The kidneys are critical organs in peptide receptor radiation therapy (PRRT). Renal function loss may become apparent many years after PRRT. We analyzed the time course of decline in creatinine clearance (CLR) in patients during a follow-up of at least 18 mo after the start of PRRT with 90Y-1,4,7,10-tetraaza-cyclododecane-N,N',N''-tetraacetic acid (DOTA),Tyr3-octreotide (90Y-DOTATOC) or 177Lu-DOTA0,Tyr3-octreotate (177Lu-DOTATATE).

Methods: Twenty-eight patients with metastasized neuroendocrine tumors received 1–5 cycles of 90Y-DOTATOC, leading to renal radiation doses of 5.9–26.9 Gy per cycle and a total of 18.3–38.7 Gy. Median follow-up was 2.9 y (range, 1.5–5.4 y), with a median of 16 measurements (range, 5–53) per patient. Thirty-seven patients with metastasized neuroendocrine tumors received 3–7 cycles of 177Lu-DOTATATE, leading to renal radiation doses of 1.8–7.8 Gy per cycle and a total of 7.3–26.7 Gy. Median follow-up was 2.4 y (range, 1.7–4.0 y), with a median of 10 (range, 6–27) measurements per patient. All renal dose estimates were calculated with the MIRDOSE3 model. All patients were infused with renoprotective amino acids during the administration of the radioactive peptides. The time trend of CLR was determined by fitting a monoexponential function through the data of individual patients, yielding the decline in CLR in terms of percentage change per year.

Results: The median decline in CLR was 7.3% per y in patients treated with 90Y-DOTATOC and 3.8% per y in patients treated with 177Lu-DOTATATE ($P = 0.06$). The time trend of decline in CLR was sustained during the follow-up period. Eleven patients had a $>15\%$ per y decline in CLR. Cumulative renal radiation dose, per-cycle renal radiation dose, age, hypertension, and diabetes are probable contributing factors to the rate of decline in CLR after PRRT.

Conclusion: This study showed that the time course of CLR after PRRT was compatible with the pattern of sustained CLR loss in progressive chronic kidney disease.

Key Words: 90Y-DOTA0,Tyr3-octreotide; 177Lu-DOTA0,Tyr3-octreotate; peptide receptor radiation therapy; radiation nephropathy; chronic kidney disease

DOTATOC) in patients during a follow-up period of at least 18 mo after the start of treatment.

In addition, we present an overview of the reported aspects involved in renal function loss after PRRT, as well as measures for prevention or treatment, including coinfusion of amino acids (4,6–8).

MATERIALS AND METHODS
PRRT with 90Y-DOTATOC

Patients in this study were all veterans of a multicenter phase 1, uncontrolled, open-label vertical (per cycle) and horizontal (number of cycles) dose-escalation study (9,10). The primary goals were to establish the single-cycle and 4-cycle maximum tolerated doses of 90Y-DOTATOC (90Y-SMT487, 90Y-edotreotide; Octreoth, Novartis) and to evaluate immediate, 6-mo, and long-term (18-mo) safety profiles. All patients gave written informed consent. The study was approved by the local ethical committees of the 3 participating centers. Before entering the therapy study, all patients had undergone 86Y-DOTATOC PET for dosimetry (7). Biochemical data over 48 h; data from PET scans at 3.5, 24, and 48 h after injection; and the MIRDose program (version 3.1) were used to calculate dosimetry estimates for 90Y-DOTATOC in a reference human. Patients were not allowed to receive doses of more than 27 Gy of 90Y-DOTATOC to the kidneys within the frame of the study, although patients could receive extra cycles off protocol if the attending physicians judged that the benefit of treatment outweighed the risks.

The initial administered activity of 90Y-DOTATOC was 925 MBq/m²/cycle. Vertical escalation proceeded at 925 MBq/m² before administration of the radiopharmaceutical. The interval between treatments was 6–9 wk. In the later phase of the study, the protocol was amended to allow further escalation of the activity per cycle. These patients then received several full cohort activities and a final smaller remainder of activity as the last cycle, until their measured cumulative renal radiation dose was reached.

