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A renal expert system (RENEX) has been developed to assist
physicians detect renal obstruction in patients undergoing pre-
and postfurosemide 9°™Tc-mercaptoacetyltriglycine (%°mTc-
MAGS3) scans. RENEX uses quantitative parameters extracted
from the dynamic renal scan data and heuristic rules in the
form of a knowledge base (KB) obtained from expert interpreters
to conclude whether a kidney is obstructed. Methods: Normal
limits were established for 47 quantitative parameters extracted
from the ®*mTc-MAG3 scans of 100 potential renal donors. From
these data the domain expert estimated 5 boundary conditions
for each parameter: (i) definitely abnormal, (i) probably abnor-
mal, (iii) equivocal, (iv) probably normal, and (v) definitely normal.
A sigmoid-type curve was then generated from these 5 boundary
conditions, creating a parameter knowledge library used for con-
verting the value of a prospective patient’s individual quantitative
parameters to a certainty factor (CF). Sixty heuristic rules were
extracted from the domain expert to generate the KB for detect-
ing obstruction. A forward-chaining inference engine was devel-
oped using the MYCIN combinatories (an approximation of
Bayes theorem) to determine obstruction. A justification engine
was implemented, which recorded the sequence of each rule
that was fired and the current CF value of all input and output pa-
rameters at the time of instantiation to track and justify the logic
of the conclusions. The entire system was fine tuned and tested
using a pilot group of 32 patients (11 males, 21 females; mean
age, 56.8 = 17.2 y; 63 kidneys) deemed by an expert panel to
have 41 unobstructed kidneys, 13 obstructed kidneys,and 9
equivocal findings. Results: RENEX agreed with the expert panel
in 92% (12/13) of the obstructed kidneys, 93% (38/41) of the un-
obstructed kidneys, and 78% (7/9) of the kidneys interpreted as
equivocal for obstructions. Processing time per patient was
practically instantaneous using a 3.0-GHz personal computer
programmed using interactive data language. Conclusion: We
have developed a renal expert system for detecting renal ob-
struction using pre- and postfurosemide %°mTc-MAG3 renal
scans, at a standardized expert level. These encouraging prelim-
inary results warrant a prospective study in a large population of
patients with and without renal obstruction to establish the diag-
nostic performance of this system.
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The use of diagnostic imaging in patient care is increas-
ing. At the same time, diagnostic imaging is becoming more
complicated, not simpler. Physicians are required to master
an ever-expanding knowledge base (KB) while the hours
available to master this KB and apply it to specific tasks
(e.g., image interpretation, seeing a new patient) are steadily
shrinking. The convergence of an expanding KB and es-
calating time constraints will inevitably lead to physician
errors. Hence, it is desirable that tools be developed and
implemented that assist physicians in interpreting studies at a
faster rate and at a higher level of expertise. Such tools will
minimize subjectivity and intra- and interobserver variation
in image interpretation and help achieve a standardized high
level of performance. Because almost all diagnostic imaging
is digital, computers are a necessary part of acquiring and
processing imaging studies and it is reasonable to expect that
these new tools should be computer based. These tools have
traditionally been statistically based but, more recently,
statistical approaches are being complemented or replaced
by heuristically based software tools.

Over the past several years, artificial intelligence methods
have been investigated as a way to develop such tools.
Examples include neural networks (/—3) and case-based
reasoning (4) techniques to provide computer-assisted diag-
nosis of planar and SPECT myocardial perfusion studies.
In the artificial neural net approach, the concept is to try
to emulate how human neurons perform pattern-recognition
tasks. Repeated recognition trials are run using sample
myocardial perfusion data as input and corresponding cor-
onary angiography results as output to modify the strength
between the input and output nodes. In this manner, the
net is trained and the input data eventually predict the
output. In the case-based reasoning approach the algorithm
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searches a library of patient cases to find the ones that
best match those of the patient study being analyzed. The
common findings from these cases, such as coronary
angiography results, are then used to assist the diagnos-
tician’s interpretation. Another artificial intelligence ap-
proach that has been investigated to assist diagnosticians
in making clinical interpretations is the knowledge-based
expert system. In expert systems, a KB of heuristic rules
is obtained from human experts capturing how they make
their interpretations. These rules are usually expressed in
the form of “IF A THEN B” expressions.

