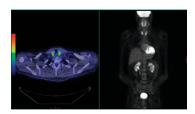
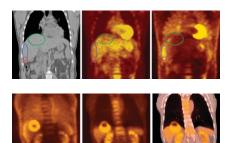

INM

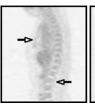
Imaging and thrombus age: Brighton and colleagues report on the ability of ^{99m}Tc-recombinant tissue plasminogen activator imaging to differentiate recent thrombus formation from older thrombi in patients with deep vein thrombosis. . . . *Page 873*



Optimal treatment in pediatric thyroid cancer: Handkiewicz-Junak and colleagues detail the results of a retrospective study investigating combinations of treatments associated with decreased risk of locoregional recurrence in children with differentiated thyroid cancer. . . Page 879


PET and scintigraphy in bone metastases: Ito and colleagues compare the effectiveness of whole-body ¹⁸F-FDG PET and ^{99m}Tc bone scintigraphy in detecting metastases in patients with differentiated thyroid cancer after thyroidectomy and before ¹³¹I therapy. Page 889

Diffuse thyroid ¹⁸F-FDG uptake: Karantanis and colleagues explore the clinical significance of diffusely increased ¹⁸F-FDG uptake in the thyroid gland as an incidental finding on PET/CT. . . . Page 896



PET/CT registration in liver imaging: Vogel and colleagues evaluate the effect of breathing motion differences on registration accuracy in PET and CT imaging of the liver and offer recommendations on scanner requirements, breath-hold protocols, and reporting. Page 910

Granulocyte CSF, ¹⁸**F-FDG**, and **SUVs**: Doot and colleagues determine whether che-

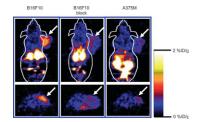
motherapy and treatment with granulocyte colony-stimulating factor change blood clearance curves and, therefore, affect the relationship between ¹⁸F-FDG metabolic rates and standard uptake values. . . *Page 920*



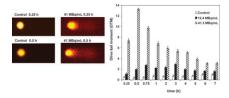
Partial-volume effect in PET: Soret and colleagues provide an educational overview of the partial-volume effect and its consequences in PET tumor imaging, along with correction models and suggested actions to reduce potential error. Page 932

PET imaging of perinatal inflammation: Kannan and colleagues explore small-animal ¹¹C-labeled tracer PET imaging of microglial activation as an indicator of inflammation and perinatal brain injury. *Page 946*

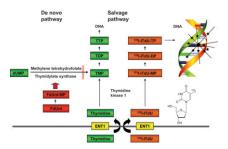
PET and myocardial glucose metabolism:


Herrero and colleagues investigate whether compartmental modeling of 1-¹¹C-glucose PET kinetics can be used for noninvasive measurement of myocardial glucose metabolism beyond its initial extraction. Page 955

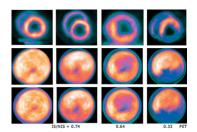
Novel tumor-binding peptide: Zitzmann and colleagues describe the binding properties and pharmacokinetic behavior of a new radiolabeled peptide in both in vitro and in vivo models of follicular thyroid carcinoma. . . . *Page 965*


PET in hypoxia-directed radiochemotherapy: Beck and colleagues report on the ability of small-animal PET using the hypoxia tracer ¹⁸F-FAZA to predict the success of radiotherapy in combination with tirapazamine, a specific cytotoxin for hypoxic cells. . . . *Page 973*

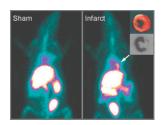
Nicotine and brown adipose tissue uptake: Baba and colleagues evaluate the effects of β -adrenergic agonists on ¹⁸F-FDG uptake in brown adipose tissue in rats and offer cautions about the effects of nicotine on PET imaging. Page 981


PET melanocortin receptor expression imaging: Cheng and colleagues investigate ¹⁸F-FB-NAPamide as a promising molecular probe for α-melanocyte-stimulating hormone receptor–positive melanoma and describe initial studies in mice. . . . *Page 987*

Antibody penetration in tumor tissue:

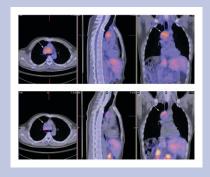


DNA nanoirradiation and cell kill: Reske and colleagues investigate whether selective nanoirradiation of DNA with Auger electrons emitted by 123 I-ITdU can induce apoptosis and break resistance to doxorubicin, β -, and γ -irradiation in leukemia cells. . . *Page 1000*



3D radiobiologic dosimetry: Prideaux and colleagues use data from a ¹³¹I-treated patient to create radiobiologic modeling that converts the spatial distribution of absorbed dose into biologically effective dose and equivalent uniform dose parameters. *Page 1008*

PET and coronary artery stenosis: Madar and colleagues report on the potential clinical utility of ¹⁸F-FBnTP PET in assessing the severity of coronary artery stenosis in a canine model. . . *Page 1021*


Imaging cardiac cell death: Zhu and colleagues characterize the temporal and spatial distribution of a ^{99m}Tc-labeled fusion protein of C2A and glutathione-stransferase in a rat model of myocardial ischemia and reperfusion. . . . *Page 1031*

ON THE COVER

¹⁸F-FDG PET/CT has been found useful in evaluating hepatocellular carcinoma metastases, although its role in the diagnosis of primary hepatocellular carcinoma is more limited. Dual-tracer PET/CT with ¹⁸F-FDG and ¹¹C-acetate has shown an incremental value and a complementary advantage over single-tracer imaging in the evaluation of hepatocellular carcinoma metastases. Some intrathoracic nodes showing increased ¹⁸F-FDG activity could be noncalcified granulomatous nodes and, thus, false-positive for metastasis. This possibility can be minimized by correlating serial PET/CT with other ancillary findings.