For renal protection purposes all patients were coinfused with 2 L of a mixed amino acid solution over 4 h during the treatments with 90Y-DOTATOC, as in previous dosimetry studies with 90Y-DOTATOC (7).

Sixty patients were originally included in the study, of whom 30 were followed for at least 18 mo after the start of the first treatment cycle. Two patients were excluded because the uptake of 90Y-DOTATOC in the kidneys had not been measurable by PET, leaving 28 patients to be included in this analysis. Four of these 28 patients received renal radiation doses that differed from the planned dose of 27 Gy. One patient did not receive her last planned cycle because of persistent thrombopenia, and 3 patients, because of tumor status, were administered additional cycles while they had no evidence of renal toxicity. Table 1 includes relevant clinical details.

PRRT with 177Lu-DOTATATE

Patients participated in an open-label phase 1 and 2 study on the side effects and the antitumoral effects of 177Lu-DOTATATE therapy, which has been ongoing in Rotterdam since 2000. All patients gave written informed consent to participate in the study, which was approved by the medical ethical committee of the hospital. Initial results of this study were published previously (11).

177Lu-DOTATATE was prepared as described previously (12). A concomitant infusion of amino acids (lysine 2.5% and arginine 2.5% in 1 L 0.9% NaCl at 250 mL/h for 4 h) was started 30 min before administration of the radiopharmaceutical (8). The radiopharmaceutical was coadministered through a second pump system. The administered activity per cycle was initially 1.85 GBq of 177Lu-DOTATATE. After escalation of the cycle activity in 1.85 GBq increments, the administered activity per cycle was determined at 7.4 GBq. The interval between treatments was 6–9 wk. Patients were treated up to a cumulative activity of 27.8–29.6 GBq.

TABLE 1
Clinical Parameters and Changes in Creatinine Clearance

<table>
<thead>
<tr>
<th>Parameters</th>
<th>90Y-DOTATOC*</th>
<th>177Lu-DOTATATE</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients</td>
<td>28</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Men/Women</td>
<td>13/15</td>
<td>17/20</td>
<td></td>
</tr>
<tr>
<td>Age (y) (range)</td>
<td>56 ± 9 (40–75)</td>
<td>58 ± 12 (20–79)</td>
<td></td>
</tr>
<tr>
<td>Diabetes (%)</td>
<td>4 (14%)</td>
<td>7 (19%)</td>
<td></td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>7 (25%)</td>
<td>7 (19%)</td>
<td></td>
</tr>
<tr>
<td>Baseline CLR (mL/min/1.73 m²) (range)</td>
<td>92.5 ± 25.7 (45.3–167.6)</td>
<td>93.9 ± 22.3 (45.2–154.4)</td>
<td>NS</td>
</tr>
<tr>
<td>Cumulative renal dose (Gy) (range)</td>
<td>26.9 ± 3.0 (18.3–38.7)</td>
<td>19.8 ± 4.3 (7.3–26.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Highest renal dose per cycle (Gy) (range)</td>
<td>12.6 ± 7.1 (5.9–26.9)</td>
<td>4.8 ± 1.5 (1.8–7.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Follow-up (y) (range)</td>
<td>3.2 ± 1.4 (1.5–5.5)</td>
<td>2.6 ± 0.7 (1.7–4.0)</td>
<td>0.04</td>
</tr>
<tr>
<td>Median measurements per patient (range)</td>
<td>16 (5–53)</td>
<td>10 (6–27)</td>
<td><0.001†</td>
</tr>
<tr>
<td>Median change in CLR (%/y) (range)</td>
<td>−7.3 (−56–10.9)</td>
<td>−3.8 (−40.2–6)</td>
<td>0.06§</td>
</tr>
<tr>
<td>Width of 95% CI (%) (range)</td>
<td>9.7 ± 7.1 (3–31)</td>
<td>12.2 ± 6.5 (2–26)</td>
<td>NS</td>
</tr>
</tbody>
</table>