Expert systems have been investigated in nuclear med-
icine to assist in the interpretation of perfusion—ventilation
lung studies (5) and hexamethylpropyleneamine oxime
brain SPECT studies (6). We have also developed (7) and
extensively validated (8) an expert system called PERFEX
(for perfusion expert) as a tool for the computer-assisted
diagnosis of stress—rest myocardial perfusion SPECT. The
goals of this current work are (i) to use the expertise gained
in PERFEX to develop a generalized methodology to aid in
the interpretation of imaging studies using an expert system
to analyze quantitative data extracted from imaging studies
and (2) to demonstrate proof-of-principle by applying this
generalized methodology to develop a renal expert system
(RENEX) for detecting renal obstruction using pre- and
postfurosemide ?°™Tc-mercaptoacetyltriglycine  (°°™Tc-
MAG?3) renal scans. We have chosen to develop a decision
support system to detect renal obstruction from %°™Tc-
MAGS3 renography because the vast majority of the 590,000
renal scans performed annually in the United States are
performed with *™Tc-MAG3 and many are interpreted by
diagnosticians in sites that perform <3 studies per week
(9). The exposure to these few studies makes it difficult for
them to develop the needed expertise in interpreting *°™Tc-
MAGS3 studies.

MATERIALS AND METHODS

Patients

Renal studies from 32 patients (11 males, 21 females; mean
age, 56.8 £ 17.2 y; 63 kidneys) were used as a pilot group to
develop and test RENEX. All studies used for this development
were obtained from the renal database of patients referred to our
nuclear medicine service to evaluate suspected renal obstruction.
This study was performed under the purview and approval of
Emory’s Internal Review Board. Patients were selected because
their studies included a baseline *°™Tc-MAG3 dynamic study
followed by a furosemide challenge; in addition, studies were
selected to include a variety of responses to develop a complete set
of heuristic rules for interpreting renal obstruction.

Acquisition Protocol

Patients were positioned supine, with the scintillation camera
detector placed under the table. A 3-phase dynamic acquisition
(baseline scan) was begun as a single dose of 370 MBq (10 mCi)
of #mTc-MAG3 was injected; phase one consisted of twenty-four
2-s frames, phase 2 was sixteen 15-s frames, and phase 3 was forty
30-s frames. For all patients in the study, review of the baseline
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scan could not exclude obstruction and all patients in the study
received an intravenous injection of 40 mg of furosemide followed
immediately by a second single-phase 20-min dynamic acquisition
consisting of forty 30-s frames. Thus, the 3-phase dynamic
acquisition followed by a second single-phase 20-min dynamic
acquisition were acquired from the one initial *°™Tc-MAG3
injected dose.

Data Analysis

All patient studies were processed using the QuantEM renal
quantification program designed by Taylor et al. (/0). The QuantEM
software, developed specifically for **™Tc-MAG3, incorporates
several quality control procedures to improve reproducibility,
generates specific quantitative parameters recommended for scan
interpretation, and allows the **™Tc-MAG3 clearance to be cal-
culated using a camera-based technique. QuantEM has been pre-
viously extensively validated in a multicenter trial (/7).

For the baseline renogram, a static image is summed from the
2- to 3-min postinjection frames. Using a filtered version of this
image, whole kidney, background, and cortical regions of interest
(ROIs) are automatically defined. The user can override any
of these automatic ROIs and replace them with manual ROIs.
Background-subtracted curves are generated for the whole kidney
and 47 quantitative parameters are generated, including patient
demographics (height, weight, age, sex, body surface area), curve
parameters (time to peak counts, and 20 min-to-maximum count
ratio for both whole kidney and cortical ROIs), voiding indices
(postvoid-to-prevoid and postvoid-to-maximum count ratios), and
the **™Tc-MAG3 clearance. The *°™Tc-MAG3 clearance is cal-
culated from the 1- to 2.5-min whole-kidney **™Tc-MAG3 counts,
and the preinjection and postinjection images of the dose syringe.

For the diuretic study, a static image is summed from the 1- to
5-min postinjection frames. ROIs are manually drawn for the
whole kidney, background, and renal collecting system. Back-
ground-subtracted curves are generated for the whole kidney and
renal pelvis, and times-to-half-peak are calculated.

