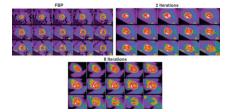
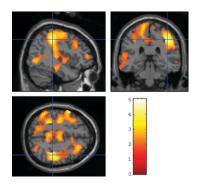
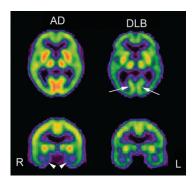
JNM





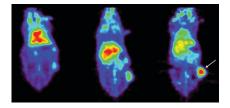
PET/CT in recurrent esophageal cancer: Guo and colleagues report on the diagnostic and prognostic roles of ¹⁸F-FDG PET/CT in

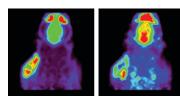
Algorithms not interchangeable: Chen and colleagues provide data on the selection of reconstruction algorithms for ¹³N-NH₃ PET estimation of quantitative myocardial blood flow. *Page 1259*

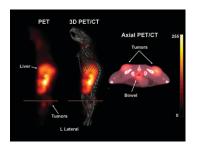

SPECT and rCBF in depression treatment: Kohn and colleagues use ^{99m}Tc-HMPAO SPECT to determine whether reversal of compromised regional cerebral blood flow in patients with major depressive disorder is dependant on the mode of antidepressant treatment. . . *Page 1273*

¹⁸F-MPPF PET for longitudinal studies: Costes and colleagues assess the reliability and reproducibility of binding parameter quantification for this radiolabeled 5-HT_{1A}

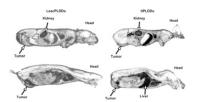
receptor antagonist through a test-retest study over a long-term period. Page 1279

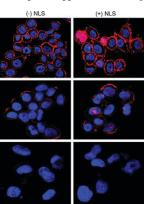

Advances in Alzheimer's assessment: Matsuda provides an educational overview of the role of neuroimaging in Alzheimer's disease, with a special focus on the utility of statistical analyses in brain perfusion SPECT, PET, and MRI techniques. Page 1289

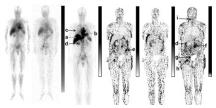



Monitoring myocardial therapy: Taki and colleagues evaluate ^{99m}Tc-annexin-V uptake in a rat model of ischemia and reperfusion to determine whether postconditioning or ischemic preconditioning suppress myocardial cell damage or apoptosis. *Page 1301*

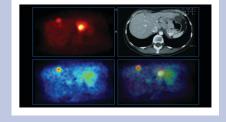
¹⁸F-FDG and mitochondrial membrane potential: Smith and Blaylock report on in vitro research in breast tumor cells to determine how the loss of mitochondrial membrane potential in apoptosis influences ¹⁸F-FDG incorporation. Page 1308


VEGF tumor imaging: Nagengast and colleagues describe the development of a radiolabeled humanized monoclonal antibody for noninvasive in vivo vascular endothelial growth factor visualization and quantification with ¹¹¹In and ⁸⁹Zr PET. Page 1313


Novel carrier modules in lymphoma: DeNardo and colleagues characterize the pharmacokinetics of selective high-affinity ligand molecules that show promise as effective radioisotope carriers for molecular-based imaging and treatment of lymphoma. *Page 1338*



Imaging of melanoma metastases: Pham and colleagues describe mouse studies with a novel ¹²³I-labeled molecule for SPECT imaging and staging of metastatic dissemination of melanoma tumors and the potential for therapeutic applications. *Page 1348*


111In-trastuzumab and nuclear targeting: Costantini and colleagues evaluate the cytotoxicity and tumor-targeting properties of the monoclonal antibody trastuzumab modified with peptides harboring nuclear localization sequences and discuss the potential for radio-immunotherapeutic applications. . . Page 1357

ON THE COVER

⁶⁸Ga-BZH₃ may be helpful diagnostically in some patients with gastrointestinal stromal tumor. Here, ¹⁸F-FDG shows hypermetabolic areas in the liver and stomach, CT shows hypodensity in the same areas, bombesin shows enhancement clearly in the liver but slightly in the stomach, and ¹⁸F-FDG-bombesin fusion shows agreement between the tracers in the liver but not in the stomach. Histology revealed stomach tumor and liver metastasis.

See page 1248.