*Mean values ± SD. Independent samples T-tests for continuous variables with sufficiently normal distributions and χ² tests for ordinate variables.
†Mann–Whitney test.
§Range of values was wider in the 90Y-DOTATOC group (Moses extreme reactions test, $P < 0.01$).
NS = not significant.
excluded because uptake of 177Lu-DOTATATE in the kidneys was
18 mo after the start of the first treatment cycle. Six patients were
excluded because uptake of 177Lu-DOTATATE in the kidneys was
not measurable for dosimetry, leaving 37 patients to be included in
this analysis. Table 1 includes relevant clinical details

Follow-Up and Data Analysis

Creatinine clearance (CLR) was chosen as an estimate of the
glomerular filtration rate (GFR). In all patients administered 90Y-
DOTATOC, CLR was determined at baseline based on two 24-h
urine collections and serum creatinine (s-creat). This method is
cumberson, prone to sampling errors, and may vary from day to
da...
hypertension occurred in 6 patients, including the 2 described previously. Only mild proteinuria was observed. Among the patients treated with 177Lu-DOTATA TE, a single patient experienced early onset renal insufficiency. This patient had a baseline CLR of 41 mL per min and unexplained rises in s-creat levels in the year before PRRT. Because of the short follow-up period, this patient was not included in the current analysis.

The observed percentage change in CLR differed widely among individual patients, but in most there was a clear, sustained decline in CLR throughout the follow-up period. In patients with a high loss of CLR in the first year after the start of treatment, this loss continued at a similar rate thereafter. Conversely, patients with stable CLR during the first years remained stable later (Fig. 1). Several patients treated with 177Lu-DOTATA TE showed an apparent improvement in CLR, which was caused by their rapid weight gain rather than a decline in s-creat values. This gain in weight often was associated with a clear improvement in clinical condition as a result of a good response to treatment. However, we suspect that the true improvement in CLR is less than indicated by the Cockcroft–Gault formula, which was derived from a cross-sectional study in patients with a stable clinical condition (13). Therefore, we decided to use the baseline weight as a constant for weight in the follow-up decline per year (9 in the 90Y-DOTATOC group and 2 in the 177Lu-DOTATA TE group) (Fig. 2, Table 2). From the data presented in Table 2, it is clear that most of these patients were at least 60 y old and that maximum renal radiation dose per cycle and hypertension may have been determining factors. In total, 2 patients had a combination of hypertension and diabetes and both had a very high rate of decline in CLR after PRRT. The univariate ANOVA showed significance for hypertension ($n = 14; P = 0.005$) and per-cycle radiation dose >14 Gy ($n = 11$, all 90Y-DOTATOC; $P < 0.0005$) as separate factors but not for diabetes ($n = 11; P = 0.43$) or age >60 y ($n = 27; P = 0.37$). However, the combination of hypertension, age, and diabetes ($n = 2; P = 0.046$) was significant in this 4-factor model (adjusted $R^2 = 0.45$). Moreover, hypertension and age were related factors. The mean age was 62.8 ± 8.7 y in patients with hypertension ($n = 14$) and 55.6 ± 11.2 y in patients without hypertension ($n = 51; P = 0.03$, t test).

In patient 1 in the 177Lu-DOTATA TE group (Table 2), the high loss in CLR may be attributed in part to a hepato-renal syndrome in the presence of extensive liver metastases, in addition to the combination of age, hypertension, and diabetes mellitus.