After processing the diuretic study, the baseline renogram results
are loaded and ratios are calculated comparing the first-minute
counts and prevoid (last minute) counts in the diuretic study with
the 1- to 2-min counts and peak counts in the baseline study.

Expert Panel Review

Diagnosis of renal obstruction was based on the interpretation
of a panel of 3 experts, who reviewed the scans of all 32 patients
in the pilot database for the presence or absence of renal obstruc-
tion. Each kidney was graded for the presence or absence of
obstruction on a 5-point scale (1 = definitely not obstructed, 2 =
probably not obstructed, 3 = equivocal for obstruction, 4 =
probably obstructed, and 5 = definitely obstructed). Each expert
was unaware of the results of the other experts and unaware of the
results of the expert system in scoring each kidney. The consensus
reading of all 3 experts was used as the final interpretation. The 32
patient studies were deemed by the expert panel to have 41
unobstructed kidneys, 13 obstructed kidneys, and 9 equivocal
findings.

Expert System

The architecture of RENEX is inspired by that of 2 previously
developed expert systems; MYCIN (/2) and PERFEX (§).
MYCIN is a pioneering rule-based expert system developed in
the 1970s to assist physicians determine the appropriate therapy
for patients with infections. PERFEX is a commercially available
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imaging expert system that we developed to assist physicians in
the interpretation of myocardial perfusion SPECT studies.

Figure 1 shows the flow of how a patient’s renal scan is acquired,
processed, quantified to extract parameters of renal obstruction,
converted to certainty factors (CFs) and submitted to the inference
engine to reach a conclusion as to whether or not a kidney is
obstructed. The expert system is comprised of the KB, the inference
engine and the justification engine. The trapezoidal blocks in
Figure 1 indicate the domain expert knowledge that is provided in
the form of boundary conditions for each input parameter and
heuristics rules to interpret obstruction which comprise the KB.
The 3-dimensional blocks indicate software algorithms. The
parameter knowledge library is only generated once and then
regenerated only when the knowledge that creates the parameter
input list is enhanced by more experience or more data.

Parameter Knowledge Library: Converting Input Parameters
to CFs. Each of the quantitative renal parameters extracted by
the QuantEM program that are pertinent for the determination of
obstruction are first converted or transformed to a CF to be used
by RENEX to determine the presence or absence of obstruction.
The CFs indicate the degree of certainty that each parameter’s
value is consistent (or inconsistent) with obstruction. A sigmoid-
type function has been used for this transformation because it
exhibits several beneficial properties: (i) like humans, it emulates
the nonlinear response of the eye to intensity variations in a
logarithmic fashion (/3) or the density response of film to an
exposure (/4); (ii) it is used in neural nets as an activation function
to emulate the relationship of how neurons fire—that is, decide on
the basis of an input whether to trigger a response (/5); (iii) both
the high and low values approach an asymptote and, therefore,
never exceed +1 or —1 (Fig. 2).

A parameter knowledge library was generated that contains the
specific transformation for each parameter used. To establish the
transformation for each parameter in the library, the domain expert
identified the 5 constraints or boundary conditions used to fit the
sigmoid-type curve. These 5 boundary values correspond to values
where the parameter is definitely normal (—1), probably normal
(—0.2), equivocal (0), probably abnormal (0.2), and definitely
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abnormal (+1) (Fig. 2). Because it is difficult to be 100% certain
in medicine, the CF value conversions were constrained between
—0.9 and 0.9. To establish these boundary conditions the expert
used his knowledge of the field and previous determinations of
normal values for each parameter extracted from 100 potential
renal donors (/6). Appendix A provides the exact equations used
for the transformation, which is similar to one used by Gavrielides
et al. (/7). Figure 3 illustrates the transformation for 4 typical
parameters. Note that the method requires that the curve pass
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FIGURE 2. Plot of sigmoid-type curve transformations from a
quantitative parameter value (normalized from 0% to 100%) to
a CF value. The transformation is constrained by the 5 boundary
conditions established by the domain expert (definitely normal,
probably normal, equivocal, probably abnormal, and definitely
abnormal). Appendix A provides the equations for the transfor-
mations of zones 1-6 (Z1-Z6) shown here.
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through the 5 boundary conditions; consequently, the curves have
a general sigmoid shape but do not have a smooth, exact, sigmoid
fit (Fig. 3). Once the parameter knowledge library of sigmoid-type
curves is generated (one for each input variable), the library is
available to transform any prospective patient’s quantitative pa-
rameters to CFs.

