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The purpose of this study was to develop a computer-assisted
diagnosis (CAD) system based on image-processing techniques
and artificial neural networks for the interpretation of bone scans
performed to determine the presence or absence of metastases.
Methods: A training group of 810 consecutive patients who had
undergone bone scintigraphy due to suspected metastatic dis-
ease were included in the study. Whole-body images, anterior
and posterior views, were obtained after an injection of 99mTc-
methylene diphosphonate. The image-processing techniques in-
cluded algorithms for automatic segmentation of the skeleton
and automatic detection and feature extraction of hot spots.
Two sets of artificial neural networks were used to classify the im-
ages, 1 classifying each hot spot separately and the other classi-
fying the whole bone scan. A test group of 59 patients with breast
or prostate cancer was used to evaluate the CAD system. The
patients in the test group were selected to reflect the spectrum
of pathology found in everyday clinical work. As the gold stan-
dard for the test group, we used the final clinical assessment of
each case. This assessment was based on follow-up scans
and other clinical data, including the results of laboratory tests,
and available diagnostic images, such as from MRI, CT, and ra-
diography, from a mean follow-up period of 4.8 y. Results: The
CAD system correctly identified 19 of the 21 patients with metas-
tases in the test group, showing a sensitivity of 90%. False-
positive classification of metastases was made in 4 of the 38
patients not classified as having metastases by the gold stan-
dard, resulting in a specificity of 89%. Conclusion: A completely
automated CAD system can be used to detect metastases in
bone scans. Application of the method as a clinical decision sup-
port tool appears to have significant potential.
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Bone scanning is widely accepted as a method of choice
for initial diagnosis of bone and joint changes in patients
with oncologic diseases (1–4). Because the choice of treat-
ment strategy is influenced by the presence or absence of
bone metastases, the correct interpretation of the bone
scans is important. Classification of the bone scans is, how-
ever, a subjective task, and some of the previous studies in
this field have shown that false-negative interpretations are
unacceptably high (5,6). Our group recently performed a
nationwide survey to investigate observer variation and
performance regarding the interpretation of bone metasta-
ses (7). Thirty-seven observers with various levels of ex-
perience working at 18 different hospitals in Sweden
participated. The sensitivities for the observers ranged from
52% to 100%, with an average of 77% at a mean specificity
of 96%. The study also showed moderate interobserver
agreement among the 37 observers when they were pairwise
compared with each other (mean k, 0.48). Our findings
were in agreement with those of Rossing et al. (5), in whose
study 3 experienced observers reread 842 bone scans from
12 different hospitals. With the interpretation of the 3 panel
observers considered as the gold standard, the sensitivities
and specificities of the original reports were 78% and 84%,
respectively (5). Peters et al. performed a clinical audit in
nuclear medicine and found that 19 of 220 reports (8.6%)
were classified as having nontrivial interpretation errors, in
which the physicians failed to mention increased uptake in
their reports on patients with cancer (6).

Computer-assisted diagnosis (CAD) systems have re-
cently become a part of the clinical routine work for detection
of breast cancers on mammograms at many screening sites
and hospitals in the United States (8–12). These systems have
been shown to significantly improve the performance of the
physician in finding cancers (10–12). Similar CAD systems
have also been shown to increase the sensitivity of less
experienced physicians in detecting polyps in CT colonog-
raphy (13) and to improve performance and decrease inter-
observer variability regarding interpretations in myocardial
perfusion imaging (14). CAD systems could, therefore, be of
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value in many applications in the field of diagnostic imaging.
The concept of CAD is to assist the physician by combining
his or her competence and knowledge with the capability of
the computer in detecting lesions in medical images.

We have recently developed an automated CAD system
for the interpretation of bone scans, and the results showed
a sensitivity of 90% at a specificity of 74% (15). The results
were encouraging, but further improvement of the system is
needed for it to be used in the daily clinical setting.
Therefore, on the basis of improved image processing and
artificial neural network techniques and a large database of
whole-body bone scans, the purpose of the present study
was to develop a completely automated CAD system for
the interpretation of bone scans to determine the presence
or absence of metastases.