The majority of patients showed a $<15\%$ yearly decline in CLR (19 of 28 patients in the 90Y-DOTATOC group and 35 of 37 patients in the 177Lu-DOTATA TE group). Within this large combined subgroup, the distribution of CLR rates was within normal limits ($P = 0.27$, Kolmogorov–Smirnov test). There was no significant difference between the mean yearly decline in CLR between the 90Y-DOTATOC (3.7%/y) and 177Lu-DOTATOC subgroups (3.9%/y; $P = 0.92$), despite significant differences in cumulative renal radiation dose (26.9 ± 3.7 Gy and 19.7 ± 4.4 Gy, respectively; $P < 0.0005$) and per-cycle dose (10.5 ± 5.7 Gy and 4.7 ± 1.5 Gy, respectively; $P < 0.0005$).

FIGURE 1. Time course of CLR and fitted monoexponential decay.

(A) Patient was 75-y-old woman with insulinoma and hypertension who received 11.6 GBq of 90Y-DOTATOC, with estimated renal dose of 27.5 Gy. CLR loss was 26%/y (95% CI, 24.4%–27.5%), with ESRD at 5 y after first treatment. (B) Patient was 52-y-old man with papillary thyroid carcinoma who received 25.9 GBq of 177Lu-DOTATOC, with estimated renal dose of 23.3 Gy. CLR loss was 2.7%/y (95% CI, 0.2%–5.0%).
The expected time to ESRD (defined as CLR $< 15 \text{ mL/min/1.73 m}^2$) was calculated using the baseline CLR and the decline in CLR. Only in patients with a yearly loss in CLR $> 25\%$ could ESRD be expected to occur within 5 y after the start of treatment (Table 2).

In Figure 3, another more straightforward and simplified approach is presented. For patients treated with 90Y-DOTATOC, hypertension, age, diabetes, and renal radiation dose $> 14 \text{ Gy per cycle}$ were taken as risk factors for a decline in CLR of $> 20\%$ and an associated high risk of ESRD within 5 y (Fig. 3A). This approach was repeated for the combined 90Y-DOTATOC and 177Lu-DOTATATE groups, with a cumulative renal radiation dose $> 25 \text{ Gy}$ as an additional risk factor (Fig. 3B). The prevalence of $> 20\%$ decline in CLR increased sharply when the number of risk factors increased within the 90Y-DOTATOC group ($P = 0.021$, Pearson χ^2; Spearman rank correlation coefficient = 0.61) or when both groups were combined ($P < 0.0005$, Pearson χ^2; Spearman rank correlation coefficient = 0.52).

DISCUSSION

Nephrotoxicity from PRRT with 90Y-DOTATOC has been recognized as an important clinical problem that has been discussed in the literature (15–23). Cumulative experience with 90Y-DOTATOC by the Basel group consists of...
a pilot study with 29 patients (1), 2 phase 2 clinical studies with 41 patients (24) and 39 patients (25), and a study in 20 patients with medullary thyroid cancer (26). They reported 4 cases of early renal insufficiency and 2 additional cases of delayed renal failure (1,2,27) from their initial study, without amino acids for renal protection. In their later studies, always performed with amino acids, only a single patient was reported with late grade 2 renal toxicity (25). The cumulative experience from Milan was reported in 3 studies, with a total of 128 patients who received different regimens of amino acids (28–30). In addition, many patients were treated outside protocols, reaching a total of 256 patients (29). None of the patients developed acute renal toxicity, although 1 had delayed grade 2 toxicity, 2 had delayed grade 1 toxicity, and 2 had transient grade 1 toxicity. We have previously reported preliminary results from a multicenter dose-escalating phase 1 and 2 study of 60 patients (31). A similar case was reported by Stoffel et al. (31)). None of the patients developed acute renal toxicity, although 1 had delayed grade 2 toxicity, 2 had delayed grade 1 toxicity, and 2 had transient grade 1 toxicity. We have previously reported preliminary results from a multicenter dose-escalating phase 1 and 2 study of 60 patients who all received amino acids for renal protection (10). At the time of analysis, one patient was reported with delayed grade 3 renal function loss. Together, these reports include more than 400 patients treated with 90Y-DOTATOC, including 7 patients with severe and 6 patients with mild renal toxicity. These used different administered activities, renal dosimetry estimations, renal protection schemes, and follow-up periods.

