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Cancer Therapy with Auger Electrons:
Are We Almost There?

The biologic toxicity of internally
deposited radionuclides can be attrib-
uted to radiation-induced ionizations
and excitations, nuclear recoil, chemi-
cal transmutations, and local charge
effects. �-Photons, x-ray photons, and
energetic negatrons and positrons have
a range of activity equivalent to many
cell diameters and are characterized by
low linear energy transfer and oxygen-
dependent biologic effects. Radionu-
clides that decay by electron capture
and/or internal conversion demonstrate
an Auger effect; in this effect, ex-
tremely low-energy electrons (Auger,
Coster-Kronig, and super-Coster-Kro-
nig transitions) with subcellular ranges
(nanometers) are produced. Monte
Carlo calculations have been per-
formed (1–5) to determine the electron
spectra of commonly used Auger elec-
tron emitters, such as 99mTc (half-life
[t1/2], 6.05 h), 111In (t1/2, 2.1 d), 123I (t1/2,
13.3 h), and 125I (t1/2, 60.5 d). For ex-
ample, the average Auger and Coster-
Kronig electron spectra of 111In, 123I,
and 125I have totals of �8, �11, and
�20 electrons, respectively, with ener-
gies of approximately 12 eV to 24 keV
(1–3). The ejection of the electrons
leaves the decaying atoms transiently
in a state of high positive charge. The
burst of low-energy electrons results in
highly localized energy deposition
(106�109 cGy) in an extremely small
volume (several cubic nanometers)
around the decay site, and molecules in
the immediate vicinity of the decaying
atoms will be irradiated by these elec-
trons. In addition, the dissipation of the

potential energy associated with the
high positive charge and its neutraliza-
tion may act concomitantly and lead to
some of the observed biologic effects.

Neglected initially for therapeutic
purposes because of their low energy
and consequent short range, Auger
electron cascades are now being seri-
ously considered. This shift in interest
is, in part, a consequence of recent
experimental findings that have altered
some of the basic assumptions that pre-
viously limited the perceived therapeu-
tic potential of Auger electron-emitting
radionuclides.

Monte Carlo calculations, in which
the low-energy, electron-emitting ra-
dionuclides (e.g., 125I) had been posi-
tioned within or at very short distances
(nanometers) from cylindric, “naked,”
double-stranded DNA, had predicted
that 1 double-strand break would be
produced per decaying atom (6,7). Al-
though these theoretic expectations
were later substantiated in studies with
short strands of synthetic oligonucleo-
tides, plasmids, phages, and bacterial
DNA (8–13), recent studies have dem-
onstrated that the decay of 125I in mam-
malian cell DNA (i.e., supercompacted
heterochromatin) leads to the produc-
tion of ��1 double-strand break per
decay (14,15).

For years, the deleterious effects of
low-energy electron emitters in mam-
malian cells had been attributed solely
to direct ionization of DNA, the quint-
essential genetic target. Here again, it
has recently become apparent that the
radiotoxicity of Auger electrons is
caused mainly (�90%) by an indirect
mechanism(s) (16–19). These findings
also constitute a radical shift in the
understanding of the mechanisms un-
derlying the radiotoxic effects of low-
energy emitters.

The toxic effects of low-energy
electron emitters had frequently been
assumed to depend on the covalent
binding of the Auger electron-emitting
radionuclide to nuclear DNA (20–24).
Several investigators (25–29), how-
ever, have shown that various agents
(e.g., steroids, growth factors, and
DNA intercalators) radiolabeled with
such isotopes are also highly toxic to
mammalian cells (exponential de-
crease in survival). These reports ex-
pand the portfolio of agents and ap-
proaches that can be used to target
Auger electron-emitting radionuclides
to tumor cells.

The toxicity and therapeutic poten-
tial of low-energy electron emitters
had been thought to require the radio-
targeting of each and every tumor cell
(a direct consequence of the short
range of the emitted electrons and
therefore the absence of “cross-fire”
irradiation of neighboring cells). This
notion, too, has proven to be inaccu-
rate, as the decay of such isotopes has
recently been shown to lead to a “by-
stander effect,” an in vivo, dose-inde-
pendent inhibition or retardation of tu-
mor growth in nonradiotargeted cells
by a signal(s) produced in Auger elec-
tron-labeled cells (30). These in vivo
findings should also have a dramatic
impact on risk assessment after the ad-
ministration of radiopharmaceuticals
(all of which emit low-energy elec-
trons) to patients, especially because
dose estimations are traditionally per-
formed by averaging the radiation dose
to cells within a tissue or organ from
radioactive atoms present on or within
the cells (self-dose) and that from ra-
dionuclides present in or on other cells
or in the extracellular fluids (cross-
dose). Such radiation-absorbed dose
estimates have always played an im-
portant role in determining the amount

Received May 2, 2003; revision accepted May
20, 2003.