MATERIALS AND METHODS

Patients
Training Group. A training group was used in the process of

developing the CAD system described in this article. The CAD
system consists of image-processing techniques and an artificial
neural network that learns by example. We selected a little more
than 800 bone scans (which is the recommended number of bone
scans a physician should interpret during specialist training) for
the training group. Cases that could be misleading for the CAD
system during the training process, for example, patients with a
urine catheter, large bladder, sternotomy, or fracture, were ex-
cluded from the training group. These types of cases with high
radiotracer activity are generally easy for the physician to interpret
but difficult for a computer method that learns by example,
because only few cases with a similar pattern are present even
in a large training group.

We retrospectively included 971 consecutive patients who had
undergone whole-body bone scintigraphy with a dual-detector
g-camera because of suspected bone metastatic disease during the
period January 1999 to June 2002. Only patients with a complete
set of technically sufficient images were included. A total of 51
cases with images that could be misleading were excluded.

We made the exclusions without any knowledge of the test
patients. The patients from the test group and their follow-up
examinations during the period of study were also excluded from
the training group (110 patients). The final training group
consisted of 810 patients (Table 1).

Test Group. Patients who had undergone whole-body bone
scintigraphy with a dual-detector g-camera because of suspected
bone metastatic disease and who also had at least 1 follow-up bone
scan were retrospectively selected. The reason for including the

follow-up examinations was that these images could improve the
accuracy of the gold standard interpretation. The patients were
selected from the period August 1999 to January 2001 at
Sahlgrenska University Hospital.

To avoid skewed material, the patients were selected to reflect the
spectrum of pathology found in everyday clinical work, that is,
patients with breast or prostate cancer coming for either their first
bone scan or a follow-up scan. We recently studied this type of
patient group and found that approximately one third of the cases
had clear-cut benign findings (estimated probability of metastases,
0.05 or lower), one third were difficult cases with an intermediate
probability of metastases (estimated probability of metastases,
0.06–0.94), and one third were clear-cut cases with obvious metas-
tases (estimated probability of metastases, 0.95 or higher) (15). We
aimed to achieve approximately the same relation between the 3
groups when selecting the bone scans for the present study. Patients
in the 3 groups, ‘‘benign findings,’’ ‘‘difficult cases,’’ and ‘‘obvious
metastases,’’ were included consecutively until the one-third quota
was fulfilled for each group.

The final test group consisted of 59 patients with a diagnosis of
breast or prostate cancer (Table 1). The test group had previously
been used in our nationwide survey, in which interpretations by
physicians of bone scans were studied (7).

Bone Scintigraphy. Bone scans were obtained approximately
3 h after an intravenous injection of 99mTc-methylene diphosph-
onate (600 MBq). Whole-body images—anterior and posterior
views (scan speed, 10 cm/min; matrix, 256 · 1,024)—were ob-
tained with a g-camera equipped with low-energy, high-resolution
parallel-hole collimators (Maxxus; GE Healthcare) and stored on
a computer system (Star Cam RMX; GE Healthcare). Energy
discrimination was provided by a 15% window centered on the
140-keV peak of 99mTc.

Gold Standard
Training Group. The gold standard classification of the patients

in the training group for presence or absence of bone metastases was
based on the clinical reports and the bone scan images. Clinical data
such as medical condition, localization of bone pain, and previous
history of trauma were available to the reporting physicians at the
time of the clinical reporting. These reports and the corresponding
bone scans were reevaluated by a trained technologist together with
an experienced physician who estimated the probability of bone
metastases on an analog scale from 0 to 1. In difficult cases, reports
from other diagnostic examinations that the patient had undergone,
for example, follow-up scans, MRI scans, radiographs, or CT scans,
were considered in the reevaluation.

A cutoff value of 0.5 was chosen to provide the CAD system
with the binary classification of ‘‘bone metastases’’ or ‘‘no bone
metastases.’’ All patients with values below 0.5 were assigned to
the no-bone-metastases group and patients with values equal to or
above 0.5 were assigned to the bone-metastases group.

Test Group. The gold standard classification for the patients in
the test group for presence or absence of bone metastases was
based on the final clinical assessments made by the same expe-
rienced physician who reevaluated the patients of the training
group.

