Radionuclides and Radiopharmaceuticals for 2005

he breakneck rate of change to which we have become accustomed in the scientific world has not been reflected in the number of changes in available radionuclides and radiopharmaceuticals between my last compilation in 2003 (*J Nucl Med.* 2003;44[6]:27N– 31N) and the current lists. Economic and regulatory issues have not kept pace with radiopharmaceutical science.

Gone is radiolabeled hippuran (labeled with ¹²³I or ¹³¹I), a stalwart of renal diagnosis since 1961, because of the excellent physical and biologic properties of ^{99m}Tc-mertiatide (MAG3). ^{99m}Tc-lidofenin has disappeared as a hepatobiliary agent, leaving ^{99m}Tc-labeled disofenin and mebrofenin on the market.

¹³¹I-tositumomab finally passed U.S. Food and Drug Administration (FDA) review as another labeled antibody against lymphocyte antigen CD20 (as is ⁹⁰Y-ibritumomab tiuxetan) for the therapy of lymphoma. ^{99m}Tcfanolesomab, an antibody directed against granulocyte antigen CD15, has been approved by the FDA for the diagnosis of appendicitis in patients age 5 and over with equivocal symptoms and signs.

Although PET agents such as ¹¹C-carbon monoxide, ¹¹C-flumenazil, ¹¹C-mespiperone, ¹¹C-methionine, ¹¹Craclopride, ¹¹C-acetate, ¹⁸F-fluorodopa, ¹³N-ammonia, and ¹⁵O-water are now being compounded under the stateregulated practice of medicine and pharmacy, these are not widely available outside of certain research institutions and so do not appear on the list.

I have added 2 radiopharmaceuticals classified as "devices" for brachytherapy by the FDA: ⁹⁰Y-microspheres (for unresectable hepatocellular carcinoma) and ¹²⁵I-3-iodo-4-hydroxybenzenesulfonate (for recurrent malignant glioma).

A number of new radionuclides appear on this list, such as ⁷Be, ³²Si, and ⁴⁴Ti, produced by the U.S. Department of Energy (DOE), as well as the radioisotopes of plutonium, uranium, and thorium available from the *(Continued on page 14N)*

¹⁴ C-urea	⁸⁹ Sr-strontium chloride	
⁵⁷ Co-cyanocobalamin	^{99m} Tc-apcitide (GPIIa/IIIb) [†]	
⁵¹ Cr-sodium chromate	^{99m} Tc-arcitumomab (CEA) [†]	
¹⁸ F-sodium fluoride	99mTc-bicisate dihydrochloride (ECD)*	
¹⁸ F-fluorodeoxyglucose (FDG)*	^{99m} Tc-disofenin (DISIDA)*	
⁶⁷ Ga-gallium citrate ^{99m} Tc-exametazime (HMPA0		
¹¹¹ In-capromab pendetide (PMSA) [†]	^{99m} Tc-fanolesomab (CD15) [†]	
¹¹¹ In-ibritumomab tiuxetan (CD20) [†]	^{99m} Tc-gluceptate	
¹¹¹ In-indium chloride	^{99m} Tc-macroaggregated albumin (MAA)*	
¹¹¹ In-indium oxyquinoline (oxine)*	^{99m} Tc-mebrofenin	
¹¹¹ In-pentetate (DTPA)*	^{99m} Tc-medronate (MDP)*	
¹¹¹ In-pentetreotide (SRS) [†]	^{99m} Tc-mertiatide (MAG3)*	
¹²³ I-iobenguane (MIBG)*	^{99m} Tc-oxidronate (HDP)*	
¹²³ I-sodium iodide	^{99m} Tc-pentetate (DTPA)*	
¹²⁵ I-iodinated albumin (HSA)*	^{99m} Tc-sodium pertechnetate	
¹²⁵ I-3-iodo-4-hydroxybenzenesulfonate**	^{99m} Tc-pyrophosphate (PYP)*	
¹²⁵ I-sodium iothalamate	^{99m} Tc-red blood cells [§]	
¹³¹ I-iobenguane	^{99m} Tc-sestamibi	
¹³¹ I-iodinated albumin	^{99m} Tc-succimer (DMSA)*	
¹³¹ I-sodium iodide	^{99m} Tc-sulfur colloid	
¹³¹ I-6-β-iodomethyl-19-norcholesterol ^{††}	^{99m} Tc-tetrofosmin	
¹³¹ I-tositumomab	²⁰¹ TI-thallous chloride	
³² P-chromic phosphate (suspension)	¹³³ Xe-xenon gas	
³² P-sodium phosphate	⁹⁰ Y-ibritumomab tiuxetan (CD20) [†]	
⁸² Rb-rubidium chloride ⁹⁰ Y-microspheres**		
¹⁵³ Sm-samarium lexidronam (EDTMP)*		

