

In Equation 6a the linear vectors [. . .]F and [. . .]S collect the
wavelet coefficients of the different subbands of resolution ‘‘i’’ for
image F and S corresponding to the pixel s, while ai(w) and bi(w) are
the coefficients of the linear model and e(w) is a homogeneous zero-
mean gaussian process. Representation in Equation 6a assumes
that, given the higher noise of the functional image, vector [. . .]S can
be considered as noiseless. The model in Equation 6a can be
resolved by application of linear least squares to:

½HHijðwÞHLijðwÞLHijðwÞ�F 5 aiðwÞ � ½HHijðwÞHLijðwÞ
LHijðwÞ�S1biðwÞ:

j 5 1; 2; . . . ; 4I

w 5 bs=2ic: Eq. 6b

In Equation 6b ai(w) and bi(w) are sample realizations of ai(w)
and bi(w).

Because the model in Equation 6b is local, the assumption on the
gaussian nature and homogeneity of e(w) can accommodate both
stationary and nonstationary noise conditions that depend on the
particular reconstruction algorithm (11). With iteratively recon-
structed images, with a large number of iterations, the nature of the
noise may become non-gaussian and maintain non-gaussian prop-
erties also in the wavelet domain. If the latter is the case, the model in

Equation 6b is still valid and linear least squares can still be applied
as long as an appropriate variance transformation (e.g., logarithm) is
applied to the functional data.

At this stage we make the second assumption that the relation-
ship between function and structure varies throughout the image
but that there may be homogeneities in this relation that can be
exploited to improve the SNR of the functional image. Under this
assumption, the most general statistical model P(ai,bi) for the set
of coefficients ai(w) and bi(w) is a mixture of multivariate normal
distributions, that is:

Pðai;biÞ 5 SkNkðmk;s
2
kÞ=K: k 5 1; 2; . . . K: Eq. 7

In Equation 7, each bivariate normal probability function Nk(�) is
parameterized by its mean vector mk 5 [a�k;b� k] and relative
variance vector sk

2.
The model in Equation 7 can be estimated through a clustering

K-means algorithm, where the number of clusters K can be
calculated by progressive application of the algorithm to increas-
ing values of k and comparative testing of the residuals of model k
toward the more complex model k11 through the pseudo F test for
nested models (12). The pseudo F can be constructed as:

F2;2N-2k 5

ðRSSk 2 RSSk21Þ
RSSk

N 2 k

N 2 k 2 1
� k11

k
2 1

: Eq. 8

In Equation 8, RSSi is the residual sum of squares of model
i and N is the total number of (a,b) pairs. The threshold for the
F test should be selected suitably small; in this instance, the
P value 0.01 was adopted.

Once the model in Equation 7 is estimated, the wavelet
coefficients at Equation 6 can be estimated by incorporating the
corresponding estimated parameters mk so that:

½HHijðwÞHLijðwÞLHijðwÞ�FE 5 �ak � ½HHijðwÞHLijðwÞLHijðwÞ�S

1b�k
:

Eq. 9

Let FE(w) be the functional volume obtained by application of
the regression model for several wavelet resolution levels. The
denoised function image can be obtained by application of the
inverse DWTCS as:

FEðsÞ 5 W21
cs ðFEðwÞÞ: Eq. 10

Validation I: Synthetic Data
Given the specified model in Equation 7, the performance of

the algorithm will vary according to the image patterns and to the
structural/functional relation. To assess a possible worse-case
scenario, we based the simulation study on a realistic but complex
pattern, the brain, with variable and mismatched structural/func-
tional relations.

We considered a digital 128 · 128 · 10 brain Hoffman phantom
(13) that was used as the structural image (Fig. 1A). The functional
image was obtained by adding to the phantom different patterns of
varying intensities and sizes (Fig. 1B). To achieve realistic condi-
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tions, we created local differences in intensities and mismatches
between the structural and functional image (note brighter areas in
cerebellum as indicated by arrows in Fig. 1B). The image was then
smoothed with a gaussian filter of 5-mm full width at half maximum
(FWHM). Gaussian noise of varying SD and with the same
smoothness (SD) (5%, 7.5%, 10%, 15%, 20%) was then added,
and 100 realizations for each noise level were created and processed
with the wavelet-based denoising algorithm. A second set of
simulations was also devised with the same settings but with a
proportional noise model, where SD was not uniform across the
image but proportional to the underlying signal. The standard SURE
wavelet filter, purposely devised for PET (5) and considered as a
state-of-the-art denoising filter, was used for comparison purposes.