These clinical assessments were based on all bone scan images,
including the follow-up scans; the patients’ medical records, in-
cluding the results of laboratory tests; and available diagnostic
images from MRI scans, CT scans, and radiographs. Biopsy was
available in 1 case. The follow-up scans were used to observe

TABLE 1
Study Population

Parameter Training group Test group

No. of patients 810 59

Female (%) 35 31

Mean age (y) 66 (range, 25–92) 65 (range, 43–86)
Prevalence of

bone

metastases (%)

34 36
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whether hot spots had disappeared, remained unchanged, or de-
creased or increased in size and intensity.

The following diagnostic criteria were applied for the final
clinical assessment:

• Grade 1: absence of bone metastases (The scintigraphic
pattern is normal or shows hot spots typical of degenerative
changes or fractures; there are no clinical or radiographic
data indicating bone metastases.)

• Grade 2: bone metastases cannot be ruled out with certainty
(There are one or more visible hot spots that have
disappeared, remained unchanged, or decreased in size and
intensity on the follow-up scan. The patients in this group all
received cancer therapy between the first and the follow-up
scans, and hot spots could be healed fractures or degenerative
changes or could be metastases. Radiographic modalities,
when available, in the suspected regions did not favor a
diagnosis of malignancy, and the gathered clinical judgment
leaned toward a low probability of bone metastases.)

• Grade 3: bone metastases probable (Visible hot spots with
localization, distribution, and intensity not typical of degen-
erative changes or fractures are demonstrated. Scintigraphic
follow-up shows no substantial changes. Radiographic find-
ings are equivocal, but the overall clinical judgment indicates
probable bone metastases.)

• Grade 4: definite presence of bone metastases (Scintigraphic
or radiographic patterns are typical of bone metastases; the
medical record states bone metastases as a secondary
diagnosis.)

The follow-up scans and the computerized medical record were
updated until May 2006, resulting in a mean follow-up duration of
4.8 y (range, 11–81 mo). Twenty-two patients died during the
follow-up period.

In the final clinical assessments, 32 patients were classified as
grade 1, 6 as grade 2, 0 as grade 3, and 21 as grade 4. The 38
patients classified as grade 1 or 2 were considered as having no
bone metastases, and the 21 patients classified as grade 3 or 4 were
considered as having bone metastases in the calculations of
sensitivity, specificity, and accuracy.

CAD System
The automated method for interpretation of bone scans devel-

oped in this study was based on the experience from our initial
work in this field (15). New algorithms for segmentation, hot spot
detection, and feature extraction were developed, and a larger
training group was used. A more precise segmentation of the
skeleton makes it possible to use different algorithms for detection
of hot spots in different parts of the image and to present
information in greater detail regarding the localization and distri-
bution of hot spots to the artificial neural networks. The methods
used for segmentation, hot spot detection, and feature extraction
were developed using the MATLAB (The MathWorks Inc.)
programming language. The training and validation of the artifi-
cial neural networks were performed using customized software.
The methods developed will be incorporated in a software pack-
age developed by EXINI diagnostics AB (http://www.exini.com).

Image Segmentation
The active-shape model method was used to segment the entire

skeleton, except for the distal parts of the arms and legs, in both
anterior and posterior views. The distal extremities are often not

acquired completely in routine bone scanning. The active-shape
model was developed to find statistical models of objects in
images, and the method has been successfully applied in many
application areas including medical images (16). In the segmen-
tation process, the skeleton was divided into 4 separate parts for
both the anterior and the posterior images (head and spine,
proximal arms and clavicles, chest, and pelvis and proximal legs)
(Fig. 1). The search for and delineation of a specific part of the
skeleton were based on a corresponding model, which was
adjusted to optimize the fit with the image data in an iterative
process. The model contained statistical information about the
shape variation of that part of the skeleton from a set of training
images.