In the current study, we analyzed the time course of the most relevant parameter of renal function, the GFR, at individual and group levels in patients with long follow-up after PRRT with 90Y-DOTATOC or 177Lu-DOTATATE. Because we had long-term follow-up with many measurements per patient, the time trends in CLR (as a substitute for GFR) could be reliably assessed on an individual basis. Our results demonstrated that after PRRT, individual rates of decline vary widely among patients. In those patients who have a decline in CLR, this decline is sustained during the entire follow-up period after the start of therapy. This suggests that treatment with radioactive peptides may trigger a process at the level of the glomerulus that continues long after the end of radiation exposure.

We encountered no clinically notable impairment of tubular function, such as excessive loss of electrolytes, changes in phosphate reabsorption, or failure to concentrate urine, either shortly after administration of PRRT or during long-term follow-up. This is entirely in agreement with the histopathologic findings of radiation nephropathy as reported previously (27). In biopsies of 3 patients with renal insufficiency after PRRT with 90Y-DOTATOC, typical signs of thrombotic microangiopathy (TMA) involving glomeruli, arterioles, and small arteries were seen, as well as tubular atrophy and interstitial fibrosis. Comparing patient data with the earlier report of this group, we estimate that biopsies were taken between 1 and 2 y after the start of the therapy (1). A similar case was reported by Stoffel et al. (31), who also found prominent glomerular changes accompanied by tubular atrophy and compensatory interstitial fibrosis in a biopsy of a patient who developed renal insufficiency 1 y after PRRT with 90Y-DOTATOC.

In our series, renal biopsies were performed in 3 patients. In 1 patient with declining renal function, the biopsy showed signs of TMA, consistent with radiation nephropathy (14). In 2 other patients, renal biopsies were performed after an extra cycle of PRRT. They showed no clinical or biochemical signs of renal failure, and their renal biopsies were normal. Declines in their CLRs were 2% per y (95% CI, 0.7%–3.3%/y) and 9.4% per y (95% CI, 6.3%–12.4%/y), respectively.

From histologic studies it is known that the major focus of changes after external-beam irradiation is in the arteriolar–glomerular area, rather than the tubular epithelium, leading to glomerular sclerosis, and that the common denominator linking radiation nephropathy and TMA is presumably endothelial cell injury (32,33). Such changes may be seen many years after the radiation exposure.

Clinical observation of steadily progressive loss of CLR, with wide variations among individual patients, and the type of histologic changes as seen after PRRT with 90Y-DOTATOC or external-beam radiation are compatible with the clinical and histologic spectrum of chronic kidney disease. Chronic kidney disease is defined clinically as either kidney damage or GFR <60 mL/min/1.73 m² for more than 3 mo (34). The leading causes of chronic kidney disease are hypertension and diabetes mellitus, but many other causes are known (34,35). It is now becoming accepted that progressive renal disease cannot be attributed to a single aberration in glomerular physiology but is characterized by a progressive loss of the microvasculature (36,37). The pathophysiology of chronic renal failure is complex. Regardless of the primary cause of nephron loss, some glomeruli usually survive or are less severely damaged. Adaptation mechanisms involve hypertrophy of the remaining glomeruli, with a cascade of events that has been termed “the final common path,” in which the adaptation processes eventually cause further loss of nephrons, leading to progressive loss of function. Well documented intermediate agents for these deleterious processes are angiotensin II, endothelin, and transforming growth factor.

With renal microvascular injury and the central role of the renin–angiotensin system in this process, it is clear that hypertension and diabetes may accelerate renal function loss in chronic kidney disease. In clinical practice, drugs that interfere with the renin–angiotensin system, such as angiotensin-converting enzyme (ACE) inhibitors and angiotensin II inhibitors, are becoming the drugs of choice in slowing down the progression of chronic renal failure (35). In radiation nephropathy, experimental studies have also demonstrated the pivotal role of the renin–angiotensin system and the efficacy of ACE-inhibitors and angiotensin II inhibitors in diminishing the incidence of renal failure (38,39). Angiotensin II blockade was also successful in a patient with late radiation nephropathy (40).
In our study, 11 of 65 patients had a >15% yearly loss of CLR (Table 2). We infer from our observations that hypertension, old age, and diabetes (particularly in combination with hypertension) may be relevant risk factors (Table 2, Fig. 3). Paganelli et al. (28) cited preexisting hypertension as a possible contributing factor in their single patient with grade 2 renal toxicity after PRRT with 90Y-DOTATOC.