Performance measures were bias (difference between true and
estimated pixel value) and SD of the estimates (at the pixel level)
averaged either across the whole image or the regions of mismatch
between the simulated functional and structural images.

Validation II: Phantom Data from GATE Simulator
Although gaussian stationary and nonstationary noise conditions

may account for a fraction of PET studies (filtered backprojection
[FBP] reconstruction and iterative reconstruction with precorrec-
tions), we explored further the performance of the denoising

algorithm for emission images using accurate simulation of a
cylindric phantom. Images consisted of a simplified numeric version
of the IEC phantom 61675-1. The latter consists of a 20-cm diam-
eter by 20-cm long cylinder, containing 6 spheres of different di-
ameters (37, 28, 22, 17, 13, and 10 mm). The numeric version was
produced as a set of 64 contiguous planes of 64 · 64 square pixels of
4 · 4 mm in size, and an acquisition with the Philips Allegro PET
scanner was subsequently simulated using GATE, a Monte Carlo–
based simulator (14). A total of 60 million coincidences were
simulated considering a sphere/cylinder activity concentration ratio
of 5:1. Images were reconstructed using the OPLEM algorithm
(11 iterations) (15).

Validation III: Clinical Whole-Body [18F]FDG PET/CT
Images

The proposed denoising technique was first tested on clinical
whole-body PET/CT studies to assess the portability of the algo-
rithm considering images of different characteristics. Whole-body
PET/CT images of 4 patients acquired using the Discovery LS (GE
Healthcare) were analyzed. Patients were scanned at 55–60 min
after injection of an average 365 MBq of [18F]FDG. The whole-body
PET acquisition protocol comprised 2-dimensional emission scans
of 3 min per bed position, whereas the CT scans (tube acquisition

FIGURE 1. Digital structural (A) and
functional (B) volumes used for synthetic
data simulations. Structural volume is a
Hoffman brain phantom (128 · 128 · 10).
Functional image (ground truth) (C) was
obtained by adding local changes in
intensities of various sizes not necessar-
ily matching the underlying structural
patterns (arrows) and then smoothed
with a gaussian filter with FWHM 5 5
mm to simulate a typical neurologic
image.
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parameters of 140 keV and 80 mA) were acquired under normal
breathing conditions. PET images were reconstructed with CT-
based attenuation correction (16), using the ordered-subsets expec-
tation maximization (OSEM) algorithm (128 · 128 · 205 matrices;
voxel size of 4.35 · 4.35 · 4.25 mm3). The number of iterations and
subsets used for the reconstruction have been previously optimized
for an improved SNR (17).

Images were analyzed quantitatively by calculating intensity
inside regions of interest (ROIs) manually drawn over either
identified lesions or large homogeneous regions (lungs, liver, and
other soft tissues). ROIs were thus separated into 2 different groups.
In the first one containing large ROIs, noise (defined as the SD of the
voxel intensity) was measured before and after denoising. In the
second set containing ROIs surrounding small lesions, the SNR was
computed as the ratio between mean value and the SD of the voxel
intensity inside the specific ROIs and SNR was calculated before
and after denoising. Only uniform ROIs around lesions were
considered, where uniformity was defined as SD , 10% relative
to the mean intensity.

Validation IV: [11C]-(R)-PK11195 Group Study
In this second part of the validation, the technique was evaluated

in a clinical setting that not only contained realistic patterns, varying
anatomic/functional correlates, and coregistration errors but also
was characterized by a controlled context where patient diagnosis
was 100% accurate and the disease pattern was known. For this
study we selected a set of 22 [11C]-(R)-PK11195 scans, 12 of which
were performed on HD patients with overt symptoms and 10 were
age-matched controls (18). [11C]-(R)-PK11195 is a radiotracer
selective for the peripheral benzodiazepine receptor that is the most
consistently upregulated protein in reactive microglia (19). Micro-
glia, the resident immune cells of the brain, react to any insult in the
central nervous system, from stroke to neurodegeneration to neo-
plasia; this makes [11C]-(R)-PK11195 a widely used general indi-
cator of brain disease (20). In the case of HD, microglia have a
pattern of activity that has been well characterized and has a defined
anatomic localization in the globus pallidus as well as caudate and
putamen (21). Further activity has also been detected in the cortex
but less colocalized within defined anatomic structures (21). This
bivalent relation between functional activation and anatomic local-
ization represents an ideal test-bed for the methodology introduced
in this work. Diagnosis of the disease cohort was 100% accurate as
all HD patients had genetically proven disease with an expanded
CAG repeat in the IT15 gene on chromosome 4.

