⁸⁹Zr as a PET Surrogate Radioisotope for Scouting Biodistribution of the Therapeutic Radiometals ⁹⁰Y and ¹⁷⁷Lu in Tumor-Bearing Nude Mice After Coupling to the Internalizing Antibody Cetuximab

Lars R. Perk, MSc¹; Gerard W.M. Visser, PhD²; Maria J.W.D. Vosjan, BSc¹; Marijke Stigter-van Walsum, BSc¹; Bernard M. Tijink, MD¹; C. René Leemans, MD, PhD¹; and Guus A.M.S. van Dongen, PhD¹

¹Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands; and ²Department of Nuclear Medicine and PET Research, VU University Medical Center, Amsterdam, The Netherlands

Immuno-PET as a scouting procedure before radioimmunotherapy (RIT) aims at confirming tumor targeting and accurately estimating radiation dose delivery to both tumor and normal tissues and might therefore be of value for selection of patient candidates for RIT. A prerequisite for this approach is that PET radioimmunoconjugates and RIT radioimmunoconjugates must show a similar biodistribution. In the present study, we evaluated the potential of the long-lived positron emitter 89Zr to predict biodistribution of the residualizing therapeutic radiometals ⁸⁸Y (as a substitute for ⁹⁰Y) and ¹⁷⁷Lu when labeled to the monoclonal antibody (mAb) cetuximab via different types of chelates. Cetuximab was selected as a model mAb because it abundantly internalizes after binding to the epidermal growth factor receptor. Methods: Cetuximab was labeled with 89Zr using succinvlated desferrioxamine B (N-sucDf). The chelates p-benzyl isothiocyanate-1,4,7,10-tetraazacyclododecane-1,4,7, 10-tetraacetic acid (p-SCN-Bz-DOTA) and p-isothiocyanatobenzyl diethylenetriaminepentaacetic acid (p-SCN-Bz-DTPA) were both used for radiolabeling with ⁸⁸Y and ¹⁷⁷Lu. For measurement of the in vitro stability of each of the 5 radioimmunoconjugates, samples were incubated in freshly prepared human serum at 37°C up to 16 d. Biodistribution was assessed at 24, 48, 72, and 144 h after intraperitoneal coinjection of the PET and RIT conjugates in nude mice bearing the squamous cell carcinoma xenograft line A431. Results: Cetuximab premodification with N-sucDf, p-SCN-Bz-DOTA, or p-SCN-Bz-DTPA resulted in chelate-to-mAb molar ratios of about 1. After radiolabeling and purification, the radiochemical purity and immunoreactive fraction of the conjugates always exceeded 97% and 93%, respectively. All conjugates were stable in serum, showing a radioactivity release of less than 5% until day 7. From day 7 until day 16, an enhanced release was observed for the ⁸⁹Zr-N-sucDf, ⁸⁸Y-p-SCN-Bz-DTPA, and ¹⁷⁷Lu-p-SCN-Bz-DTPA conjugates.

The coinjected PET and RIT conjugates showed similar biodistributions, except for the thighbone and sternum. For example, the ⁸⁹Zr-N-sucDf conjugate showed a 2.0-2.5 times higher radioactivity accretion in the thighbone than did the RIT conjugates at 72 h after injection. Conclusion: In view of the advantages of PET over SPECT, 89Zr-immuno-PET is a promising modality for in vivo scouting of ⁹⁰Y- and ¹⁷⁷Lu-labeled mAbs, although care should be taken when estimating bone marrow doses.

Key Words: 89Zr; immuno-PET; 90Y; 177Lu; radioimmunotherapy J Nucl Med 2005; 46:1898-1906

Tumor targeting using radiolabeled monoclonal antibodies (mAbs) in radioimmunotherapy (RIT) is developing into an attractive approach to cancer treatment. In the past few years, the U.S. Food and Drug Administration has approved 2 RIT pharmaceuticals for the treatment of non-Hodgkin's lymphoma: the anti-CD20 mAbs 90Y-ibritumomab tiuxetan (Zevalin; IDEC and Schering) and ¹³¹I-tositumomab (Bexxar; Corixa and GlaxoSmithKline). Several new radioimmunoconjugates are currently being evaluated in clinical trials (1). Besides ⁹⁰Y and ¹³¹I, also ¹⁷⁷Lu is a commonly used β-emitter in these RIT trials. ⁹⁰Y and ¹⁷⁷Lu are residualizing radiometals that show higher retention in tumors than do the nonresidualizing labels ¹³¹I and ¹⁸⁶Re and therefore are especially attractive in combination with internalizing mAbs (2–4). The β^- energy of ¹⁷⁷Lu and the related maximal particle range of 1.5 mm make this radionuclide particularly well suited for eradication of minimal residual disease, whereas 90Y is the radionuclide of choice for treatment of bulky tumors because of its higher β^- energy and related maximal particle range of 12.0 mm (5). The most effective approach when tumors of various sizes have to be treated might even be combination of both radionuclides in a single therapy (6).

Received Jun. 23, 2005; revision accepted Aug. 4, 2005.

For correspondence or reprints contact: Guus A.M.S. van Dongen, PhD, Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, De Boelelaan 1117, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.

E-mail: gams.vandongen@vumc.nl

Both the ⁹⁰Y-ibritumomab tiuxetan and the ¹³¹I-tositumomab treatment regimens are preceded by a y-camera imaging procedure for selection of patient candidates for RIT (7,8). Performing radioimmunoscintigraphy with tracelabeled mAbs as a scouting procedure before RIT aims at confirming tumor targeting and quantifying biodistribution to allow estimation of dose delivery to tumors and normal tissues (9). Alternatively, this approach can also be used for in vivo characterization of new mAb candidates for use in RIT. For pretherapy imaging in such a setting, γ -emitters are coupled to mAbs, whereas optimal prediction is obtained only when imaging and therapeutic radioimmunoconjugates show similar biodistributions. 177Lu emits a small proportion of γ -radiation (208 keV, 11%) but until now has not been used at a trace dose for clinical scouting. 90 Y is a pure β -emitter, and therefore ¹¹¹In is often used as a γ -emitting surrogate for tracing the biodistribution of the ⁹⁰Y-labeled mAbs. For coupling of ¹⁷⁷Lu, ⁹⁰Y, and ¹¹¹In to mAbs, DOTA and DTPA chelates are mostly used. Although DOTA gives the most stable complexes, DTPA is the chelate of choice for obtaining reliable high labeling yields and conjugates with high specific activities (2, 10). Unfortunately, the current use of γ -camera imaging for quantification of 111In/177Lu-labeled mAbs has intrinsic limitations, primarily on account of scatter and partial absorption of γ -photons in the patient. Besides this, differences in biodistribution between ¹¹¹In-mAb and ⁹⁰Y-mAb conjugates have been observed in vivo in tumor-bearing mice and in cancer patients (11-13).