 TABLE 1

 Commercially Available Radiopharmaceuticals, 2005

*Common chemical abbreviation.

[†]Antigen or receptor with which interaction occurs.

^{††}Investigational new drug (IND) approval with the University of Michigan required.

[§]Red cells labeled with commercially available kit.

^{**}Classified as a medical device for brachytherapy by the U.S. Food and Drug Administration.

 TABLE 2

 Radionuclides Available in the United States, 2005

Radioisotopes	Source	Radioisotopes	Source
²²⁵ Ac/ ²¹³ Bi	Alp, DOE	¹⁰³ Pd	MURR, Nor, TCI, CNL
²⁶ AI	CNL	¹⁰⁹ Pd	MURR
²⁴¹ Am	Aur, CNL	¹⁴⁷ Pm	Aur, CNL
²⁴³ Am	DOE	¹⁴⁹ Pm	MURR
⁴¹ Ar	TX, OR	²¹⁰ Po	CNL
⁷³ As	DOE	¹⁹¹ Pt	MURR
¹⁹⁸ Au	MURR, OSU, TX	^{195m} Pt	MURR, DOE-carrier free
¹³³ Ba	DOE, INIS, Aur, CNL	²⁴⁰ Pu	DOE
⁷ Be	DOE, CNL	²⁴¹ Pu	DOE
²⁰⁷ Bi	DOE, CNL	²⁴² Pu	DOE
²¹² Bi	Alp	²²⁴ Ra/ ²¹² Pb/ ²¹² Bi	Alp
²¹³ Bi	Alp	²²⁶ Ra	CNL
⁷⁶ Br	WU	⁸⁶ Rb	PE
⁷⁷ Br	WU	¹⁸⁶ Re	DOE, MURR, NOR
¹⁴ C	PE, Nor, CNL	¹⁸⁸ Re	DOE, MURR
⁴⁵ Ca	PE	¹⁰⁵ Rh	MURR
¹⁰⁹ Cd	DOE, PE, Aur, CNL	¹⁰⁶ Ru	PE, CNL
¹³⁹ Ce	CNL	³³ S	CNL
¹⁴¹ Ce	PE	35S	MURR, PE, CNL
²⁵² Cf	DOE, Aur, CNL	¹²² Sb	MURR
³⁶ CI	PE	⁴⁶ Sc	MURR, PE, TX
²⁴⁴ Cm	DOE, CNL	⁴⁷ Sc	Alp
²⁴⁸ Cm	DOE	⁷⁴ Se	CNL
⁵⁷ Co	INIS, Nor, PE, Aur, CNL	⁷⁵ Se	Aur, DOE, MURR
58Co	CNL	⁷⁶ Se	CNL
⁶⁰ Co	DOE, INIS, PE, Nor, Aur, CNL	⁷⁷ Se	CNL
⁵¹ Cr	MURR, PE, Nor	⁷⁸ Se	CNL
¹³⁷ Cs	INIS, Aur, CNL	⁸⁰ Se	CNL
⁶⁰ Cu	INIS, WU	⁸² Se	CNL
⁶¹ Cu	WU	³² Si	DOE
⁶⁴ Cu	WU, Nor	¹⁵³ Sm	MURR
⁶⁷ Cu	Alp, DOE	¹¹³ Sn	PE
¹⁶⁶ Dy/ ¹⁶⁶ Ho	MURR	^{117m} Sn	DOE
55Fe		⁸² Sr	DOE, Nor, CNL
⁵⁹ Fe	Aur, DOE, PE, CNL PE, CNL	⁸⁵ Sr	DOE, PE, CNL
⁶⁶ Ga	WU	⁸⁹ Sr	DOE, CNL
⁶⁷ Ga	BMS, Mal, Nor, CNL	⁹⁰ Sr	DOE, Aur, CNL
68Ga	CNL, TCI (from ⁶⁸ Ge generator)	¹⁶⁰ Tb	MURR
