Comparison of Regional Myocardial Blood Flow and Perfusion in Dilated Cardiomyopathy and Left Bundle Branch Block: Role of Wall Thickening

Bernd Nowak, MD¹; Christoph Stellbrink, MD²; Wolfgang M. Schaefer, MD, PhD¹; Anil M. Sinha, MD, PhD²; Ole A. Breithardt, MD²; Hans-Juergen Kaiser, PhD¹; Patrick Reinartz, MD¹; Peter Hanrath, MD²; and Ulrich Buell, MD¹

¹Department of Nuclear Medicine, University Hospital, Aachen University of Technology, Aachen, Germany; and ²Department of Internal Medicine I (Cardiology), University Hospital, Aachen University of Technology, Aachen, Germany

Heterogeneous perfusion in left bundle branch block (LBBB) has been demonstrated by ⁹⁹ᵐTc-methoxyisobutylisonitrile (MIBI) SPECT. Locally different contraction is also associated with LBBB. Quantitative analysis of myocardial SPECT is influenced by partial-volume effects depending on systolic wall thickening. Therefore, partial-volume effects may mimic perfusion heterogeneity in LBBB.

Methods: Fifteen patients with nonischemic dilated cardiomyopathy and LBBB underwent resting ¹⁵O-water PET, ⁹⁹ᵐTc-MIBI SPECT, and gated ¹⁸F-FDG PET for analysis of wall thickening. Myocardial blood flow corrected for rate–pressure product (corrMBF), ⁹⁹ᵐTc-MIBI uptake, and wall thickening were determined in 4 left ventricular wall areas. In 14 patients, M-mode echocardiographic recordings were available for comparison.

Results: Homogeneous distribution was found for corrMBF (1.09 ± 0.41 to 1.19 ± 0.31 mL/min/100 g), ⁹⁹ᵐTc-MIBI uptake and wall thickening were heterogeneous (P < 0.0001), with the lowest values septal (⁹⁹ᵐTc-MIBI, 65% ± 10%; wall thickening, 16% ± 14%) and the highest lateral (⁹⁹ᵐTc-MIBI, 84% ± 5%; wall thickening, 55% ± 17%). Similar relationships in systolic wall thickening were observed by M-mode echocardiography (anteroseptal, 20% ± 11%; posterolateral, 37% ± 18%; P < 0.001).

Conclusion: Heterogeneity of ⁹⁹ᵐTc-MIBI uptake in LBBB corresponds to differences in wall thickening and does not reflect distribution of corrMBF. Supplementary analysis of wall thickening is recommended when assessing ⁹⁹ᵐTc-MIBI SPECT in LBBB.

Key Words: left bundle branch block; ¹⁵O-water; ⁹⁹ᵐTc-methoxyisobutylisonitrile; wall thickening

MBF derived from the 15O-water PET studies was quantified using pixelwise modeling software (PMOD; University Hospital Zurich) (6). Because unprocessed 15O-water PET images do not contain sufficient anatomic information for cardiac reorientation and myocardial segmentation, this software applies a factor analysis to the water data that allows reconstruction of 2 image sets: one representing myocardium and another representing blood pool. These factor images were then used for anatomic reference, that is, reorientation of the dynamic 15O-water PET data and segmentation into the septal, anterior, lateral, and posterior walls, excluding the apex. Regions of interest were also drawn within the left and right ventricles to obtain blood time-activity curves as input function (7) and to correct for left and right ventricular spillover (8). Arterial and myocardial tissue time-activity curves were fitted to a single-tissue compartment tracer kinetic model (4,9) to give values of regional MBF ($\text{mL} \times \text{g}^{-1} \times \text{min}^{-1}$) free of the partial-volume effect through the introduction of PTF (4,5). Mean values for PTF were also obtained for each myocardial wall area.

Because MBF is closely related to the rate–pressure product (arterial systolic blood pressure × heart rate), MBF corrected for the rate–pressure product was calculated as corrected MBF (corrMBF = MBF/rate–pressure product × 104). Arterial blood pressure and heart rate were automatically monitored during the 15O-water PET studies with a Dinamap 8100 monitor (Critikon Corp.). Results of both 15O-water PET studies were averaged for every patient.

To measure the precision of the PET measurement in the single study session, we calculated the repeatability coefficient according to the method of Bland and Altman (10). This coefficient is defined as $1.96 \times \text{SD}$ of the differences and is recommended by the British Standards Institution (11). The repeatability coefficient is also given as a percentage of the average value of the 2 measurements.