Recently, we introduced the long-lived positron emitter ⁸⁹Zr (half-life, 78.4 h) as a promising residualizing radionuclide for PET of mAbs (89Zr-immuno-PET). PET is better qualified for tracer quantification because of more accurate scatter and attenuation correction and superior spatial and temporal resolution for imaging. 89Zr was coupled to mAbs-the chimeric mAb U36 among them-via the chelate N-succinyldesferrioxamine B (N-sucDf). We demonstrated that quantitative PET with ⁸⁹Zr was feasible (14). Moreover, in preliminary studies the chimeric mAb U36-*N*-sucDf-⁸⁹Zr showed a biodistribution similar to that of the chimeric mAb U36-p-SCN-Bz-DOTA-88Y (with 88Y as a γ -emitting substitute for ⁹⁰Y) in nude mice bearing the head and neck cancer xenograft line HNX-OE (14). This model, however, was not representative of more extensively internalizing antibodies.

In the present study, we extended the scope of ⁸⁹Zrimmuno-PET by using cetuximab (Erbitux; ImClone Systems) as an abundantly internalizing model mAb and nude mice bearing the squamous cell carcinoma xenograft line A431 as the tumor model (*15*). Cetuximab is a chimeric IgG1 mAb that binds with high affinity to the epidermal growth factor receptor (EGFR) (*16*). The cell line A431 shows abundant expression of EGFR (*17*). The potential of ⁸⁹Zr to predict the biodistribution of the residualizing labels ¹⁷⁷Lu and ⁹⁰Y was evaluated in a comprehensive way by coinjection of conjugates. To this end, cetuximab-*N*-sucDf⁸⁹Zr was administered with cetuximab-*p*-SCN-Bz-DOTA-⁸⁸Y, cetuximab-*p*-SCN-Bz-DOTA-¹⁷⁷Lu, cetuximab-*p*-SCN-Bz-DTPA-⁸⁸Y, or cetuximab-*p*-SCN-Bz-DTPA-¹⁷⁷Lu, and biodistribution in mice was assessed up to 6 d after injection. Before these biodistribution studies, the in vitro stability of the conjugates in human plasma was analyzed.

MATERIALS AND METHODS

mAb, Cell Line, and Radioactivity

The mAb cetuximab was purchased from ImClone Systems. Cetuximab is a chimeric IgG1 mAb that binds with high affinity to the EGFR, blocks ligand-induced activation of the receptor tyrosine kinase, and induces dimerization and downregulation of the EGFR, which prevents further binding and activation by the ligands (*16*). The human squamous cell carcinoma cell line A431, carrying an amplification of the EGFR gene, was obtained from the American Type Culture Collection (ATCC number CRL-1555).

⁸⁹Zr (2.7 GBq/mL in 1 mol of oxalic acid per liter) was produced by Cyclotron BV by a (p,n) reaction on natural ⁸⁹Y and purified with a hydroxamate column (*18*). ⁸⁸Y (37 MBq/mL in 0.1 mol of HCl per liter) was obtained from Isotope Products Europe, ¹⁷⁷Lu (9.25 GBq/mL in 0.05 mol of HCl per liter) from Perkin-Elmer, ¹¹¹In (370 MBq/mL in 0.05 mol of HCl per liter) from Tyco Healthcare, and ¹²⁵I (3.7 GBq/mL in 0.01 mol of NaOH per liter) from Amersham.

Radiolabeling

For ⁸⁹Zr, ⁸⁸Y, and ¹⁷⁷Lu labeling of mAbs, modification procedures were established to arrive at a chelate-to-mAb molar ratio of 1:1.

Preparation of ⁸⁹*Zr-Labeled Cetuximab.* mAb labeling with ⁸⁹*Zr* was achieved starting with the chelate desferrioxamine B (Df) (Desferal; Novartis) as described previously (*17*). In short, Df was succinylated (*N*-sucDf), temporarily filled with iron (Fe(III)), and coupled to cetuximab by means of a tetrafluorophenol-*N*-sucDf ester. After removal of Fe(III) by transchelation to ethylenediaminetetraacetic acid (EDTA), the premodified mAb was purified on a PD10 column (eluent: 0.9% NaCl/gentisic acid, 5 mg/mL; pH 5.0). Subsequently, *N*-sucDf-cetuximab was labeled with ⁸⁹Zr in *N*-2-hydroxyethylpiperazine-*N*-2-ethanesulfonic acid (HEPES) buffer at pH 7.0. Finally, ⁸⁹Zr-*N*-sucDf-cetuximab was purified on a PD10 column (eluent: 0.9% NaCl/gentisic acid, 5 mg/mL; pH 5.0) to remove any unbound ⁸⁹Zr.

Preparation of ⁸⁸Y- or ¹⁷⁷Lu-Labeled Cetuximab. Cetuximab was conjugated with p-benzyl isothiocyanate-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (p-SCN-Bz-DOTA) or p-isothiocyanatobenzyl diethylenetriaminepentaacetic acid (p-SCN-Bz-DTPA) (Macrocyclics). All steps were performed under strict metal-free conditions. Before use, cetuximab was extensively dialyzed (Slide-A-Lyzer dialysis cassettes; Pierce Biotechnology) against metal-free NaHCO₃ (0.1 mol/L, pH 9.0) containing 2 g of Chelex 100 (Bio-Rad) per liter. For conjugation, 125 µL of p-SCN-Bz-DOTA or p-SCN-Bz-DTPA (1.6 mg/mL in NaHCO₃, 0.1 mol/L; pH 9.0), 175 µL of NaHCO3 (0.1 mol/L, pH 9.0), and 700 µL of dialyzed cetuximab (1.4 mg) were incubated for 30 min at 37°C. The modified cetuximab was purified using a prewashed PD-10 column and eluted with CH₃COONH₄ (0.25 mol/L, pH 5.5). The cetuximab-p-SCN-Bz-DOTA and cetuximab-p-SCN-Bz-DTPA conjugates (~0.5 mg) were labeled with either ⁸⁸Y (1.5 MBq) or ¹⁷⁷Lu (28 MBq) in CH₃COONH₄ (0.25 mol/L, pH 5.5) for 60 min at 45°C (*p*-SCN-Bz-DOTA conjugates) or at room temperature (*p*-SCN-Bz-DTPA conjugates), in a total reaction volume of 1 mL. After labeling, 50 μ L of EDTA, 0.05 mol/L, were added to the reaction vial, and the mixture was incubated for another 5 min. Nonconjugated ⁸⁸Y or ¹⁷⁷Lu was removed using a PD-10 column with 0.9% NaCl as eluent. The first 2.5 mL (1.0-mL sample volume and the first 1.5 mL) were discarded, and the radiolabeled cetuximab was collected in the next 1.5 mL.