¹⁵³ Gd	PE, CNL, Aur	^{94m} Tc	WU
⁶⁸ Ge	DOE, INIS, PE, TCI, CNL	⁹⁹ Tc	DOE, PE
3H	PE, CNL	^{99m} Tc	
¹⁶⁶ Ho	MURR	^{123m} Te	Mal
123	Alp, Am, Mal, Nor	^{125m} Te	MURR, DOE
124	WU	^{129m} Te	MURR
125	CAL-D, Nor, PE, TX, TCI, CNL	²²⁸ Th	MURR
129	PE, CNL		Aur, CNL
131	Drax, INIS, Nor, PE, TCI, Mal, CNL	²²⁹ Th	DOE
¹¹¹ In		²³⁰ Th	DOE
¹¹⁴ In	Alp, Am, Mal, Nor, PE, CNL	⁴⁴ Ti 201 T I	DOE, CNL
		201 TI	Am, BMS, Mal, Nor
¹⁹² r	Aur, DOE, MURR, Nor, WSU, CNL	234	DOE
⁴² K	MURR	²³⁵ U	DOE
⁸⁵ Kr	Aur	236U	CNL
¹⁷⁷ Lu	Aur, DOE, INIS, MURR, Nor, PE	238	DOE
⁵⁴ Mn	PE, Aur, CNL	¹⁸⁸ W/ ¹⁸⁸ Re	DOE, CNL
⁹⁹ Mo	Mal, Nor, TCI	¹³³ Xe	Nor, Mal
²² Na	DOE, INIS, PE, Aur, CNL	86Y	WU
²⁴ Na	TX	⁸⁸ Y	DOE, CNL
	PE	90Y	Aur, MURR, Nor, PE, CNL
⁹⁵ Nb		¹⁶⁹ Yb	MURR, Aur
⁶³ Ni	Aur, DOE, PE		
⁶³ Ni ²³⁷ Np	CNL	⁶⁵ Zn	DOE, MURR, PE, CNL
⁶³ Ni ²³⁷ Np ¹⁹¹ Os	CNL MURR		
⁶³ Ni ²³⁷ Np	CNL	⁶⁵ Zn	DOE, MURR, PE, CNL

Alp = AlphaMed (Acton, MA); Am = Amersham Health (Princeton, NJ); Aur = Auriga Medical of AEA Technology QSA, Inc. (Burlington, MA); BMS = Bristol Myers Squibb (Princeton, NJ); CAL-D = University of California-Davis (Davis, CA); CNL = CNL Scientific Resources, Isotope Products Laboratories (Valencia, San Francisco, CA); DOE = U.S. Department of Energy (Washington, DC); Drax = Draximage Inc. (Quebec, Canada); INIS = International Isotopes, Inc. (Idaho Falls, ID); Mal = Mallinckrodt Corporation (St. Louis, MO); MURR = University of Missouri Research Reactor (Columbia, MO); Nor = MDS Nordion Corporation (Ottawa, ON, Canada); OR = Oregon State University (Corvallis, OR); OSU = Ohio State University (College Station, TX); WSU = Washington State University (Pullman, WA); WU = Washington University (St. Louis, MO).