The first step in the development of the segmentation method
was to select several training images that included different shapes
of the skeleton. In these cases, an operator manually delineated the
shape of the skeleton by selecting different landmarks in the
images. Each landmark point was placed on a particular anatomic
part of the skeleton. This procedure was performed separately for
each part of the skeleton. The shapes from all the training images
(between 13 and 32 training cases for the different parts of the
skeleton) were then aligned to a common coordinate frame. This
was achieved by scaling, rotating, and translating the training
shapes so that they corresponded as closely as possible to each
other. The resulting shape model contained the typical mean shape
and its variation observed in the training set. The resulting 8 shape
models (1 for each of the 4 anterior and 4 posterior parts of the
skeleton) were then used to segment new images.

FIGURE 1. Segmentation of skeleton divided into 4 separate
parts for both anterior and posterior images (head and spine,
proximal arms and clavicles, chest, and pelvis and proximal
legs).
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Automatic segmentation of new images was performed in 3
steps. The first step was to find a start position for the model of the
first part of the skeleton (head and spine) in the anterior image.
The most cranial part of the head proved to be a robust start
position, and it was easily located by examining the intensity in
the superior part of the image. In the second step, the landmarks of
the model were adjusted to better fit with the actual pixel values of
the image. This was achieved by examining a small area around
each landmark to find changes in intensity that could, for example,
correspond to the border of the skeleton. In the third step, the
shape of the model was adjusted on the basis of the new positions
of the different landmarks and the allowable shape variation of the
model. The second and third steps were repeated in an iterative
process until no significant change occurred between 2 iterations.
After the segmentation of the first part of the skeleton, that
segmentation was used to define the start positions of the other
models.

Hot Spot Detection
Hot spots were detected using a region-specific threshold

algorithm based on the mean and SD of all pixel count values
from a specific region. Clusters of pixels with count values above
this threshold and with a cluster size of at least 13 pixels were
regarded as potential hot spots. The localization of each potential
hot spot could be obtained on the basis of the result of the
segmentation process. Hot spots corresponding to the bladder and
the kidneys were excluded on the basis of location and size.

Feature Extraction
Forty-five features were used to describe each hot spot. The

features were selected to describe both the hot spot itself and its
relation to other hot spots (e.g., symmetric uptake in the shoul-
ders) and the surrounding region. The size, shape, intensity, and
localization of a hot spot and the intensity characteristics of the
region in which the hot spot was located were calculated. The hot
spot features are presented in Table 2.

Artificial Neural Networks
Artificial neural networks were used both to assess the likelihood

that a specific hot spot represented a metastasis and to classify the
complete bone scan examination (i.e., both the anterior and the
posterior images of a patient) as having signs of metastases or not. A
more general description of artificial neural networks can be found
elsewhere (17–19). An ensemble of 30 single artificial neural
networks was used for each classification task. The individual

members of the ensemble were standard multilayer perceptrons (20)
with 1 input, 1 hidden, and 1 output layer.

The neural networks classifying single hot spots consisted of 45
nodes in the input layer, 1 for each of the hot spot features. The
hidden layer contained 20 nodes. The output node encoded whether
the hot spot was classified as a metastasis or not. The output of a
neural network ensemble was computed as the mean of the outputs
of the individual members of the ensemble. The optimization of
neural network parameters was performed using a 6-fold cross-
validation scheme on the training group.

The neural networks classifying the complete bone scan exam-
ination consisted of 26 nodes in the input layer (Table 3), 10 nodes in
the hidden layer, and 1 output node encoded as to whether the patient
had metastases. The input nodes were fed with 26 features describ-
ing the hot spots found in the anterior and posterior images. The 4
hot spots in each of the images with the highest outputs from the hot
spot networks were used as inputs to the bone scan networks. The
neural networks presented an output between 0 and 1 for each test
case. The output value reflects the assessment of the neural network
of likelihood for the patient having bone metastases, and one
approach is to present that value (e.g., 0.23) as the CAD advice to
the physician. In clinical routine, however, physicians generally use
phrases such as ‘‘cannot be ruled out,’’ ‘‘probable,’’ or ‘‘definite
metastases’’ to report likelihood and, therefore, we decided to
categorize the network output by the use of threshold values. Patient
examinations with output values above a threshold in the interval
between 0 and 1 were classified as having bone metastasis. The
threshold was selected to achieve a sensitivity of 95% in the training
group. Two other thresholds, 1 below and 1 above the first threshold,
were used to categorize the network classification into the same 4-
grade scale as was used as the gold standard. The distribution of the
gold standard classifications in the test group showed that 90% of the
cases (53/59) were classified as grade 1 or 4, and 10% (6/59) were
classified in the 2 middle categories. Therefore, the thresholds were
selected to classify 5% of the training cases as grade 2 and 5% as
grade 3. After the training processes of both sets of neural networks
and the selection process of thresholds, the CAD system was applied
to the images of the test set (Figs. 2 and 3).