Preparation of ¹²⁵I-Labeled Cetuximab. Iodination of cetuximab with ¹²⁵I was performed essentially as described previously (19). In short, 20-mL β-scintillation glass vials were coated with 75 µg of IODO-GEN (Pierce Biotechnology) in CH2Cl2 and dried under a stream of N₂ gas, resulting in a thin coating of IODO-GEN on the bottom surface of the vial. The vials were stored under N2 atmosphere. To an IODO-GEN-coated glass vial, 50 µL of Na₂HPO₄ (0.5 mol/L, pH 7.4), 194 µL of Na₂HPO₄ (0.1 mol/L, pH 6.8), 250 µL of cetuximab (2 mg/mL), and 55 MBq of ¹²⁵I in 6.4 µL of NaOH (1 mmol/L) were successively added. After gentle shaking for 4 min at room temperature, 0.1 mL of ascorbic acid (25 mg/mL, pH 5) was added. After an additional 5 min, the reaction mixture was transferred to a syringe connected to a filter (0.2-µm Acrodisc; Gelman Sciences) followed by 0.4 mL of Na₂HPO₄ (0.1 mol/L, pH 6.8), used for an additional rinsing of the reaction vial. This combined solution was filtered and then purified on a PD-10 column with 0.9% NaCl/ascorbic acid (5 mg/mL, pH 5) as eluent. The first 2.5 mL (1.0-mL sample volume and the first 1.5 mL) were discarded, and the radioiodinated cetuximab was collected in the next 1.5 mL.

Analyses

All conjugates were analyzed by instant thin-layer chromatography (ITLC) for radiochemical purity, by high-performance liquid chromatography and sodium dodecylsulfate-polyacrylamide gel electrophoresis followed by phosphor imager analyses for integrity, and by a cell-binding assay for immunoreactivity. ITLC analysis of radiolabeled cetuximab was performed on silica gelimpregnated glass fiber sheets (Gelman Sciences). As the mobile phase, citrate buffer (20 mmol/L, pH 5.0) was used for ¹²⁵I- and ⁸⁹Zr-labeled mAbs. ITLC samples of ⁸⁸Y- and ¹⁷⁷Lu-labeled mAbs were first incubated for 5 min in an EDTA solution (20 mmol/L) and subsequently spotted on ITLC. As the mobile phase, 0.9% NaCl was used. The radioimmunoconjugates were monitored by high-performance liquid chromatography as described previously (*18*). Gel electrophoresis was performed on a Pharmacia Phastgel System (Amersham Biosciences) using 7.5% sodium dodecylsulfate–polyacrylamide gel electrophoresis gels (Amersham Biosciences) under nonreducing conditions and analyzed on a phosphor imager. In vitro binding characteristics of radiolabeled cetuximab were determined in an immunoreactivity assay essentially as described by Lindmo et al. (20), using A431 cells fixed with 2.0% paraformaldehyde.

Determination of Chelate-to-mAb Ratio

The Desferal-to-cetuximab molar ratio was determined by highperformance liquid chromatography analysis using ⁵⁹Fe as described by Verel et al. (*18*). *p*-SCN-Bz-DOTA-to-mAb and *p*-SCN-Bz-DTPA-to-mAb molar ratios were determined following a method described by Meares et al. (*21*). In short, conjugates were labeled according to the aforementioned procedures, with a known excess of indium acetate spiked with ¹¹¹In. After labeling, the solution was challenged with EDTA and subsequently spotted on ITLC. Antibody-bound ¹¹¹In remained at the origin, whereas unreacted ¹¹¹In (as ¹¹¹In-EDTA) moved with R_f 0.8–1.0. ITLC data were used to calculate the chelate-to-mAb molar ratio. For doublechecking of *p*-SCN-Bz-DOTA-to-mAb and *p*-SCN-Bz-DTPA-tomAb molar ratios, the same procedure was performed using an excess of lutetium acetate spiked with ¹⁷⁷Lu.

Serum Stability

For measurement of the in vitro stability of each of the individual radioimmunoconjugates, samples containing 100 μ g of mAb were incubated in freshly prepared human serum (1:1 v/v dilution; total volume, 1 mL) at 37°C in a humidified incubator maintained at 5% CO₂ and 95% air. At various intervals (1, 3, 5, 7, 9, 13, and 16 d), aliquots were taken and analyzed by ITLC and high-performance liquid chromatography.

Biodistribution Study

Nude mice bearing subcutaneously implanted xenografts of the human tumor line A431 were used. The female mice we used for this experiment (athymic *nu/nu*, 21–31 g; Harlan CPB) were 8–10 wk old at the time of the experiment. All animal experiments were performed according to National Institutes of Health principles of laboratory animal care and Dutch national law ("Wet op de dierproeven", Stb 1985, 336).

In 4 experiments (Table 1), 64 mice were simultaneously injected intraperitoneally with ⁸⁹Zr-labeled cetuximab combined with either ⁸⁸Y- or ¹⁷⁷Lu-labeled cetuximab. In all animals, unlabeled cetuximab was added to the injection up to a total of 500 µg. At 24, 48, 72, and 144 h after injection, 4 mice per group and time

Experiment	Radioimmunoconjugate	Activity per mouse (kBq)	Radiochemical purity (%)	Immunoreactivity (%) 94	
1	Cetuximab-p-SCN-Bz-DOTA-88Y	60	99.2		
	Cetuximab-N-sucDf-89Zr	500	98.0	93	
2	Cetuximab-p-SCN-Bz-DOTA-177Lu	370	98.8	97	
	Cetuximab-N-sucDf-89Zr	500	98.0	93	
3	Cetuximab-p-SCN-Bz-DTPA-88Y	47	98.0	97	
	Cetuximab-N-sucDf-89Zr	320	97.8	97	
4	Cetuximab-p-SCN-Bz-DTPA- ¹⁷⁷ Lu	170	99.4	96	
	Cetuximab-N-sucDf-89Zr	320	97.8	97	
5	Cetuximab-p-SCN-Bz-DOTA-177Lu	370	99.0	96	
	Cetuximab- ¹²⁵ I	370	99.8	98	