When a renal scan is processed, quantitative values are gener-
ated for each parameter and a list of these quantitative parameter
values is submitted as input to an algorithm. This algorithm has
already stored the parameter knowledge library. For each param-
eter value, the algorithm generates a specific sigmoid-type curve
according to the specific curve-fitting parameters (boundary con-
ditions) and then converts the quantitative value to a CF.

KB. The KB was generated through systematic interviews to
extract from the domain expert heuristic rules (also known as
production rules), in an “IF A THEN B” format (or if antecedent
then consequence format) that are used by experts when they use
specific renal parameters to reach a conclusion regarding whether
a patient’s kidney was obstructed. The domain expert was requested
to provide both heuristic rules and the degree of certainty (CF)
that the rule is believed to be true.

For example, a typical heuristic rule reads: If the time to half
peak of the left kidney pelvis postfurosemide renogram is abnor-
mal, then there is a strong positive evidence (CF = 0.4) that the
left kidney is obstructed.

The KB currently consists of approximately 60 heuristic rules.
There are approximately as many rules to determine normality as
there are for determining abnormality. These rules are grouped
(knowledge islands) to perform 5 functions common for each
kidney. The 5 knowledge islands perform the following functions
for each kidney: (i) consider if furosemide needs to be adminis-
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tered to exclude obstruction, (ii) consider if furosemide does not
need to be administered to exclude obstruction, (iii) consider if the
kidney is obstructed, (iv) consider if kidney is not obstructed, and
(v) consider if meta rules for obstruction apply. Meta rules are
rules that are only considered after all of the other rules have been
considered. A sample set of rules is listed in Appendix B. These
rules were modified using data from the pilot group to optimize
the agreement between the human experts and RENEX.

Inference Engine. The inference engine is a computer algorithm
that uses specific equations to combine the certainty that a pa-
rameter (or parameters) is abnormal with the certainty of a rule to
modify the certainty that a hypothesis is true (a parameter is
abnormal or a kidney is abnormal). These equations, known as
combinatories are based on approximations of Bayes theorem as
developed at Stanford by Shortliffe (/2) for the MYCIN program.
The approach uses 2 types of equations: (i) to infer positive evidence
that a hypothesis is true and (ii) to infer negative evidence that a
hypothesis is true. This is mathematically analogous to applying
Bayes theorem to determine the posttest likelihood of disease
based on the pretest likelihood, the sensitivity or specificity of the
test, and whether the test was positive or negative (Fig. 4).

The specific set of equations used to combine the CFs are
shown in Appendix C. When the inference engine starts execution,
the CF that the left kidney is obstructed is 0 or unknown. As
production rules are asserted (fired) the CF that the left kidney
is obstructed increases or decreases based on whether the rule is
providing positive or negative evidence that the kidney is
obstructed. After all of the pertinent rules are asserted (i.e., all
rules whose antecedents are =0.2 fired), the resulting CF is the
conclusion reached by the inference engine. Thus, if the final CF
that the left kidney is obstructed is >0.2, the conclusion is that it is
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obstructed; if less than —0.2, that it is not obstructed; and if
between —0.2 and +0.2, that it is equivocal.

As opposed to the approach previously used to develop PERFEX,
where a commercial inference engine was used (Smart Elements;
Brokat Inc.), RENEX inference engine was created totally in-
house using the IDL (interactive data language) programming
language (Research Systems, Inc.). This has the advantage of
providing total control over how the system works.

Justification Engine. The justification engine is a computer
algorithm that keeps track of the order, rule, and CF values of all
parameters at the time of firing, for all rules that are fired. This is
used to justify any conclusion reached by RENEX by simply
providing the history of how the conclusion was reached. The
justification engine sequentially builds a list of the rules that are
fired to reach each conclusion and simultaneously tracks the CF
value of each variable as it dynamically changes. Once the conclu-
sions are reached, they are reported in the form of a concatenated
set of sentences stringing the conclusions together; moreover, the
key words from each conclusion are underlined. If the diagnos-
tician would like to see the justification for a specific conclusion,
the diagnostician can click on key words and the program will
provide the set of rules that led to the conclusion.