Statistical Methods
The percentage agreement (PA) and the k-coefficient (which

measures agreement beyond that expected by chance) were calcu-
lated. The classifications made by the CAD system for the 59
patients in the test group were compared with the gold standard.

Disagreement between the CAD classifications and the gold
standard could be systematic or random. To quantify the disagree-
ment between paired ordered categoric classifications, a method
reported by Svensson et al. (21,22) was used. Two types of sys-
tematic variation are possible; the first is due to overestimation or
underestimation of the classifications, and the second is due to
concentration of the classifications. Systematic overestimation or
underestimation occurs when the CAD classifies cases as being
more, or less, abnormal than does the gold standard. Systematic
concentration occurs, for example, when the CAD uses the middle
part of the 4-point scale (‘‘cannot be ruled out’’ or ‘‘probable’’) more
often than does the gold standard, which uses the grades ‘‘absence of
bone metastases’’ or ‘‘definitely bone metastasis’’ more often. Over-
estimation or underestimation is reflected by the variable relative
position (RP), and concentration is exhibited by the variable relative
concentration (RC). The possible values for RP and RC range from
21 to 1, with a value of 0 indicating that no systematic disagreement

TABLE 2
Hot Spot Features

Hot spot

feature

No. of

features Example

Geometry 8 Area, width, height

Pixel values 13 Maximal value, SD
Skeletal region 8 Spine, pelvis

Skeletal region features 8 Area of region,

maximal value

Before classification 5 Symmetry, bladder
Combined features 3 Area ratio of hot

spot to region

Total 45
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is present. A positive RP value reflects systematic overestimation of
the classifications, and a negative RP value reflects a systematic
underestimation. The RC value is positive if systematic concentra-
tion to the middle of the 4-point scale is present, whereas a negative
RC value reveals systematic concentration to the extremity.

The pattern of random differences was quantified using the
variable relative rank variance (RV). The possible values for RV
are between 0 and 1, with 0 indicating no random contribution.

Confidence intervals for PA, k, RP, RC, and RV were calculated
using 10,000 bootstrap replicates (23). The exact (Clopper–
Pearson) test was used to calculate the 95% confidence interval
for sensitivity, specificity, and accuracy.

RESULTS

The CAD system made correct classifications for 19 of
the 21 patients with bone metastases, showing a sensitivity
of 90%. True-negative interpretations were made for 34 of
the 38 patients classified as not having bone metastases by
the gold standard, resulting in a specificity of 89%. Two of
4 false-positive cases had fractures, one in the rib-costal
cartilage regions and the other in the rib-vertebra region of
the thoracic spine. The other 2 had degeneration with high-
intensity hot spots, one in the lower lumbar spine and the
other in the acetabulum region.

A comparison of the classifications by the CAD system
and the gold standard is shown in Table 4; the resulting PA
and k-values were 76% and 0.58, respectively (Table 5).

The contribution of systematic variations in position (RP)
and concentration (RC) was small; that is, CAD, compared
with the gold standard, did not over- or underestimate the
classifications, nor did CAD concentrate the classifications
to a certain part of the 4-point scale (Table 5). The main
reason for the disagreement between the CAD system and
the gold standard was because of random errors. As shown
in Table 4, the CAD system classified 2 patients as being 3
grades more pathologic than did the gold standard (grade 4
vs. grade 1) and 2 patients as 3 grades less pathologic than
did the gold standard (grade 1 vs. grade 4).