 TABLE 1

 Radioimmunoconjugates Used for the Biodistribution Study

point were anesthetized, bled, killed, and dissected. Blood, tumor, skin, sternum, heart, lung, liver, spleen, kidney, muscle, thighbone, colon, ileum, and stomach were weighed, and the amount of radioactivity in each tissue was assessed in a γ -well counter (Wallac LKB-CompuGamma 1282; Pharmacia). The 511-keV γ -energy of ⁸⁹Zr and the 1,837-keV γ -energy of ⁸⁸Y were used for dual-isotope counting of the coinjected ⁸⁸Y/⁸⁹Zr-labeled mAbs, and the 909-keV γ -energy of ⁸⁹Zr and the 208-keV γ -energy of ¹⁷⁷Lu were used for dual-isotope counting of the coinjected ¹⁷⁷Lu/⁸⁹Zr-labeled mAbs. Crossover corrections from one radionuclide into the alternate window were performed using a standard of each radionuclide. To correct for radioactive decay, injection standards were counted simultaneously.

In a fifth experiment (Table 1), 14 mice were injected intraperitoneally with cetuximab-¹²⁵I combined with cetuximab-*p*-SCN-Bz-DOTA-¹⁷⁷Lu, and unlabeled cetuximab was added to the injection up to a total of 1 mg. At 24 h (n = 3), 48 h (n = 4), 72 h (n = 3), and 120 h (n = 4) after injection, the mice were anesthetized, bled, killed, and dissected, with further processing according to the above procedure.

Radioactivity uptake was calculated as the percentage of the injected dose per gram of tissue (%ID/g). Differences in tissue uptake between coinjected conjugates were statistically analyzed for each time point with SPSS 11.0 (SPSS Inc.) using the Student *t* test for paired data. Two-sided significance levels were calculated, and P < 0.05 was considered statistically significant. Statistical analysis of differences in thighbone uptake between groups was performed using 1-way ANOVA.

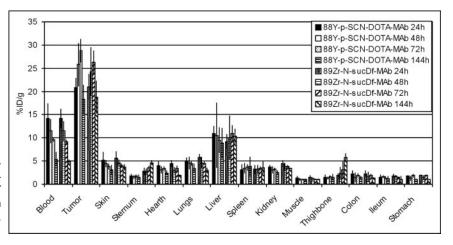
RESULTS

Conjugation and Radiolabeling

Within the applied stoichiometry, premodification of cetuximab resulted in 0.8–1.2 *N*-sucDf, *p*-SCN-Bz-DOTA, or *p*-SCN-Bz-DTPA moieties per mAb. Subsequent labeling of cetuximab-*N*-sucDf with ⁸⁹Zr and cetuximab-*p*-SCN-Bz-DOTA or cetuximab-*p*-SCN-Bz-DTPA with ⁸⁸Y or ¹⁷⁷Lu resulted in overall labeling yields of >70%. The radiochemical purity was at least 97% for all 5 products (Table 1). Labeling of cetuximab with ¹²⁵I resulted in an overall labeling yield of 89%, and the radiochemical purity was 99.8% for the purified product. Immunoreactivity for all cetuximab conjugates was more than 93% at the highest cell concentration. The specific activities for the biodistribution studies were 78 MBq/mg for cetuximab-*N*-sucDf-⁸⁹Zr, 0.49 MBq/mg for cetuximab-*p*-SCN-Bz-DOTA-¹⁷⁷Lu, 0.41

MBq/mg for cetuximab-*p*-SCN-Bz-DTPA-⁸⁸Y, 26 MBq/mg for cetuximab-*p*-SCN-Bz-DTPA-¹⁷⁷Lu, and 109 MBq/mg for cetuximab-¹²⁵I.

In Vitro Stability


All conjugates were individually tested for stability in human serum. These results are shown in Table 2. Cetuximab-N-sucDf-89Zr, cetuximab-p-SCN-Bz-DOTA-88Y, and cetuximab-p-SCN-Bz-DOTA-177Lu were stable until day 7; <3% of the radiolabel was released during this incubation period. Cetuximab-p-SCN-Bz-DTPA-88Y and cetuximab-p-SCN-Bz-DTPA-¹⁷⁷Lu showed a slightly faster radiometal release during this period (4.6% and 4.3%, respectively). After day 7, the latter conjugates and also cetuximab-NsucDf-89Zr showed an accelerated release of radiolabel when compared with cetuximab-p-SCN-Bz-DOTA-88Y and cetuximab-p-SCN-Bz-DOTA-177Lu. At day 16, there was a total release of 22.4%, 23.5%, and 17.4% for cetuximabp-SCN-Bz-DTPA-⁸⁸Y, cetuximab-p-SCN-Bz-DTPA-¹⁷⁷Lu, and cetuximab-N-sucDf-89Zr, respectively, versus 4.0% and 2.9% for cetuximab-p-SCN-Bz-DOTA-88Y and cetuximab*p*-SCN-Bz-DOTA-¹⁷⁷Lu, respectively.

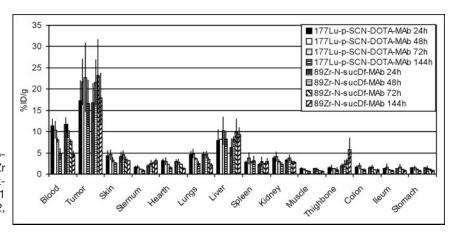
Biodistribution Study

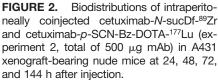
For comparison of the biodistribution of ⁸⁹Zr-labeled mAb with ⁸⁸Y- or ¹⁷⁷Lu-labeled mAb, cetuximab-N-sucDf-⁸⁹Zr was coinjected in tumor-bearing mice with cetuximab-p-SCN-Bz-DOTA-88Y (experiment 1), cetuximab-p-SCN-Bz-DOTA-¹⁷⁷Lu (experiment 2), cetuximab-p-SCN-Bz-DTPA-⁸⁸Y (experiment 3), or cetuximab-p-SCN-Bz-DTPA-177Lu (experiment 4). The essential characteristics of the radiolabeled immunoconjugates used in the biodistribution study are shown in Table 1, and the corresponding biodistributions are summarized in Figures 1-4. At the time of dissection, the tumor weights (mean \pm SD) were 61 \pm 72, 78 \pm 65, 189 \pm 176, and 148 \pm 110 mg for experiments 1, 2, 3, and 4, respectively. The radioactivity uptake in tumor and most other tissues was comparable between 89Zr-labeled cetuximab on the one hand and ⁸⁸Y- or ¹⁷⁷Lu-labeled cetuximab on the other hand (Figs. 1-4). The only consistent difference observed was a significantly higher uptake for ⁸⁹Zr than for ⁸⁸Y and ¹⁷⁷Lu in thighbone and sternum at all time points except 24 h after injection in thighbone for experiment 1 (Fig. 1, P = 0.176) and experiment 3 (Fig. 3, P =0.096). At 72 h after injection, the mean thighbone uptake