Table 1

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Sex</th>
<th>Age (y)</th>
<th>QRS width (ms)</th>
<th>EDV (mL)</th>
<th>ESV (mL)</th>
<th>EF (%)</th>
<th>SBP (mm Hg)</th>
<th>DBP (mm Hg)</th>
<th>HR (min⁻¹)</th>
<th>RPP (mm Hg × min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>50</td>
<td>164</td>
<td>631</td>
<td>591</td>
<td>6</td>
<td>110</td>
<td>75</td>
<td>76</td>
<td>8,360</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>64</td>
<td>180</td>
<td>346</td>
<td>308</td>
<td>11</td>
<td>100</td>
<td>65</td>
<td>72</td>
<td>7,200</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>60</td>
<td>170</td>
<td>134</td>
<td>77</td>
<td>43</td>
<td>120</td>
<td>75</td>
<td>74</td>
<td>8,880</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>79</td>
<td>150</td>
<td>123</td>
<td>85</td>
<td>30</td>
<td>210</td>
<td>100</td>
<td>72</td>
<td>15,120</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>33</td>
<td>180</td>
<td>591</td>
<td>555</td>
<td>6</td>
<td>98</td>
<td>63</td>
<td>90</td>
<td>8,820</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>71</td>
<td>145</td>
<td>292</td>
<td>254</td>
<td>13</td>
<td>105</td>
<td>70</td>
<td>89</td>
<td>9,240</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>63</td>
<td>158</td>
<td>109</td>
<td>61</td>
<td>44</td>
<td>130</td>
<td>70</td>
<td>76</td>
<td>9,880</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>62</td>
<td>160</td>
<td>189</td>
<td>117</td>
<td>38</td>
<td>135</td>
<td>70</td>
<td>66</td>
<td>8,910</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>66</td>
<td>140</td>
<td>223</td>
<td>164</td>
<td>26</td>
<td>163</td>
<td>100</td>
<td>61</td>
<td>9,943</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>77</td>
<td>160</td>
<td>150</td>
<td>116</td>
<td>23</td>
<td>135</td>
<td>88</td>
<td>82</td>
<td>11,070</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>40</td>
<td>160</td>
<td>447</td>
<td>410</td>
<td>8</td>
<td>115</td>
<td>73</td>
<td>86</td>
<td>9,890</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>65</td>
<td>200</td>
<td>258</td>
<td>200</td>
<td>22</td>
<td>150</td>
<td>88</td>
<td>63</td>
<td>9,450</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>50</td>
<td>180</td>
<td>334</td>
<td>262</td>
<td>22</td>
<td>115</td>
<td>73</td>
<td>52</td>
<td>5,980</td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>68</td>
<td>170</td>
<td>273</td>
<td>220</td>
<td>20</td>
<td>100</td>
<td>50</td>
<td>66</td>
<td>6,600</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>68</td>
<td>160</td>
<td>300</td>
<td>234</td>
<td>22</td>
<td>150</td>
<td>88</td>
<td>66</td>
<td>9,900</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>61</td>
<td>165</td>
<td>293</td>
<td>244</td>
<td>22</td>
<td>129</td>
<td>77</td>
<td>73</td>
<td>9,281</td>
</tr>
<tr>
<td>± SD</td>
<td></td>
<td>13</td>
<td>15</td>
<td>160</td>
<td>164</td>
<td>12</td>
<td>30</td>
<td>14</td>
<td>11</td>
<td>2,116</td>
</tr>
</tbody>
</table>

EDV = end-diastolic volume; ESV = end-systolic volume; EF = ejection fraction; SBP = systolic blood pressure; DBP = diastolic blood pressure; HR = heart rate; RPP = rate–pressure product.

99mTc-MIBI SPECT

Myocardial perfusion SPECT was performed 60 min after injection of 424 ± 17 MBq of 99mTc-MIBI, with a light meal taken by the patient after tracer application. Data were acquired with a dual-head γ-camera (Solus; Philips Medical Systems). Acquisition parameters and attenuation- and scatter-corrected reconstruction in a 128 × 128 matrix were described in detail elsewhere (12). Briefly, emission was performed in 3 independent energy windows: 140 ± 14 keV for emission, 120 ± 6 keV for scatter detection, and 90 ± 11 keV for backscatter detection. Datasets of windows 1 and 2 were processed to obtain a scatter-corrected dataset, which was then reconstructed using a Butterworth filter (cutoff, 0.7 Nyquist; order, 5; matrix, 128 × 128) and processed with the dataset of window 3 (filtered backprojection, ramp) to obtain a final segmented attenuation- and scatter-corrected transaxial dataset.