All [11C]-(R)-PK11195 studies were performed on an ECAT
EXACT HR11 (Siemens 966; Siemens Medical Solutions, Inc.)
camera (23.4-cm axial field of view, 95 transaxial planes, spatial
resolution of 4.8-mm FWHM [transaxial] and 5.6-mm FWHM
[axial]). A transmission scan was acquired before the emission scan
using a single rotating photon point source of 150 MBq of 137Cs for
subsequent attenuation correction and scatter correction. Images
were then reconstructed with the reprojection algorithm with the
ramp and Colsher filters set to Nyquist frequency (22). The ramp
filter offers the highest resolution at the expense of higher noise
levels and is therefore the best case for the application of the
methodology. [11C]-(R)-PK11195 was manufactured by Hammer-
smith Imanet Ltd. A mean dose of 294 MBq was injected as a bolus
and 3-dimensional sinograms of emission data were then acquired
over 60 min as 18 time frames. Volumetric T1-weighted MR images
were obtained on a 1.0-T Picker HPQ scanner (Picker International)
at the Robert Steiner MR Unit, Hammersmith Hospital, London.

Pixel-by-pixel maps of binding potential (BP) were generated
using the simplified reference tissue model (SRTM) (23). Extrac-
tion of the reference region was performed using a supervised
clustering algorithm that selects gray matter pixels devoid of
specific [11C]-(R)-PK11195 binding (24).

Parametric images were then coregistered to their respective
T1-weighted MR image using as reference the relative sum of the
activity images obtained as the sum of all the frames weighted by the
estimated number of true events in each frame. At this stage the BP
images were denoised using the proposed synergistic fusion tech-
nique. Both original and denoised images were subsequently spa-
tially normalized into standard Montreal Neurologic Institute
(MNI) space. Statistical parametric mapping SPM2 (Functional
Imaging Laboratory, Wellcome Department of Imaging Neurosci-
ence, University College London, London) was used for the image
transformations. Normalized parametric images in HD patients and
healthy subjects were then contrasted to create mean increase maps
of microglial activation in HD using SPM2. Pixel-by-pixel appli-
cation of the 1-tailed Student t test generated maps of z scores; in the
generation of these maps all thresholds (intensity threshold, F
statistic threshold, and Student t test threshold) were removed.
The average of the z scores in ROIs comprising caudate, putamen,
and globus pallidus was used to score the sensitivity of the algorithm
under evaluation toward the original parametric maps. The same
contrast for both denoised and raw parametric maps was also visu-
alized as z-score maps to allow qualitative evaluation of the results.

RESULTS

The synergistic methodology described in the previous
sections was implemented using Matlab (The Mathworks
Inc.) on a Sun Ultra10 workstation. Computationally, the
technique required ,10-min processing time to denoise a
128 · 128 · 100 emission volume.

Synthetic Data

Figure 2 allows the qualitative appreciation of the appli-
cation of the procedure on a single noisy realization obtained
with 10% constant noise. Note that the synergistic filter
image is less noisy but still sharp, suggesting no resolution
loss, which, instead, is apparent in the SURE filtered image.
Results of the simulation studies are summarized in Table 1 in
terms of bias and noise reduction. The 2 rows indicate the
average results for the whole phantom (‘‘Global’’) and for
those specific areas of the phantom where mismatch was
introduced between the structural and functional simulated
images (‘‘Mismatch’’). The additional line illustrates the
performance of the SURE filter globally (the SURE does not
use structural information). There was a remarkable consis-
tency of the results among noise levels and noise models
indicating a consistent reduction of the variability that ranged
from ;12% on the entire pattern with a minimum of 9.8% on
those cerebellar areas where we introduced a mismatch
between the structural and functional patterns. Bias on
average was quite low reaching a maximum of 1% through-
out the 5 simulation studies. This was primarily due to signal
loss at the edges with a maximum overall value of 4%
indicating small resolution loss; the local regression model
could not be effective in the high-resolution frequencies
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(edges) but still preserved the lower frequency information.
The SURE performance clearly illustrates the properties of
standard wavelet filters: the significant noise reduction (up
to 23% with the constant noise model) was counterbalanced
by an average bias of 8% that was due to resolution loss,
which around the edges caused signal decreases of .35%
(data not shown). Results with the proportional noise model
were almost identical in terms of bias and noise reduction and
are not reported.