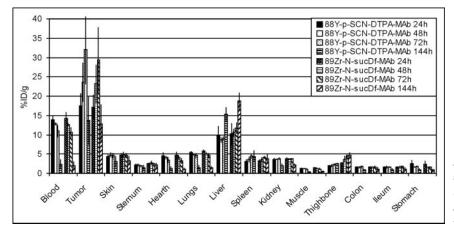
TABLE 2										
In Vitro Stability of Radioimmunoconjugates upon Incubation at 37°C in Human Serum										

		Radiochemical purity (%)							
Conjugate	0 d	1 d	3 d	5 d	7 d	9 d	13 d	16 d	
⁸⁹ Zr- <i>N</i> -sucDf-mAb	97.5	98.0	97.0	96.7	95.3	94.4	88.9	80.1	
⁸⁸ Y-p-SCN-Bz-DOTA-mAb	99.6	97.1	96.7	96.8	96.7	96.8	96.8	95.6	
¹⁷⁷ Lu-p-SCN-Bz-DOTA-mAb	99.7	98.5	97.6	98.7	98.6	97.9	97.5	96.8	
⁸⁸ Y-p-SCN-Bz-DTPA-mAb	97.5	98.4	95.2	93.8	92.9	89.7	81.9	75.1	
¹⁷⁷ Lu-p-SCN-Bz-DTPA-mAb	97.2	94.7	93.9	94.5	92.9	90.6	86.3	73.7	

FIGURE 1. Biodistributions of intraperitoneally coinjected cetuximab-*N*-sucDf-⁸⁹Zr and cetuximab-*p*-SCN-Bz-DOTA-⁸⁸Y (experiment 1, total of 500 μ g mAb) in A431 xenograft-bearing nude mice at 24, 48, 72, and 144 h after injection.

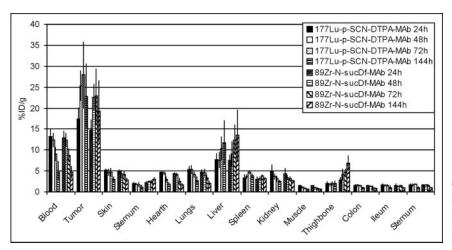

was between 3.2 and 4.7 %ID/g for ⁸⁹Zr, compared with 1.6 and 1.3 %ID/g for ⁸⁸Y- and ¹⁷⁷Lu-*p*-SCN-Bz-DOTA, respectively, and 2.3 and 2.0 %ID/g for ⁸⁸Y- and ¹⁷⁷Lu-*p*-SCN-Bz-DTPA, respectively. These data revealed that radioactivity accretion in thighbone was 2.0, 2.5, 2.0, and 2.4 times higher for the *N*-sucDf-⁸⁹Zr conjugates than for the *p*-SCN-Bz-DOTA-⁸⁸Y, *p*-SCN-Bz-DOTA-¹⁷⁷Lu, *p*-SCN-Bz-DTPA-⁸⁸Y, and *p*-SCN-Bz-DTPA-¹⁷⁷Lu conjugates, respectively. At 144 h, differences in thighbone were larger, with a mean uptake of between 4.8 and 6.9 %ID/g for ⁸⁹Zr, compared with 1.5 and 1.0 %ID/g for ⁸⁸Y- and ¹⁷⁷Lu-*p*-SCN-Bz-DOTA, respectively, and 2.4 and 2.0 %ID/g for ⁸⁸Y- and ¹⁷⁷Lu-*p*-SCN-Bz-DTPA, respectively.


An ANOVA showed that the thighbone uptake for both ¹⁷⁷Lu and ⁸⁸Y was significantly higher (P < 0.05) for the *p*-SCN-Bz-DTPA conjugates than for the *p*-SCN-Bz-DOTA conjugates at 72 h and 144 h. An exceptional observation was seen in mice coinjected with cetuximab-*N*-sucDf-⁸⁹Zr and cetuximab-*p*-SCN-Bz-DTPA-⁸⁸Y at 144 h after injection (Fig. 3). For both conjugates, we observed a much higher accumulation of activity in the liver and a concomitant enhanced drop in blood and tumor uptake when compared with the other experiments.

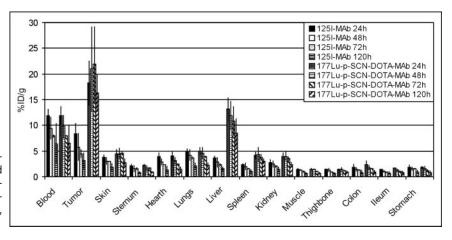

To illustrate the effect of abundant conjugate internalization and radionuclide residualization on radioactivity distribution, the biodistribution of coinjected ¹⁷⁷Lu-p-SCN-Bz-DOTA-cetuximab and ¹²⁵I-cetuximab was compared in the same animal model (experiment 5; Fig. 5). At the time of dissection, the tumor weight was 132 ± 72 mg (mean \pm SD). The radioactivity uptake in tumor differed markedly; for example, at 72 h after injection, the mean tumor uptake was 21.9 %ID/g for the residualizing radionuclide ¹⁷⁷Lu, compared with 4.5 %ID/g for the nonresidualizing radionuclide ¹²⁵I. Also, radioactivity uptake levels in liver and, to a lesser degree, spleen, kidney, and skin differed substantially, with a higher uptake for ¹⁷⁷Lu than for ¹²⁵I. Blood values and values in all other organs were similar. For ¹²⁵I-cetuximab, the tumor-to-blood ratio never exceeded 1, notwithstanding the fact that 125I-cetuximab was of the highest quality with respect to integrity and immunoreactivity.

DISCUSSION

Biodistribution may be accurately predicted—and delivery of radiation dose to tumors and critical organs estimated—by performing an immuno-PET scouting procedure before RIT. A prerequisite for this approach is that the PET and RIT conjugates of the mAb of interest must provide similar radioactivity biodistributions. Differences in radio-


FIGURE 3. Biodistributions of intraperitoneally coinjected cetuximab-*N*-sucDf⁸⁹Zr and cetuximab-*p*-SCN-Bz-DTPA-⁸⁸Y (experiment 3, total of 500 μ g mAb) in A431 xenograft-bearing nude mice at 24, 48, 72, and 144 h after injection.

nuclide distribution might occur in several instances: when the mAb conjugates show altered and deviating pharmacokinetics (e.g., as a result of radiolabeling), when the radionuclide-chelate complexes exhibit different in vivo stabilities, when the radionuclides show deviating redistributions after release from the conjugate or catabolism (e.g., after internalization of the radioimmunoconjugate by the tumor cell), or when combinations of these and possibly other factors occur.