99mTc-MIBI images were reoriented according to the LV axes. A volumetric vector sampling method and a 25-segment model were used to display relative 99mTc-MIBI uptake as percentage of the segment with maximum activity. Mean 99mTc-MIBI uptake of the 4 LV wall areas (septal, anterior, lateral, and posterior)—each consisting of 6 segments—was calculated as the mean value of the respective 6 segments for every patient. The remaining apical segment was not included in the wall area analysis.

The transaxial resolution of the SPECT system was measured with a line source filled with 99mTc-pertechnetate. The line source was placed centrally in a physiologic thorax phantom (septal area of the simulated myocardium). The full width at half maximum was 24.9 mm after acquisition and reconstruction with the same parameters used in the patient studies.

Gated 18F-FDG PET

All patients received 250 mg of acipimox 2 h before administration of 18F-FDG and 50 g of glucose orally 1 h before. Gated 18F-FDG PET (ECAT EXACT 922/47; Siemens-CTI) was per-
formed 60 min after intravenous administration of 284 ± 30 MBq of 18 F-FDG with 8 gates per R-R interval. The acquisition time was 30 min for emission (2-dimensional mode) and 15 min for transmission (68 Ge/68 Ga rod sources). Attenuation-corrected gated images were reconstructed using an iterative algorithm (ordered-subsets expectation maximization, 16 subsets, 6 steps). The transaxial resolution of the PET system measured with the 18 F-FDG–filled line source in the thorax phantom was 10.9 mm in full width at half maximum.

The pixel size of gated 18 F-FDG images was changed to an isotropic 5.79 mm. These data were reoriented and analyzed for regional myocardial wall thickening and LV volumes using Quantitative Gated SPECT (Cedars-Sinai Medical Center) (13). Wall thickening was estimated in the 25-segment model and expressed as the percentage increase from end-diastolic myocardial thickness. Mean wall thickening of the 4 LV wall areas was calculated analogously to the determination of relative 99mTc-MIBI uptake values.

Echocardiography

Echocardiography recordings obtained within 1 mo before the nuclear medicine studies were available for 14 patients. Regional wall thickness for the anteroseptal and posterolateral walls was retrospectively measured from parasternal M-mode recordings without knowledge of the nuclear medicine results. End-diastole was identified by the onset of the QRS complex; end-systole was defined as the smallest LV diameter.

Statistical Analysis

Statistical analyses were performed with SPSS 11 software (SPSS Inc.). Data are expressed as mean ± SD. Differences of values between septal, anterior, lateral, and posterior myocardium were assessed with the 1-way ANOVA followed by a post hoc Bonferroni analysis. Parameters derived from echocardiography were tested using a t test for paired samples. P < 0.05 was considered significant.

RESULTS

At rest, corrMBF was homogeneously distributed in the LV myocardium, without significant differences between the respective wall areas (Fig. 1A). The mean PTF of the posterior wall (0.73 ± 0.11 g × mL\(^{-1}\)) was higher than that of the anterior wall (0.63 ± 0.06 g × mL\(^{-1}\), P < 0.05) and that of the septum (0.59 ± 0.13 g × mL\(^{-1}\), P < 0.01). PTF values of the lateral wall (0.68 ± 0.08 g × mL\(^{-1}\)), of the septum, and of the anterior wall did not differ significantly from one another. The repeatability coefficients for both 15 O-water PET measurements are shown in Table 2. The analysis revealed similar values for the septal, anterior, and posterior wall areas, with a slightly higher repeatability in the lateral wall.

In contrast to the corrMBF values, 99mTc-MIBI uptake proved to be heterogeneously distributed in the 4 LV wall areas (P < 0.0001; Fig. 1B). Mean 99mTc-MIBI uptake was significantly higher in the lateral wall (84% ± 5%) than in the remaining 3 wall areas. The lowest 99mTc-MIBI uptake was observed in the septum (65% ± 10%).

Analysis of regional wall thickening by gated 18 F-FDG PET demonstrated a significantly heterogeneous contraction...
pattern of the left ventricle \((P < 0.0001; \text{Fig. 1C})\). In analogy to the distribution pattern of relative \(^{99m}\text{Tc}\)-MIBI uptake, wall thickening was highest in the lateral wall \((55\% \pm 17\%, \ P < 0.0001\) compared with the remaining wall areas) and lowest in the septum \((16\% \pm 14\%)\).

These findings were substantiated by the echocardiographic M-mode measurements, which demonstrated a comparable regional difference in wall thickening for the corresponding anteroseptal and posterolateral walls (Fig. 2).