RESULTS

The results associated with this development include (i)
the boundary conditions used to transform the quantitative
parameters values to CF values to form the parameter
knowledge library, (ii) the heuristic rules extracted from the
domain expert and modified by the pilot group that formed
the KB, (iii) the individual scoring of each of the 3 experts
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and how it compares with the output from RENEX, and (iv)
analysis of the agreement between RENEX and the con-
sensus reading of the 3 human experts in the pilot group as
to whether kidneys were obstructed.

Figure 3 illustrates the boundary conditions and trans-
formations for 4 typical quantitative parameters of renal
obstruction to CF values. Appendix B lists a subset of the
production rules used in the KB. Only partial lists are
provided because of space considerations.

Table 1 lists the individual scores from each of the 3
experts, the consensus reading, and the CF concluded from
RENEX as to whether each kidney was obstructed. Figure 5
illustrates the output of a conventional quantitative renog-
raphy program from patient 12 from the list and compares
it with RENEX’s conclusion regarding obstruction.

Table 2 shows the agreement between RENEX and the
consensus reading of the 3 human experts as to whether the
kidneys were obstructed. RENEX agreed with the expert
panel in 92% (12/13) of the obstructed kidneys, 93%
(38/41) of the unobstructed kidneys, and 78% (7/9) of the
kidneys interpreted as equivocal for obstructions. Note that
in only 1 kidney did RENEX conclude a kidney was not
obstructed when the experts thought it was obstructed.
RENEX concluded 2 kidneys were obstructed when the
experts agreed the kidneys were not obstructed.

Processing time per patient was practically instantaneous
using a 3.0-GHz personal computer programmed using
IDL.

DISCUSSION

The primary goals of this study were (i) to use the expertise
gained in PERFEX to develop a generalized methodology to
aid in the interpretation of imaging studies using an expert
system to analyze quantitative data extracted from imaging
studies and (ii) to demonstrate proof-of-principle by apply-
ing this generalized methodology to develop a renal expert
system (RENEX) for detecting renal obstruction using
pre- and postfurosemide **™Tc-MAG3 renal scans. This ap-
proach consisted of developing (i) a parameter knowledge
library with the list of the boundary conditions necessary
for transforming the values of each quantitative parameter
to a CF, (i1) a KB of heuristic rules used to reach conclu-
sions regarding the image interpretation, (iii) an inference
engine to combine the CFs of the rules and parameters, and
(iv) a justification engine to offer the ability to justify the
conclusions reached.

This method was applied to RENEX, a renal expert system
for detecting renal obstruction using pre- and postfurosemide
99mTc-MAG3 renal scans. Because the goal of expert
systems is to mimic the conclusions reached by domain
experts, consensus reading of 3 experts was used as the
gold standard to perform the validation. There was excel-
lent agreement between RENEX and the consensus reading
of 3 experts as to whether there was obstruction of the
kidneys of the pilot group that was also used as a training
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TABLE 1
Individual and Consensus Scores from Human Experts Compared with RENEX’s CF Values