For correspondence or reprints contact: Amin I.
Kassis, PhD, Goldenson Building, 220 Longwood
Ave., Boston, MA 02115.

E-mail: amin_kassis@hms.harvard.edu

AUGER ELECTRON EMITTER TUMOR THERAPY • Kassis 1479



of radioactivity to be administered to
patients in diagnostic or therapeutic
procedures as well as in assessing en-
vironmental radiation risks, for exam-
ple, radon inhalation. When a by-
stander effect is factored in, the actual
radiobiologic response will be greater
than that predicted by dosimetric esti-
mates alone.

Most studies assessing the therapeu-
tic efficacy of low-energy electron
emitters were performed with the thy-
midine analog 5-iodo-2�-deoxyuridine
(31–33). In these studies, in which
such DNA-incorporated Auger elec-
tron emitters were shown to be thera-
peutically very efficacious (4- to 6-log
kill of tumor cells), the underlying as-
sumption was the need to bring the
Auger electron emitter into the cell
nucleus and bind it covalently to DNA.
Additional studies (34–43) have inval-
idated the above assumption and estab-
lished that for some carrier molecules
internalized into the nuclei of tumor
cells, covalent DNA binding is not
necessary for toxicity and, conse-
quently, that such molecules are poten-
tially useful as carriers of Auger elec-
tron-emitting radionuclides and can be
used in cancer therapy.

The article by Chen et al. (44) in this
issue of The Journal of Nuclear Med-
icine is an excellent example of the use
of an agent that is transferred to the
nucleus but not covalently bound to
DNA. The authors of this study exam-
ined the efficacy of 111In-labeled dieth-
ylenetriaminepentaacetic acid–human
epidermal growth factor (111In-DTPA-
hEGF) for the treatment of breast tu-
mors that overexpress the epidermal
growth factor receptor (EGFR). In es-
sence, mice were implanted subcutane-
ously with either EGFR-overexpress-
ing tumor cells or tumor cells
expressing a low level of EGFR and
injected later with 111In-DTPA-hEGF,
and the biodistribution and therapeutic
efficacy of the radiopharmaceutical
were determined.

This is a novel approach that relies
on earlier results in which Reilly et al.
(27) had demonstrated high and selec-
tive in vitro toxicity of 111In-DTPA-
hEGF in EGFR-overexpressing breast

tumor cells and rapid internalization of
the radionuclide into the cytoplasm of
tumor cells, with a proportion of the
internalized 111In being present within
the nuclei of these cells. The current
article reports that the administration
of 111In-DTPA-hEGF to mice bearing
EGFR-overexpressing breast tumors
leads to tumor size–dependent uptake
(for tumors of 1–2 mg, �80% of the
injected dose per gram; for tumors of
6–30 mg, �5% of the injected dose
per gram), a 3-fold decrease in the rate
of growth of “large” (15 mm3) tumors
and, most interesting, a profound re-
gression of “small” (10 mm3) tumors.
Specifically, these data suggest that
this radiopharmaceutical (and other
Auger electron-emitting therapeutic
agents) may be most valuable in the
treatment of small-volume breast can-
cer metastases, support the hypothesis
purporting the appropriateness of car-
rier molecules that enable the intranu-
clear localization of Auger electron
emitters, and provide the impetus
needed for the development of other
low-energy, electron emitter carriers in
the fight against cancer.

It is clear that radiopharmaceuticals
labeled with low-energy electron emit-
ters will play a role as radiotherapeutic
agents in the near future. The founda-
tions for this optimism are the high
toxicity and therapeutic efficacies re-
ported; the ready availability of many
no-carrier, low-energy, electron-emit-
ting radionuclides with variable phys-
ical half-lives and known chemical
properties; the low autoradiolysis of
such radiopharmaceuticals (even at
high specific activities); and the emis-
sion by many of these radionuclides of
�-photons, which are suitable for im-
aging and as such will enable the rapid
selection of radiopharmaceuticals with
appropriate radiotargeting pharmaco-
kinetics.

To paraphrase Regaud and Lacas-
sagne (45), “the ideal agent for cancer
therapy would consist of heavy ele-
ments capable of emitting radiations of
molecular dimensions, which could be
administered to the organism and se-
lectively fixed in the protoplasm of
cells one seeks to destroy. Although

this is perhaps not impossible to
achieve, the attempts so far have been
unsuccessful.” Certainly, the hope of
these two pioneers will soon be
achieved.

Amin I. Kassis, PhD
Harvard Medical School

Boston, Massachusetts
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