DISCUSSION

It is a well-known phenomenon that patients with complete LBBB exhibit a heterogeneous distribution pattern of myocardial perfusion as estimated with \(^{201}\text{Tl}\) or \(^{99m}\text{Tc}\)-MIBI SPECT. Stress-induced septal hypoperfusion is frequently observed, but diminished septal perfusion, compared with the lateral free wall, also occurs in resting studies even in the absence of coronary artery disease \((1,2)\). Downregulated perfusion secondary to diminished oxygen demand, increased intramyocardial pressure during diastole, fibrotic alterations, or pronounced partial-volume effects due to reduced wall thickening have been discussed as the pathophysiologic correlates of these observations \((3,14 – 17)\).

Partial-volume effects are of particular relevance in myocardial SPECT studies. Because of the limited spatial resolution of \(\gamma\)-cameras, systolic thickening and diastolic relaxation of the myocardium entail continuous changes in the recovery coefficient during acquisition. Therefore, the myocardial counts actually measured depend considerably on systolic thickening, as marked thickening leads to a higher recovery coefficient and subsequently to more myocardial counts.

The main findings of our study are that, in patients with dilated cardiomyopathy and LBBB, resting MBF and its LV distribution pattern as estimated with the partial-volume-independent method of \(^{15}\text{O}\)-water PET are within the range of values observed in healthy controls, without evidence of regional heterogeneity \((18)\). However, \(^{99m}\text{Tc}\)-MIBI uptake and wall thickening as estimated by gated \(^{18}\text{F}\)-FDG PET differ significantly between the respective wall areas in an identical pattern. This finding was confirmed by M-mode echocardiography from corresponding regions.

There is further evidence of regional heterogeneity in systolic shortening and myocardial wall thickness in patients with asynchronous electrical activation of the left ventricle. In animal experiments during ventricular pacing, regional systolic shortening proved to be reduced in early-activated regions and increased in late-activated regions as determined with MRI tagging \((19)\). These data could recently be confirmed by echocardiographic strain rate imaging in humans with complete LBBB, whose interventricular septum represents the early-activated region and the lateral free wall the late-activated region \((20)\). The reduction of \(^{99m}\text{Tc}\)-MIBI uptake in the anterior and posterior wall in our patients must also be interpreted as resulting from a relative reduction in regional wall thickening compared with the lateral wall. This reduction in wall thickening occurred mainly in the adjacent anteroseptal and posteroseptal parts of the anterior and posterior walls, respectively.

Furthermore, diminished end-diastolic wall thickness of the septum, compared with the late-activated posterior wall, has been described in LBBB, whereas end-diastolic wall thickness was identical in both wall areas in healthy controls \((21)\). In our echocardiography analysis, we could verify a trend of smaller end-diastolic wall thickness in the anteroseptal wall compared with the posterolateral wall, which, however, did not reach statistical significance.

Therefore, at least one of these alterations in LBBB, namely reduced systolic thickening and diminished end-diastolic wall thickness in the septum and adjacent anteroseptal and posteroseptal walls, provides a pathophysiologic explanation for the heterogeneous uptake pattern in resting \(^{201}\text{Tl}\) or \(^{99m}\text{Tc}\)-MIBI SPECT studies due to pronounced partial-volume effects.

Our results argue against the concept of downregulated septal perfusion caused by diminished oxygen demand, as MBF was found to be similar in all myocardial regions by \(^{15}\text{O}\)-water PET. This finding is underscored by data of...
Zanco et al., who, using 13N-NH$_3$ PET, found preserved septal perfusion in patients with LBBB and reduced LV function but without coronary artery disease (22).

It is unlikely that the variability in the 15O-water measurements influenced our results. Calculation of repeatability coefficients from our data revealed good agreement of both measurements in each patient. The repeatability coefficients of our parameters were almost identical to previously published values obtained in similar settings (6,23).

CONCLUSION

15O-Water PET proves that resting MBF is homogeneously distributed in patients with nonischemic dilated cardiomyopathy and LBBB. The quantitative analysis of 99mTc-MIBI SPECT in these patients is significantly affected by heterogeneity in regional myocardial systolic wall thickening. Therefore, supplementary analysis and consideration of wall thickening derived from ECG-gated data is recommended in the assessment of 99mTc-MIBI SPECT in patients with LBBB. The reader should take into account that the combination of reduced septal 99mTc-MIBI uptake and reduced septal wall thickening does not necessarily represent myocardial infarction, as this combination usually occurs in patients without LV conduction disturbances (24). Reduced septal 99mTc-MIBI uptake should rather be considered the artificial result of reduced wall thickening.

REFERENCES