Left kidney experts’ scores

Right kidney experts’ scores

Patient no. E1 E2 E3 Consensus RENEX E1 E2 E3 Consensus RENEX
1 2 2 3 2 0.3 1 1 1 1 -0.54
2 4 5 5 5 0.76 2 1 1 1 0.3
3 1 1 1 1 -0.9 1 1 1 1 -0.9
4 1 1 1 1 —0.52 3 5 5 5 0.5
5 1 1 1 1 -0.9 1 1 1 1 -0.9
6 2 4 3 3 0.3 3 5 3 3 0.76
7 1 1 1 1 -0.8 1 1 2 1 -0.7
8 2 4 2 2 -0.7 1 1 1 1 -0.9
9 2 2 2 2 0.18 1 1 1 1 -0.9
10 1 1 1 1 -0.9 1 1 1 1 -0.9
11 1 1 1 1 -0.9 3 5 3 3 0.03
12 1 1 2 1 -0.4 4 4 3 4 0.42
13 5 5 5 5 0.53 1 1 1 1 -0.9
14 3 3 3 3 -0.02 1 1 1 1 —-0.71
15 1 1 1 1 -0.9 5 5 5 5 0.76
16 1 1 1 1 -0.9 5 5 5 5 0.76
17 1 1 1 1 -0.9 1 1 1 1 -0.8
18 1 1 1 1 -0.9 1 1 1 1 -0.9
19 — - - No kidney - 1 1 1 1 -0.8
20 1 1 1 1 -0.9 3 3 3 3 -0.13
21 4 5 5 5 0.21 1 1 1 1 -0.9
22 4 3 4 4 -0.23 1 1 1 1 -0.7
23 1 1 1 1 -0.7 2 1 1 1 -0.9
24 1 1 1 1 -0.9 1 3 1 1 -0.9
25 3 3 3 3 —0.01 5 5 5 5 0.68
26 4 5 3 4 0.55 1 1 1 1 -0.9
27 2 1 2 2 -0.8 4 5 3 4 0.56
28 3 3 3 3 -0.03 5 5 5 5 0.76
29 3 3 3 3 0.01 1 1 1 1 -0.7
30 3 3 4 3 0.002 1 1 1 1 -0.54
31 1 1 1 1 -0.9 1 1 1 1 -0.9
32 4 5 4 4 0.3 1 1 1 1 -0.6

Scores from the 3 human experts (E1, E2, and E3) were assigned as follows: 1 = definitely not obstructed, 2 = probably not obstructed,
3 = equivocal, 4 = probably obstructed, 5 = definitely obstructed. The values listed in the RENEX column refers to the CFs concluded by
the program as to whether the kidney was obstructed using the following continuous scale: not obstructed range is from —1.0 to —0.2,
equivocal range is from —0.2 to 0.2, and obstructed range is from 0.2 to 1.0.

set to develop RENEX. Clearly, although this agreement is
encouraging, it does not validate the method since the
results apply only to patients in the training set. Neverthe-
less, these results are encouraging and warrant a large
prospective trial to validate the approach. To our knowl-
edge, there are no computer-aided diagnostic tools to aid
clinicians in the interpretation of renal scans to determine
renal obstruction.

The 32 patient studies used as a training set were selected
to try to challenge all branches of the decision tree. Our
results yielded equivocal readings by our experts in 9 of 63
kidneys (14%). This number is artificially elevated based
on our patient selection. By restricting our study to patients
who received furosemide, we excluded several patients who
were not obstructed and, thereby, increased the percentage
of patients who had equivocal studies and who were
obstructed.

ExperT SYSTEM FOR RENAL OBSTRUCTION ¢ Garcia et al.

As previously noted (8), we have preferred the expert
system approach over that of the neural net approach
because the heuristic rules that are used in expert systems
to reach a conclusion may be traced and linked to each
other, thereby providing a mechanism to justify or explain
any conclusion reached. Neural nets, on the other hand, act
as “black boxes” that do not provide justifications, al-
though they are excellent for pattern-recognition tasks.
Another disadvantage of neural net systems is the fact that
they also require a much larger training dataset than expert
systems to accomplish the same task.