Despite the contributing role of hypertension, age, and diabetes, the most prominent cause of renal toxicity with PRRT is probably the radiation to the kidney. The significant differences in cumulative renal radiation dose and renal radiation dose per cycle may be the most important factors to account for the fact that 9 out of 28 patients treated with 90Y-DOTATOC had high yearly losses of CLR, compared with 2 out of 37 177Lu-DOTATATE patients. The numbers of patients with hypertension, old age, and diabetes were comparable in the 2 treatment groups. Therefore, it is possible that these risk factors become relevant only in the presence of a high cumulative or per-cycle radiation dose to the kidneys. On the other hand, it is reassuring that the risk of severe renal function loss seems low after PRRT with either 90Y-DOTATOC or 177Lu-DOTATATE in the absence of additional factors. At present, subtle dependencies between the proposed risk factors or relative weight of such factors are uncertain.

Unfortunately, it is difficult to derive from available studies a clear relationship between cumulative or per-cycle radiation dose and renal damage. In the studies from the Basel group, no individual dosimetry is reported, whereas the Milan group reported only individual dosimetry in a limited number of patients (30). An extensive dosimetric study in 18 patients using 111In-DOTATOC predicted variable absorbed renal doses (3.31 ± 2.22 mGy/MBq) during treatment with 90Y-DOTATOC, but the outcome after therapy was not reported specifically for these 18 patients (41). In a recent review from the Milan group, 16 other patients were evaluated, with cumulative administered activities of 4.1–13.9 GBq of 90Y-DOTATOC, renal radiation doses of 1.6–6.0 mGy/MBq, and cumulative renal radiation doses of 6.6–47.1 Gy (42). During a follow-up period of 6–50 mo, 4 of these 16 patients developed NCI grade 1 s-creat levels, apparently not clearly correlated to the cumulative or per-cycle renal radiation dose.

In our studies, there was a substantial variation in uptake of 90Y-DOTATOC and in mean residence time in the kidneys between individual patients, leading to different cumulative activities of 90Y-DOTATOC required to reach the targeted renal radiation dose of 27 Gy (7). These differences are clear from the patient data in Table 2. A similar variability in the relation between administered activity and estimated renal radiation dose was found in the 177Lu-DOTATATE patients, despite the different method that was used. Renal dose calculations were based on the MIRDPOSE3 model, which assumes a homogeneous distribution of activity in a standard-sized kidney volume. Alternative methods include individual renal volume and inhomoge-
been investigated in Milan, with an average reduction in kidney dose of 25% (30). Reductions in renal radiation dose of up to 65% can be reached when additional 4-h amino acid infusions are administered 1 and 2 d after therapy (42). New studies in rats have shown that 1 mg per kg of colchicine, which disrupts cellular microtubules, adds significantly to the renal-protecting effects of lysine, which may be promising for future clinical use (48). Further prevention of renal radiation damage may be achieved by treatment with ACE inhibitors or angiotensin II inhibitors, in parallel with the recommendations for treatment of chronic kidney disease and with emerging experimental and clinical results with these drugs in external-beam radiation nephropathy.