Recently, Verel et al. reported that the chimeric mAb U36-*N*-sucDf labeled with the positron emitter ⁸⁹Zr was able to monitor the biodistribution of the chimeric mAb U36-*p*-SCN-DOTA-⁸⁸Y in nude mice bearing HNSCC xenografts and that quantitative PET with ⁸⁹Zr is feasible (*14*). The conclusion from these studies was that ⁸⁹Zr and ⁹⁰Y form a perfect PET/RIT isotope pair. However, because only a minor proportion of chimeric mAb U36 internalizes after binding to its target antigen CD44v6, it might be that this does not hold true for abundantly internalizing mAbs.

Studies were therefore extended to assess the full potential of ⁸⁹Zr for predicting the biodistribution of residualizing therapeutic radiometals. First, the anti-EGFR mAb cetuximab was used for in vivo targeting of the xenograft line A431, because of the high rate of internalization (as illustrated by using a residualizing and a nonresidualizing radiolabel; Fig. 5). Second, the residualizing RIT radionuclide ⁸⁸Y (as a substitute for ⁹⁰Y) was tested along with ¹⁷⁷Lu. Finally, the chelate *p*-SCN-Bz-DOTA used for coupling of ⁹⁰Y and ¹⁷⁷Lu was tested along with *p*-SCN-Bz-DTPA. Although the pathlength and energy of its β^- particles make ⁹⁰Y the most suitable for RIT of large tumors, ¹⁷⁷Lu is the more favorable radionuclide for treatment of small tumors. Although complexes of these RIT radionuclides with DOTA are considered to be more stable than complexes with DTPA-like molecules (22), DTPA-like molecules are sometimes preferred because of the better labeling efficiency (2,10).

We adopted procedures for stable coupling of all 3 radiolabels to cetuximab without loss of immunoreactivity. The modification of the mAb and subsequent labeling of the mAb–chelate conjugate with ⁸⁹Zr has already been described in detail by Verel et al. (*18*). These procedures resulted in high labeling yields and specific activities. Coupling of DOTA and DTPA to mAbs and labeling with ⁸⁸Y or ¹⁷⁷Lu has been documented extensively. We standardized conjugation procedures to obtain a chelate-to-mAb molar ratio of 1:1, because higher ratios can dramatically alter the pharmacokinetics of the mAb (*23*).

FIGURE 4. Biodistributions of intraperitoneally coinjected cetuximab-*N*-sucDf-⁸⁹Zr and cetuximab-*p*-SCN-Bz-DTPA-¹⁷⁷Lu (experiment 4, total of 500 μ g mAb) in A431 xenograft-bearing nucle mice at 24, 48, 72, and 144 h after injection.

FIGURE 5. Biodistributions of intraperitoneally coinjected cetuximab-¹²⁵I and cetuximab-*p*-SCN-Bz-DOTA-¹⁷⁷Lu (experiment 5, total of 1 mg mAb) in A431 xenograft-bearing nude mice at 24, 48, 72, and 120 h after injection.

Preceding the biodistribution studies, the in vitro stability of the 5 radiometal conjugates in human serum was analyzed. The stability of all conjugates under these conditions was comparable and high until day 7. The ⁸⁹Zr-N-sucDf conjugate and the ⁸⁸Y/¹⁷⁷Lu-p-SCN-Bz-DOTA conjugates were especially stable during this period, showing less than 3% release. At later times, the ⁸⁸Y/¹⁷⁷Lu-p-SCN-Bz-DTPA conjugates and the 89Zr-N-sucDf conjugate were less stable than the ⁸⁸Y/¹⁷⁷Lu-*p*-SCN-Bz-DOTA conjugates (at day 16, 22.4%/23.5% release for the ⁸⁸Y/¹⁷⁷Lu-p-SCN-Bz-DTPA conjugates and 17.4% for the 89Zr-N-sucDf conjugate, vs. 4.0%/2.9% for the ⁸⁸Y/¹⁷⁷Lu-*p*-SCN-Bz-DOTA conjugates). Comparable differences in in vitro stability between ⁹⁰Y-DOTA-hLL2 and 90Y-DTPA-hLL2 (0% vs. 3.6% dissociation after a 5-d incubation and 0.4% vs. 10.7% dissociation after an 11-d incubation) were previously reported by Govindan et al. (22). For 89Zr-N-sucDf-mAb conjugates, stability data on later time points have been scarce thus far. Brouwers et al. (24) mentioned a less than 10% release of ⁸⁹Zr from cG250-N-sucDf during a 4-d incubation.

For easy comparison of the biodistributions, cetuximab-N-sucDf-89Zr was administered to A431-bearing nude mice simultaneously with cetuximab-p-SCN-Bz-DOTA-88Y, cetuximab-p-SCN-Bz-DOTA-177Lu, cetuximab-p-SCN-Bz-DTPA-88Y, or cetuximab-p-SCN-Bz-DTPA-177Lu. Blood clearance was similar for all 5 conjugates. These results indicate that the pharmacokinetics of the mAb remained preserved on radiolabeling, irrespective of the type of chelate or radionuclide that had been used. Furthermore, the congruency of radioactivity levels in blood and several other organs in each individual mouse also indicated that the in vivo stability of the different chelate-radionuclide complexes was similar-results that agree with the in vitro serum stability measurements. Finally, tumor uptake levels indicate that the internalization rate of the radiolabeled conjugates and residualization of the 3 radiometals were similar within the period studied. Still, some differences in uptake between cetuximab-N-sucDf-89Zr on the one hand and ⁸⁸Y- and ¹⁷⁷Lu-labeled cetuximab-p-SCN-Bz-DOTA/ DTPA on the other hand were found in thighbone and, to a lesser degree, in sternum at all time points except 24 h after injection in thighbone for experiments 1 and 3. These data suggest that released ⁸⁹Zr or ⁸⁹Zr-containing metabolites might have a higher preference for thighbone and sternum than do the ⁸⁸Y and ¹⁷⁷Lu counterparts. Difference in bone accumulation has already been reported by Verel et al. (*14*). Between coinjected ⁸⁹Zr-labeled chimeric mAb U36 and ⁸⁸Y-labeled chimeric mAb U36, they found a difference of $2.5\% \pm 0.1$ %ID/g versus $1.3\% \pm 0.1$ %ID/g in thighbone at 72 h after injection and of $3.5\% \pm 0.4$ %ID/g versus $1.1\% \pm 0.1$ %ID/g at 144 h. The higher thighbone uptake of ⁸⁹Zr in our study might be related to the faster internalization rate of cetuximab than of chimeric mAb U36, which probably results in more extensive redistribution of bone-seeking ⁸⁹Zr-metabolites.