There are equally compelling reasons for preferring
knowledge-based approaches to case-based reasoning ap-
proaches. The main challenge is that a very large library
of image cases would be required to create a sufficiently
robust system, similar to the large data demands posed by
neural network training. Also, accurate measures of image
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FIGURE 5. Output of QuantEM Il quantification program for prefurosemide study (A) and postfurosemide study (B) of patient 12
from Table 1. (A) Display under Renogram Review shows demographic and quality control data as well as 9°™Tc-MAGS clearance,
expected ?°MTc-MAG3 clearance, percentage uptake in each kidney, and Tmax (time to maximum counts), T1/2 (time to half-
maximum counts), and 20 min/max ratio (ratio of counts at 20 min to maximum counts) for whole-kidney ROI. The expression “na”
indicates that the indicated urine parameters were not measured. Top center panel shows 2-s images of the initial bolus as it
reaches the kidney. Top right panel is a quality control image showing the injection site. Just beneath the injection site image are
frames for viewing a dynamic cine and pre- and postvoid bladder images. Center panel shows twelve 2-min images followed by a
supine postvoid image of the kidneys. Bottom left panel shows whole-kidney ROIs and whole-kidney renogram curves, whereas
bottom right panel shows cortical ROIs and cortical renogram curves. There was no infiltration; 9°™Tc-MAG3 clearance was
reduced at 83 mL/min/1.73 m? compared with an expected clearance of 147 mL/min/1.73 m2. There is essentially equal uptake in 2
kidneys; whole-kidney ROIs show that both kidneys have delayed time to peak values of approximately 15 min and prolonged T1/2
values of >50 min. Values for cortical ROls (Expanded Review Page, not shown) demonstrate improvement in time to peak values
(<6 min for both kidneys) but the T1/2 values are still >50 min. Delayed (18-24 min) and postvoid images show retention in renal
pelvis of both kidneys. Because of reduced ®°"Tc-MAGS3 clearance, bilateral pelvic retention, and prolonged whole-kidney and
cortical T1/2 values, baseline imaging could not exclude obstruction in either kidney; consequently, 40 mg of furosemide were
administered intravenously and additional imaging was performed (B). (B) In the Diuretic Review format, the top left panel indicates
patient’s age and dose of furosemide as well as T1/2 values for whole-kidney and pelvic ROIs. Dynamic cine images can be
reviewed in the top right panel, whereas center panel presents 10 sequential 2-min images. The bottom left panel shows whole-kidney
renogram curves and the bottom right panel shows pelvic renogram curves drawn around area of urine retention in each kidney.
Visually, counts in the bladder decrease, indicating the presence of a bladder catheter. There is prompt drainage of the tracer from the
left renal pelvis (T1/2 of 4 min) excluding obstruction; diffuse retention in left kidney reflects underlying impairment in renal function.
RENEX agreed that left kidney was not obstructed with a CF value of —0.40. There is persistent retention in right renal pelvis with a
prolonged pelvic T1/2 of 22 min. Because the kidneys had equal function (equal relative uptake, A), right kidney should have been able
to drain as effectively as left kidney. The fact that right kidney shows persistent pelvic retention and drains much slower than left kidney
indicates that right kidney is probably obstructed. RENEX agreed that right kidney was obstructed with a CF value of 0.42.
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FIGURE 5. (Continued)

“similarity” would have to be developed to adapt the
indexed cases to the patient case under consideration. Hence,
knowledge captured as rules, coupled with the uncertainty
reasoning model used by RENEX, provide an avenue to
overcome these challenges while demonstrating a very quick
processing time and providing a justification engine.

TABLE 2
Agreement Between RENEX and Human Experts

Human experts

Obstructed Not
RENEX kidney Equivocal obstructed
Obstructed kidney 12 2 2
Equivocal 0 7 1
Not obstructed 1 0 38
Agreement 92% (12/13) 78% (7/9) 93% (38/41)

ExperT SYSTEM FOR RENAL OBSTRUCTION ¢ Garcia et al.

In their consensus report on diuresis renography,
O’Reilly et al. (I8) recommend tracer administration,
20 min of imaging, furosemide administration, and an addi-
tional 15 min of imaging (F + 20-min protocol). Many
centers obtain these data as a continuous acquisition. We
have used essentially the same protocol except that we
acquire the baseline (initial 24 min) and postfurosemide (20
min) acquisitions separately. We have found that often the
baseline images and curves can exclude obstruction and
administration of furosemide is unnecessary. A continuous
acquisition could easily be analyzed on the basis of the pre-
and postfurosemide components and the rules of RENEX
should still be applicable. We recognize that there are other
acquisition protocols but our purpose was to show proof-
of-principle of the expert system methodology using our
standard protocol. We also recognize that standard acqui-
sition and processing protocols help physicians and deci-
sion support systems alike develop a consistent, objective
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set of rules for interpreting the imaging studies. We have
also found from our nuclear cardiology experience that
once a successful decision support system is developed that
depends on a strict acquisition and processing protocol,
these protocols tend to be accepted as standards in the field
for the decision support system to be used by a large
number of institutions.