With the assessment of renal toxicity by the commonly used NCI grades 0–4 for s-creat and blood urea nitrogen, it is difficult to predict which patient will develop nephrotoxicity after PRRT. On the basis of the time trend in c-CLR, one may predict, within a certain margin of error, when a patient will develop ESRD, even at a time when the s-creat is still NCI grade 1 or 2. This agrees with the guidelines for the diagnosis and treatment of chronic kidney disease, in which serial monitoring of CLR is recommended in all patients treated with177Lu-DOTATATE, who received a lower renal radiation dose. This is encouraging, because with the chosen administered activities, both treatments are effective in patients with neuroendocrine tumors as PRRT with90Y-DOTATOC, as described elsewhere in this issue (49). The pattern of CLR loss is compatible with that of chronic kidney disease from other causes; the histologic changes found in patients after90Y-DOTATOC therapy resemble closely the changes as reported after external-beam radiation therapy and resemble the glomerular/microvascular changes as reported in progressive renal failure. This suggests that the spectrum of radiation nephropathy after PRRT and external-beam radiation therapy fits within the multifactorial pathophysiology of chronic kidney disease with its final common pathway leading to ESRD. To prevent unnecessary risks of PRRT, we recommend that radiolabeled peptides with high specific receptor binding be used, that the administration of PRRT be accompanied by amino acids, and that hypertension, diabetes mellitus, and other known risk factors of chronic kidney disease be considered in the treatment of individual patients. The current treatment schedule of90Y-DOTATOC as used in phase 2 studies is a fixed cumulative activity of 13.3 GBq, divided in 3 equal cycles of 4.4 GBq. With this schedule the renal dose per cycle remains low; thus a high dose per cycle is no longer a practical risk factor. In addition, simplified dose estimation using111In-pentetreotide scans may be considered to identify patients with exceptionally high renal uptake of peptides and thus a risk of high cumulative renal radiation dose with PRRT.

CONCLUSION

Our data demonstrate that PRRT with90Y-DOTATOC leads to a decline in CLR, which is sustained at the same rate during years of follow-up and may vary between patients from no measurable loss to a loss of more than 50% per year. Probable contributing factors are the cumulative and per cycle renal radiation dose, age, hypertension, and diabetes, but the number of patients in this study is too small to allow definitive conclusions. In the absence of additional contributing factors, the rate of decline in CLR is low, and ESRD is not expected to occur within 5 y after PRRT with90Y-DOTATOC. The average rate of decline in CLR is less in patients treated with177Lu-DOTATATE, who received a lower renal radiation dose. This is encouraging, because with the chosen administered activities, both treatments are effective in patients with neuroendocrine tumors as PRRT with90Y-DOTATOC, as described elsewhere in this issue (49). The pattern of CLR loss is compatible with that of chronic kidney disease from other causes; the histologic changes found in patients after90Y-DOTATOC therapy resemble closely the changes as reported after external-beam radiation therapy and resemble the glomerular/microvascular changes as reported in progressive renal failure. This suggests that the spectrum of radiation nephropathy after PRRT and external-beam radiation therapy fits within the multifactorial pathophysiology of chronic kidney disease with its final common pathway leading to ESRD. To prevent unnecessary risks of PRRT, we recommend that radiolabeled peptides with high specific receptor binding be used, that the administration of PRRT be accompanied by amino acids, and that hypertension, diabetes mellitus, and other known risk factors of chronic kidney disease be considered in the treatment of individual patients. The current treatment schedule of90Y-DOTATOC as used in phase 2 studies is a fixed cumulative activity of 13.3 GBq, divided in 3 equal cycles of 4.4 GBq. With this schedule the renal dose per cycle remains low; thus a high dose per cycle is no longer a practical risk factor. In addition, simplified dose estimation using111In-pentetreotide scans may be considered to identify patients with exceptionally high renal uptake of peptides and thus a risk of high cumulative renal radiation dose with PRRT.

ACKNOWLEDGMENTS

We are grateful for support from the nursing staff in the participating centers, in particular Joelle de Camps, Jane Hadley, and Jolande Kip. The phase 1 study with90YSMT487 was sponsored by Novartis Pharmaceuticals. Principle investigators were Stanislas A. Pauwels, MD; Larry K. Kvols, MD; and Eric P. Krenning, MD.