The bone marrow is generally the dose-limiting organ in nonmyeloablative RIT and is therefore important for dosimetric evaluations. For prediction of dose delivery to bone marrow in a combined immuno-PET/RIT setting, estimation of the bone marrow self-dose does not seem a problem, because blood levels were the same for the 3 radiometals. Dose delivery originating from radioactivity in the bone, however, will require an adjustment. Alternatively, differences in bone accumulation might be avoided by the development of a single chelate that binds ⁸⁹Zr, ⁸⁸Y, and ¹⁷⁷Lu with exactly the same high in vivo stability. The search for such an ideal chelate is part of our ongoing research. However, the use of the same chelate is not a guarantee for a congruent bone uptake. For example, differences in bone uptake have been observed between ¹¹¹In-mAb and ⁹⁰YmAb conjugates in vivo in tumor-bearing mice and in cancer patients, despite the fact that a single DTPA- or DOTA-like chelate was used for coupling of ¹¹¹In and ⁹⁰Y to the mAbs (11,12).

Intergroup differences make it difficult to draw firm conclusions about mutual differences in biodistribution between ⁸⁸Y and ¹⁷⁷Lu or between *p*-SCN-Bz-DOTA and *p*-SCN-Bz-DTPA conjugates. However, comparisons with the biodistribution of the ⁸⁹Zr-labeled-mAb that was coinjected as a reference conjugate in each case allow one to conclude that the in vivo behaviors of ⁸⁸Y and ¹⁷⁷Lu are similar. This conclusion is in accordance with previous findings of Stein et al. (25). With respect to the *p*-SCN-Bz-DOTA versus the *p*-SCN-Bz-DTPA chelate, there is an indication of higher thighbone accumulation in the case of ⁸⁸Y/¹⁷⁷Lu-*p*-SCN-Bz-DTPA conjugates, an observation also described by others (2,22,26).

An alternative positron-emitting surrogate for estimation of the pharmacokinetics and biodistribution of ¹⁷⁷Lu/⁹⁰Ylabeled pharmaceuticals could be ⁸⁶Y (33% β^+ ; half-life, 14.7 h) (12,27,28). An advantage of ⁸⁶Y over ⁸⁹Zr is that the same chelate can be used for complexation of both ⁸⁶Y and ¹⁷⁷Lu/⁹⁰Y. Moreover, when ⁸⁶Y is used as a surrogate for ⁹⁰Y, decomplexation of the same element should result in identical tissue distribution, provided radioimmunoconjugate quality is identical. Unfortunately, ⁸⁶Y has 2 drawbacks: First, the half-life of ⁸⁶Y (14.7 h) might be ideal for imaging mAb fragments and peptides but is rather short for optimal imaging of intact mAbs. It takes typically 48-96 h for intact mAbs to achieve optimal tumor-to-nontumor ratios. This shorter half-life of ⁸⁶Y, compared with the halflife of ⁸⁹Zr (78.4 h), will also have disadvantages for logistics related to transportation and labeling of mAbs. Second, in contrast to ⁸⁹Zr, ⁸⁶Y emits prompt y-photons, which together with 511-keV annihilation photons can result in so-called spurious true coincidences and therefore can introduce quantification artifacts (29). Solutions to these artifacts are under investigation (30,31).

CONCLUSION

In the present study, we showed that ⁸⁹Zr can perfectly predict the biodistribution of the residualizing labels ¹⁷⁷Lu and ⁸⁸Y in combination with the internalizing mAb cetuximab. The average uptake levels in tumor and other organs, except for thighbone and sternum, were similar for cetuximab-*N*-sucDf-⁸⁹Zr when compared with cetuximab-*p*-SCN-Bz-DOTA-⁸⁸Y, cetuximab-*p*-SCN-Bz-DOTA-¹⁷⁷Lu, cetuximab-*p*-SCN-Bz-DTPA-⁸⁸Y, and cetuximab-*p*-SCN-Bz-DTPA-¹⁷⁷Lu. In view of the advantages of PET over SPECT, ⁸⁹Zr-immuno-PET is a promising modality for in vivo scouting of ⁹⁰Y- and ¹⁷⁷Lu-labeled mAbs, although care should be taken when estimating bone marrow doses.

ACKNOWLEDGMENTS

This project was financially supported by STW (grant VBC.6120) and by the European Union FP6, LSHC-CT-2003–5032, STROMA. The content reflects only the authors' view. The European Commission is not liable for any use that may be made of the information. The authors thank BV Cyclotron for performing irradiations, Jan H. Rector (Solid State Physics, VU University) for sputtering ⁸⁹Y-copper supports, and Marianne Budde (VU University Medical Center) for contributing to the experiments.