DISCUSSION

Main Findings

A completely automated CAD system based on image-
processing techniques and artificial neural networks can be
used to classify bone scans for the presence or absence of
metastases. Our results showed a high detection rate, with a
sensitivity of 90% in the test group at a specificity of 89%.
Our current results are an improvement, compared with our
previously presented method, which showed a specificity
of 74% at the same level of sensitivity. In the present
study, new algorithms for skeleton segmentation, hot spot
detection, feature extraction, and neural networks were
developed, and a larger training group was used in the
training process, which enabled the program to better

FIGURE 2. Images showing 70-y-old
man with prostate cancer. Increased
radiotracer uptake can be seen in right
part of mandible, most probably because
of bad teeth, and in sternum secondary
to sternotomy. Artificial neural networks
classifying hot spots separately indicate
that uptake in sternum could be metas-
tasis, but neural networks classifying
complete examination, considering all
hot spots, correctly report ‘‘absence of
bone metastases.’’ Suggestive metasta-
ses are marked in red, and symmetric or
benign radiotracer uptake in blue; blad-
der is yellow.

TABLE 3
Bone Scan Features

Bone scan feature No. of features Example

Highest neural network outputs of hot spots 8 4 highest-output hot spots in both anterior and

posterior views

Ratio of number of hot spots with high neural
network output in region to total number of hot spots

14 Head, shoulder, arm, spine, ribs, pelvis, and lower limb
in anterior and posterior views

Ratio of total area of hot spots to body area 2 Anterior and posterior

Ratio of total area of hot spots with high neural

network output to body area)

2 Anterior and posterior

Total 26
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differentiate normal or benign uptake patterns from path-
ologic processes.

Our sensitivity and specificity were also higher than
those found by Sajn et al. (24) (79.6% and 85.4%, respec-
tively), who presented an automatic method for analysis of
whole-body bone scans. An explanation for this could be
that we included a larger number of patients in the training
process and used different techniques in the development of
the CAD system.

In our previous, nationwide survey, 37 observers inter-
preted the same 59 bone scans as used in the present study
and showed a mean sensitivity of 77% (range, 52%2100%)
at an average specificity of 96% (7). The main problem in
the interpretations of bone scans was the false-negative
errors. The advantage with a CAD system would be to in-
crease the detection rate of the physician and consequently
minimize the risk that abnormal findings would be over-
looked. For this reason, we tried to adjust the CAD system
to achieve a high sensitivity. The agreement for the CAD
system, compared with the final clinical assessment, ex-
pressed as PA and k, was 76% and 0.58, respectively,
whereas the variation of the observers was higher (PA and
k, 64% and 0.48, respectively) (7). A CAD system, there-
fore, has the potential to decrease interobserver variation.

When the findings of the 37 observers were compared with
the final clinical assessment, there was some contribution of

systematic overestimation or underestimation of the classi-
fications, but the main reason for the disagreement was that
the observers concentrated more on the middle of the 4-point
scale (grades 2 and 3), in contrast to the gold standard. In
general, the established guidelines that aim for structured
reporting state that the final report of an investigation should
possess clarity and emphasize whether a study is ‘‘normal’’ or
‘‘abnormal.’’ The middle categories, such as ‘‘cannot be ruled
out’’ or ‘‘probable,’’ should be used as infrequently as pos-
sible but may allow for communication of interpretive
uncertainty (25). Therefore, we constructed the CAD system
to use the middle of the 4-point scale in only 10% of the cases
and use the 2 categories that are most useful to the referring
physician (i.e., ‘‘absence of bone metastases’’ or ‘‘definite
presence of bone metastases’’) in 90% of the cases.

Clinical Implications

The concept with CAD systems in general is to take into
account equally the role of the physician and that of
computers by combining the competence of the physician
in interpreting medical images with the high capability of
the computer for detecting abnormalities. In mammogra-
phy, investigators have shown an increase in the detection

FIGURE 3. Images showing 56-y-old
woman with breast cancer. Multiple focal
increases of pathologic radiotracer up-
take can be seen. CAD system correctly
reports whole-body bone scan examina-
tion as showing ‘‘definite presence of
bone metastases.’’ Suggestive metasta-
ses are marked in red, and symmetric or
benign radiotracer uptake in blue; blad-
der is yellow.