GATE Simulated Phantom

Data and results for the phantom simulation are illustrated
in Figure 3, which shows also the line profiles through the 6
spheres for the emission image before and after denoising. As
it is apparent from the profiles, application of the structural
denoising caused no appreciable loss of resolution. Noise
reduction was measured as the percentage reduction of the
SD in a square region, 20 · 20 pixels, placed in the center of
each of the 64 planes of the cylinder. The resulting reduction

FIGURE 2. Results of simulation study
(in this case, with stationary 10% noise
level). One realization (10 planes) and
output of synergistic and of SURE wave-
let filters are shown.

TABLE 1
Constant Noise Model

Mean absolute bias of synergistic denoising approach for simulation studies expressed as fraction of signal

Noise levels

Characteristic 5% 8% 10% 15% 20%
Global 0.003 0.002 0.000 0.003 0.005

Mismatch 0.010 0.009 0.008 0.007 0.006

SURE* 0.076 0.070 0.066 0.055 0.046

Mean noise change of synergistic denoising approach compared with raw images for simulation studies

Noise levels

Characteristic 5% 8% 10% 15% 20%
Global 20.123 20.124 20.124 20.124 20.124

Mismatch 20.097 20.098 20.098 20.099 20.099

SURE* 20.227 20.231 20.230 20.230 20.230

*Results for the wavelet SURE filter.
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in SD due to denoising was 31% (maximum, 39.9%; mini-
mum, 19.5%).

Clinical Whole-Body [18F]FDG PET/CT Images

Preliminary analysis of the relation between functional
and structural wavelets was performed by visual inspection
of the coefficients when plotted, ones against the other
ones, and confirmed a very good linear distribution. Vari-
ance inhomogeneity was also verified using logarithmically
transformed functional data but was discarded as unsuitable
for this application.

Figure 4 presents 2 examples of images before and after
denoising by synergistic PET/CT fusion. Despite a slight
smoothing effect across the whole image, the qualitative
appearance of images is not degraded by the operation.
Furthermore, the denoising is having the same effect across
tissues with high and low uptakes, contributing this way to
keeping the global homogeneity of processed images. With
regard to the quantitative analysis, absolute intensity values
were on average reduced by ,5% in the different ROIs
considered, demonstrating a small loss of resolution as
already seen in the simulated datasets. The noise reduction
in the set of large ROIs inside homogeneous tissues, such as
lungs or liver, is illustrated in Figure 5A. Fifteen ROIs were
drawn for each patient leading to a total of 60 different
regions of mean size 5,783 6 976 mm2. Denoising was
significant, as noise reduction reached 21% 6 8.2% with
minimal and maximal values of 6.2% and 36%, respectively.
SNRs before and after denoising in ROIs related to small
lesions are given in Figure 5B (mean ROI size, 199 6 90
mm2, 12 lesions in total). The corresponding SNR increase in
terms of percentage is also presented, with a mean value of
45.7% 6 22.5% (minimum, 17.1%; maximum, 83.4%).

[11C]-(R)-PK11195 Group Study

Quantitatively, the noise reduction introduced by the
methodology was measured in the group study as the average
of the z scores on the striatum—that is, the area with known
pathologic insult and related intense microglial activity. The
z-score average was 1.160 when the contrast was generated
using raw BP images and 1.355 when the de-noised images
were used. Considering that the signal intensity remains
practically constant after processing, this result corresponds
to a reduction in noise of 15.5%, which is right above the
lower bound predicted by the simulations.