REFERENCES

- Sharkey RM, Goldenberg DM. Perspectives on cancer therapy with radiolabeled monoclonal antibodies. J Nucl Med. 2005;46(suppl):115S–127S.
- Brouwers AH, Van Eerd JEM, Frielink C, et al. Optimization of radioimmunotherapy of renal cell carcinoma: labeling of monoclonal antibody cG250 with ¹³¹I, ⁹⁰Y, ¹⁷⁷Lu, or ¹⁸⁶Re. J Nucl Med. 2004;45:327–337.
- Press OW, Shan D, Howell-Clark J, et al. Comparative metabolism and retention of iodine-125, yttrium-90, and indium-111 radioimmunoconjugates by cancer cells. *Cancer Res.* 1996;56:2123–2129.
- Sharkey RM, Behr TM, Mattes MJ, et al. Advantage of residualizing radiolabels for an internalizing antibody against the B-cell lymphoma antigen, CD22. *Cancer Immunol Immunother*. 1997;44:179–188.
- Börjesson PKE, Postema EJ, de Bree R, et al. Radioimmunodetection and radioimmunotherapy of head and neck cancer. Oral Oncol. 2004;40:761–772.
- de Jong M, Breeman WA, Valkema R, Bernard BF, Krenning EP. Combination radionuclide therapy using ¹⁷⁷Lu- and ⁹⁰Y-labeled somatostatin analogs. *J Nucl Med.* 2005;46(suppl):13S–17S.
- Fink-Bennett DM, Thomas K. ⁹⁰Y-Ibritumomab tiuxetan in the treatment of relapsed or refractory B-cell non-Hodgkin's lymphoma. J Nucl Med Technol. 2003;31:61–68.
- Seldin DW. Techniques for using Bexxar for the treatment of non-Hodgkin's lymphoma. J Nucl Med Technol. 2002;30:109–114.
- Verel I, Visser GWM, van Dongen GA. The promise of immuno-PET in radioimmunotherapy. J Nucl Med. 2005;46(suppl):164S–171S.
- Milenic DE, Garmestani K, Chappell LL, et al. In vivo comparison of macrocyclic and acyclic ligands for radiolabeling of monoclonal antibodies with ¹⁷⁷Lu for radioimmunotherapeutic applications. *Nucl Med Biol.* 2002;29: 431–442.
- Carrasquillo JA, White JD, Paik CH, et al. Similarities and differences in ¹¹¹Inand ⁹⁰Y-labeled 1B4M-DTPA antiTac monoclonal antibody distribution. *J Nucl Med.* 1999;40:268–276.
- Camera L, Kinuya S, Garmestani K, et al. Comparative biodistribution of indium- and yttrium-labeled B3 monoclonal antibody conjugated to either 2-(p-SCN-Bz)-6-methyl-DTPA (1B4M-DTPA) or 2-(p-SCN-Bz)-1,4,7,10tetraazacyclododecane tetraacetic acid (2B-DOTA). *Eur J Nucl Med.* 1994; 21:640–646.
- Garmestani K, Milenic DE, Plascjak PS, Brechbiel MW. A new and convenient method for purification of ⁸⁶Y using a Sr(II) selective resin and comparison of biodistribution of ⁸⁶Y and ¹¹¹In labeled Herceptin. *Nucl Med Biol.* 2002;29:599– 606.
- Verel I, Visser GWM, Boellaard R, et al. Quantitative ⁸⁹Zr immuno-PET for in vivo scouting of ⁹⁰Y-labeled monoclonal antibodies in xenograft-bearing nude mice. *J Nucl Med.* 2003;44:1663–1670.
- Fan Z, Lu Y, Wu X, Mendelsohn J. Antibody-induced epidermal growth factor receptor dimerization mediates inhibition of autocrine proliferation of A431 squamous carcinoma cells. *J Biol Chem.* 1994;269:27595–27602.
- Mendelsohn J, Baselga J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol. 2003;21:2787–2799.
- Sunada H, Peacock J, Mendelsohn J. Ligand induced internalization of epidermal growth factor receptors by A431 cells decreases at high cell densities in culture. *Growth Factors*. 1991;5:45–55.
- Verel I, Visser GWM, Boellaard R, Stigter-Van Walsum M, Snow GB, Van Dongen GAMS. ⁸⁹Zr Immuno-PET: comprehensive procedures for the production of ⁸⁹Zr-labeled monoclonal antibodies. *J Nucl Med.* 2003;44:1271– 1281.
- Visser GWM, Klok RP, Gebbinck JWK, Ter Linden T, Van Dongen GAMS, Molthoff CF. Optimal quality ¹³¹I-monoclonal antibodies for high-dose labeling in a large reaction volume and temporarily coating the antibody with IODO-GEN. J Nucl Med. 2001;42:509–519.
- Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn PA. Determination of the immunoreactive fraction of radiolabeled monoclonal-antibodies by linear extrapolation to binding at infinite antigen excess. *J Immunol Methods*. 1984;72:77–89.
- Meares CF, McCall MJ, Reardan DT, Goodwin DA, Diamanti CI, McTigue M. Conjugation of antibodies with bifunctional chelating agents: isothiocyanate and bromoacetamide reagents, methods of analysis, and subsequent addition of metal ions. *Anal Biochem.* 1984;142:68–78.
- Govindan SV, Shih LB, Goldenberg DM, et al. ⁹⁰Yttrium-labeled complementarity-determining-region-grafted monoclonal antibodies for radioimmunotherapy: radiolabeling and animal biodistribution studies. *Bioconjug Chem.* 1998;9:773– 782.
- 23. van Gog FB, Visser GW, Stroomer JW, Roos JC, Snow GB, Van Dongen GAMS.

High dose rhenium-186-labeling of monoclonal antibodies for clinical application: pitfalls and solutions. *Cancer*. 1997;80(suppl):2360S–2370S.

- Brouwers A, Verel I, van Eerd J, et al. PET radioimmunoscintigraphy of renal cell cancer using ⁸⁹Zr-labeled cG250 monoclonal antibody in nude rats. *Cancer Biother Radiopharm.* 2004;19:155–163.
- 25. Stein R, Govindan SV, Chen S, et al. Radioimmunotherapy of a human lung cancer xenograft with monoclonal antibody RS7: evaluation of ¹⁷⁷Lu and comparison of its efficacy with that of ⁹⁰Y and residualizing ¹³¹L J Nucl Med. 2001;42:967–974.
- Griffiths GL, Govindan SV, Sharkey RM, Fisher DR, Goldenberg DM. ⁹⁰Y-DOTA-hLL2: an agent for radioimmunotherapy of non-Hodgkin's lymphoma. *J Nucl Med.* 2003;44:77–84.
- Pauwels S, Barone R, Walrand S, et al. Practical dosimetry of peptide receptor radionuclide therapy with ⁹⁰Y-labeled somatostatin analogs. *J Nucl Med.* 2005; 46(suppl):92S–98S.
- Lovqvist A, Humm JL, Sheikh A, et al. PET imaging of ⁸⁶Y-labeled anti-Lewis Y monoclonal antibodies in a nude mouse model: comparison between ⁸⁶Y and ¹¹¹In radiolabels. *J Nucl Med.* 2001;42:1281–1287.
- Pentlow KS, Finn RD, Larson SM, Erdi YE, Beattie BJ, Humm JL. Quantitative imaging of yttrium-86 with PET: the occurrence and correction of anomalous apparent activity in high density regions. *Clin Positron Imaging*. 2000;3:85–90.
- Buchholz HG, Herzog H, Forster GJ, et al. PET imaging with yttrium-86: comparison of phantom measurements acquired with different PET scanners before and after applying background subtraction. *Eur J Nucl Med Mol Imaging*. 2003;30:716–720.
- Walrand S, Jamar F, Mathieu I, et al. Quantitation in PET using isotopes emitting prompt single gammas: application to yttrium-86. *Eur J Nucl Med Mol Imaging*. 2003;30:354–361.