TABLE 4
Frequency Table Showing Classifications Made by CAD

System, Compared with Gold Standard

Gold standard

CAD Grade 1 Grade 2 Grade 3 Grade 4 Total

Grade 4 2 1 0 18 21

Grade 3 0 1 0 1 2

Grade 2 3 0 0 0 3
Grade 1 27 4 0 2 33

Total 32 6 0 21 59

PA 5 76%; k 5 0.58; RP 5 20.007; RC 5 20.02; RV 5 0.013.

TABLE 5
Performance of CAD System, Compared with

Gold Standard

Parameter CAD vs. gold standard

PA 76% (64–86)

k 0.58 (0.40–0.75)

Systematic difference
RP 20.007 (20.103–0.087)

RC 20.02 (20.148–0.099)

Random difference (RV) 0.013 (0.002–0.04)

Sensitivity 90% (70%299%)
Specificity 89% (75%297%)

Accuracy 89% (82%298%)

95% confidence interval is given in parentheses.
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rate of breast cancer with CAD (10–12). Freer et al. found
that 19.5% more cancers were detected when physicians
interpreted the images with the advice of the computer (12).
Cupples et al. reported a 164% increase in the detection of
small breast cancers and, in addition, a reduction of 5.3 y in
the mean age at the time of detection when CAD was used
(11). Similar CAD systems in other imaging fields have also
been shown to increase the sensitivity by assisting less
experienced physicians in the interpretation of CT colonog-
raphy (13) and to improve the quality of image reporting in
myocardial perfusion imaging (14).

A CAD system for bone scintigraphy, therefore, has the
potential to increase the physician’s performance in finding
bone metastases and also reduce interobserver variation. To
investigate whether physicians benefit from the advice of our
CAD system, we have invited the 37 observers who partic-
ipated in our nationwide survey (7) to make a second in-
terpretation of the same bone scans, this time with the CAD
system. Previous studies in myocardial scintigraphy have
shown decreased interobserver variation among readers
when CAD was used in the classification of the images
(14,26). CAD systems can be used to shorten the learning
curve needed to achieve high-quality reports and minimize
errors due to reading fatigue or interruptions during inter-
pretations at a busy practice.

To improve diagnostic accuracy in patients in whom
whole-body bone scans fail to demonstrate metastases, other
imaging modalities such as SPECT/CT or MRI can be of
value. The CAD system presented here is, at the current
stage, designed only to assist physicians in the interpretation
of whole-body bone scans. Future CAD systems may be able
to analyze combinations of image series from the same
patient, such as a whole-body bone scan and a SPECT/CT
study of the pelvic region.

Study Limitations

Ideally, the databases used for these types of studies should
be at least on the order of hundreds of cases, including
representative cases found in clinical routine, and have an
accurate and independent gold standard method. These
features are, however, difficult to combine in 1 study. A
limitation of the present study is that we used the final clinical
assessment of an experienced physician as the gold standard,
based on, in addition to the bone scans, the follow-up scans,
the patient’s computerized medical record including the
results of laboratory tests, and available diagnostic images
(MRIs, CTs, or radiographs) for almost 5 y of follow-up for
the test group. Histologic verification for each hot spot found
in the bone scans would have been a more accurate gold
standard, but this type of gold standard is difficult to obtain.

A retrospectively acquired database from only 1 hospital
was used for the present work. An advantage of this
approach was that the gold standard classifications of the
images in the large database could be based on a follow-up
duration of almost 5 y. More recent data or prospectively
selected patients would have shortened the follow-up du-

ration or delayed the study considerably. Studies including
cases from multiple centers would be of value to evaluate if
the CAD system showed the same performance on images
acquired with different g-cameras or different protocols,
but that was not within the scope of the present study. A
multicenter study will also address issues such as differ-
ences in interpretive style at different clinics and differ-
ences in incidence of metastatic disease.

Our test database was selected from patients with at least
1 follow-up scan. This introduces a risk of selection bias,
and we tried to minimize that by selecting the same relation
between ‘‘benign findings,’’ ‘‘difficult cases,’’ and ‘‘obvious
metastases’’ as was found in a previous study of consecu-
tive cases.

CONCLUSION

A completely automated CAD system can be used to
detect metastases in bone scans. Application of the method
as a clinical decision support tool appears to have signif-
icant potential.
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