Figure 6 illustrates the overall result of the comparison
between the 2 groups of scans, HD subjects versus controls,
in terms of z-score maps for the raw BP maps (Fig. 6A) and
those that were denoised (Fig. 6B). Localization of activa-
tion pattern is very similar, if not identical, for both raw and

FIGURE 3. Data and results for simulated phantom (1 plane
only). (A–C) Original digital image (A) and GATE simulated image
before (B) and after (C) denoising. (D) Composite of profiles
(black lines on images) through hot spheres for raw (dotted) and
filtered (continuous) image.

FIGURE 4. Application of wavelet-
synergistic methodology to [18F]FDG
whole-body PET images in oncology.
Anatomic data are provided by CT im-
ages acquired on a dedicated PET/CT
scanner. Coronal slices of 2 patients are
presented (from top to bottom): PET
before denoising (left), CT (middle), and
PET after denoising (right).
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denoised maps, but the latter display an evident increase in
sensitivity as the signal is more intense and better delin-
eated without obvious evidence of resolution loss.

DISCUSSION

The synergistic use of imaging modalities is meant to
overcome the intrinsic limitations and to enhance the specific
advantages of the different approaches to allow both ana-
tomic and functional correlation for visualization, increased
precision, and accuracy for quantification.

In the past, fusion between functional and structural
images has been made practical—particularly for brain
applications—by the availability of software packages that
are able to coregister with good precision 2 modalities
acquired independently (25). It has recently become more
convenient for different imaging applications with the intro-
duction of PET/CT scanners (26) and the upcoming devel-
opment of PET/MRI tomographs (27).

So far, the quantitative application of image fusion has
focused on the use of structural information for partial-
volume correction (28). The methodology presented here,
which stems from a previous approach to partial-volume
correction (10), is intended to use fused structural informa-
tion to denoise emission tomography images. The technique
is of general use and we have shown its applicability to both
PET/CT and PET/MRI coregistered volumes. As a totally
automatic and fast postprocessing step it also represents a

very practical approach. The resulting performance was
consistent across several simulated and clinical datasets
and across modalities. The study on the synthetic data and
the digital phantom predicted a noise reduction between
12.5% and 31%, on average, depending on the complexity of
the underlying pattern, without significant loss of resolution.
In real terms, this amounts to a 25%–45% reduction in
sample size for a group study or to a similar reduction in the
injected dose. In the clinical brain study involving the use of
[11C]-(R)-PK11195 and PET on control subjects and HD
patients, the resulting noise reduction amounted to ;15%. In
the PET/CT application of thorax FDG studies, noise reduc-
tion was 20%, on average, with a significant increase in SNR
(45%). However, on average, absolute intensity changes
were similar in magnitude to those seen in the simulated
datasets and limited to ,5% irrespective of the activity level
in the ROIs considered. The variability in noise suppression
was dependent on the varying number of clusters detected by
the procedure (data not shown) and, therefore, by the homo-
geneity in the relation between function and structure in the
image (the greater the homogeneity, the smaller the number
of the clusters, the higher the noise reduction).

The ability of this filter to reduce noise without resolution
loss stems from the use of additional information in the form
of the structural image. This feature sets this filter apart from
other postreconstruction filters as well as from other wavelet
filters previously proposed for emission images (5). With such
filters as the SURE, which was used as a reference in the

FIGURE 5. Results of application of the
methodology to 4 [18F]FDG whole-body
images. (A) Percentage of noise de-
crease in large and homogeneous areas.
Fifteen ROIs per patient (60 ROIs in total)
were drawn in lungs and liver. (B) SNR in
12 lesions before and after wavelet
denoising. Percentage of SNR increase
is presented as well (right-hand side,
y-axis) to help in appreciating the level of
improvement achieved.
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simulation study of this work, no extra information besides the
emission image itself is available and the achieved variance
reduction is counterbalanced with a resolution loss that is
generally not acceptable for clinical use. The synergistic filter
is also more generally applicable than the one in (9) which
applies to dynamic acquisitions for irreversible tracers only.

CONCLUSION

Wavelet models are effective computational tools for the
synergistic fusion of images of different modalities. We have
demonstrated that, in the context of PET/CT and MRI/PET,
these models can deliver a substantial increase in sensitivity
of emission images with minimal resolution loss.
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