(Continued on page 26N)

and Michael J. Welch, PhD, a professor of radiology and chemistry and director of the department of radiology's research division at Washington University School of Medicine (St. Louis, MO).

We told the representatives from OMB and the Office of Science and Technology—and I repeated the concerns to Raymond L. Orbach, PhD, director of DOE's Office of Science—that the future of effective therapies and cutting-edge basic research in molecular imaging and nuclear medicine depends on DOE funding. SNM recognizes that there are many competing priorities in the FY 2006 federal budget as well as serious fiscal challenges that the nation faces. However, without funding for molecular/nuclear imaging programs, nuclear medicine research will be severely curtailed, and millions of our patients with cancer, brain diseases, and diseases of the heart could be adversely affected.

Research and development carried out with DOE funding have made pioneering contributions that have formed the basis of molecular imaging/nuclear medicine as practiced today. These achievements have had a major impact on the growth of molecular imaging/nuclear medicine and on the lead our nation enjoys in the field. The list of accomplishments brought about by DOE funding is long and includes the development of the Anger gamma camera, a primary tool; the ^{99m}Mo/^{99m} Tc generator, the workhorse; PET, the driving force of modern molecular imaging/nuclear medicine; ¹⁸F-FDG, which promotes metabolic imaging; and many other key radiopharmaceuticals of diagnostic and therapeutic importance that are either in routine practice or promise to keep molecular

imaging/nuclear medicine on the cutting-edge of everevolving modern medicine.

However, only Congress can reverse the budget cuts. We simply cannot afford to sit back and watch this situation become a reality. While we all cannot personally provide our perspectives on Capitol Hill, we can let our lawmakers know that these funding cuts are unacceptable. Since SNM issued its call to action, nearly 2,700 messages (both e-mail and print) have been sent to Capitol Hill lawmakers denouncing the proposed budget cuts. Clearly, the impact on Congressional lawmakers would be exponentially greater if all of our 16,000 members and Journal of Nuclear Medicine subscribers wrote to object to the suggested cuts. SNM has made this process very easy, providing an online legislative action center that supplies recommended e-mail text. The online action center also automatically determines your representatives (based on your zip code) and provides their e-mail addresses.

On behalf of the society, I thank those who have already taken the time to send letters, and I appeal to others to take action and let your national representatives know you support molecular imaging/nuclear medicine programs. Visit the SNM Web site at www.snm.org and click on Government Relations for the link to the online legislative action center. The window of opportunity still exists. Please do not procrastinate, as procrastination is the grave in which opportunity can get buried. *SNM and the molecular imaging/nuclear medicine profession need your help!*

Mathew L. Thakur, PhD President, SNM

(Continued from page 14N)

These lists were reviewed by the following individuals who gave generously of their time: Robert W. Atcher, PhD; Joseph C. Hung, PhD; Henry H. Kramer, PhD; and all the members of the Council on Radionuclides and Radiopharmaceuticals, Inc., to whom he sent these lists; John Pantaleo of the DOE; James A. Ponto, MS; and Wynn A. Volkert, PhD. These lists are published here with the understanding that the organizations have said that they can or will provide these radionuclides in 2005. It is almost certain that some of these radionuclides cannot be provided without some period of delay for production. If any producers or radionuclides have been omitted, we will publish addenda as needed.

> Edward B. Silberstein, MD Member and Past-Chair SNM Committee on Radiopharmaceuticals

DOE. It is reassuring to note the multiple suppliers of ⁵⁷Co, of which there was a recent shortage. Several companies are now making available ⁶⁸Ge, ¹⁷⁷Lu, and other radionuclides appearing more frequently in our nuclear medicine literature.