We are continuing to investigate how to further improve
the diagnostic performance of RENEX. One approach is to
add heuristic rules that use the patients’ clinical informa-
tion routinely available to physicians. We are also investi-
gating the use of data mining techniques to automatically
find associations between the quantitative results, the clin-
ical variables, and the results of the gold-standard. These
associations may be used as heuristic rules to enhance the
expert system (/9).

CONCLUSION

We have developed a generalized methodology to aid in
the interpretation of imaging studies using an expert system
to analyze quantitative data extracted from these studies
and demonstrated proof-of-principle by applying this gen-
eralized methodology to a renal expert system (RENEX)
for detecting renal obstruction using pre- and postfurose-
mide %"Tc-MAG3 renal scans with excellent results.
These encouraging preliminary results warrant a prospec-
tive study in a large population of patients with and without
renal obstruction to establish the diagnostic performance of
this system.

APPENDIX A

FUNCTION TO TRANSFORM QUANTITATIVE
PARAMETERS TO CERTAINTY FACTORS

The input to this function is the quantitative value of the
parameter (p) to be transformed to a CF and the 5 boundary
conditions for that parameter as defined in Figure 2. These
5 boundary conditions are values when the quantitative
parameter is definitely normal, probably normal, equivocal,
probably abnormal, and definitely abnormal. Let:

p = quantitative parameter to be transformed into a CF

b = p — equivocal value

ap = definitely normal value — equivocal value

by, = probably normal value — equivocal value

by = probably abnormal value — equivocal value

ay = definitely abnormal value — equivocal value

ky = 0.2/((by, — ap)/2 ap)?

kg = 0.2/((by — ay)/2 ag)?

Assuming a quantitative parameter that increases as the
parameter becomes abnormal*, the CF values (CF) for each
of the zones in Figure 2 are given by:

*For quantitative parameters that decrease as the function becomes
abnormal, the same equations are used except that the boundary
conditions are reversed in order.
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CF(b) = -1, p = definitely normal value (zone 1)

CF(b) = 4 k. [(b—ap)/2 a ]?> - 1, definitely normal value
< p = probably normal value (zone 2)

CF(b) = -0.2b/by, probably normal value < p <
equivocal value (zone 3)

CF(b) = 0.2b/by, equivocal value < p < probably
abnormal value (zone 4)

CF(b) = 1 — 4 ky [(b — ay)/2 ay]?, probably abnormal
value = p < definitely abnormal value (zone 5)

CF(b) = +1, p = definitely abnormal value (zone 6)

APPENDIX B

SAMPLE RULES

If the time to half peak of the left kidney pelvis after a
furosemide renogram is abnormal, then there is strong
positive evidence (CF = 0.4) that the left kidney is
obstructed.

If the ratio of counts in the left kidney during the first
1-min interval of the postfurosemide renogram to the max-
imum counts of the left kidney baseline renogram is
abnormal and the time to half peak of the left kidney
pelvis postfurosemide renogram is also abnormal, then
there is strong positive evidence (CF = 0.4) that the left
kidney is obstructed.

If the ratio of counts in the left kidney on the post-
furosemide renogram postvoid 1-min image to the counts
in the baseline renogram during the 1- to 2-min interval is
normal, then there is very strong negative evidence (CF =
—0.8) that the left kidney is obstructed.

If the left kidney is obstructed and the left kidney
baseline *°Tc-MAG3 clearance is very abnormal, then it
is equivocal (CF = 0) that the left kidney is obstructed.
(example of a meta rule)

APPENDIX C
RULES FOR COMBINING CERTAINTY FACTORS (CF)

1. Certainty of premise (IF) for combining 2 pieces of
evidence S; and S,.

A.CF (S; and S;) = minimum {CF(S;), CF(S;)}
B.CF (S; or S;) = maximum {CF(S;),CF(S,)}

2. Certainty of a parameter [CF(update)] determined after
taking a single action (THEN) based on a premise (IF)

CF(update) = CF of premise x CF of action

CF(update) may be thought as the new evidence that a
hypothesis is true (or false) and will be used to modify the
previous CF value of a hypothesis (or parameter).

3. Certainty of a parameter [CF(new)] after modifying the
previous certainty [CF(previous)] with the certainty of a
single action [CF(update)]
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