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Targeting of 125I-Labeled B Lymphocyte
Stimulator

B lymphocyte stimulator (BLyS), also
identified as TALL-1 (TNF and apoptosis
ligand-related leukocyte-expressed ligand
1), BAFF (B cell activating factor be-
longing to the tumor necrosis factor fam-
ily), THANK (tumor necrosis factor ho-
mologue that activates apoptosis, nuclear
factor-�B, and c-Jun NH2-terminal ki-
nase), TNFS20 (tumor necrosis factor
superfamily member 20), and zTNF4
(1–5), is a cytokine that is important in
regulating B cell immunity (6). Its im-
portance is readily demonstrated in ani-
mal models, where its absence is associ-
ated with a severe deficit in mature B
cells and its presence in excess causes B
cell hyperplasia and autoimmunity (1–
3,6). BLyS is a type II transmembrane
protein expressed as a membrane-bound
form on cells of myeloid origin, includ-
ing macrophages and dendritic cells, that
is also released as a soluble protein (2,7).
The soluble protein is a homotrimer of
56-kDa size that binds to at least 3 dif-
ferent receptors expressed primarily on
B cells (transmembrane activator and
calcium modulator and cyclophilin li-
gand interactor, B cell maturation anti-
gen, and BAFF-receptor/BLyS receptor
3) with subnanomolar affinities (5,8–12).
It does not bind to T cells, monocytes,
natural killer cells, granulocytes, or pro- or
pre-B cell populations. It does bind to ma-
lignant B cells from non-Hodgkin’s lym-
phoma (NHL) patients. Patients with dif-
fuse large cell, mantle cell, and marginal
cell NHL have receptor expression similar
to normal B cells, whereas lower receptor

expression is characteristic of follicular
NHL and chronic lymphocytic leukemia.

These characteristics have led the au-
thors of an article in this issue of The
Journal of Nuclear Medicine, Riccobene
et al. (13), to hypothesize that BLyS may
serve as a targeting molecule for selec-
tive delivery of radionuclides to normal
and malignant B cells. Riccobene et al.
labeled BLyS with 125I and studied its
biodistribution after intravenous injec-
tion into normal mice, mice bearing
mouse BCL-1 B cell tumor in the spleen,
and mice bearing subcutaneous murine
J558 plasmacytoma tumors, by counting
tissues in a �-counter and by quantitative
whole-body autoradiography. Although
the in vitro binding of 125I-BLyS to nor-
mal B cells, BCL-1 cells, and J558 cells
was not reported in this article, Ka-
nakaraj et al. (14) performed Scatchard
analyses of 125I-BLyS binding to human
tonsillar B cells, mouse B cells, Raji
human lymphoma cells, and BCL-1
mouse lymphoma cells. The affinity of
binding to these cells was 0.1, 0.35, 0.16,
and 0.93 nmol/L, respectively; the num-
ber of receptors per cell was 2,600, 179,
1,700, and 4,800, respectively. Ricco-
bene et al. found that the half-life of
125I-BLyS in plasma was 2.7 h in normal
and tumor-bearing mice. The highest up-
take of 125I-BLyS occurred in spleen
(maximum concentration [Cmax] � 35–45
percentage injected dose per gram [%ID/g]
at 1–3 h after injection), lymph nodes
(Cmax � 20 %ID/g in normal and J558
tumor-bearing mice and 8–15 %ID/g
in BCL-1 tumor-bearing mice), and
J558 tumors (Cmax � 15 %ID/g). The
uptake in kidney, liver, bone, small
intestine, and muscle was less than or
equal to 5 %ID/g. Only a single protein
dose (50 �g/kg) was examined in this
biodistribution study. More animal

studies will be required to determine
the dose effect on biodistribution given
the large splenic pool of B cells and its
predominant site of BLyS localization
at this dose.

Illidge et al. (15) investigated the
binding of 125I-labeled anti–major histo-
compatibility complex (MHC) class II,
anti-CD22, and anti-CD37 monoclonal
antibodies to BCL-1 tumor cells and
found 40,000–180,000 molecules of the
various antibodies bound per cell at sat-
uration. The splenic localization of 125I-
labeled anti-MHC and anti-CD22 mono-
clonal antibodies in the BCL-1–bearing
mice was 30 and 15 %ID/g, respectively,
with a tissue half-life of 24 h. This find-
ing compares with the considerably
shorter splenic half-life of 125I-BLyS (40
and 8 %ID/g at 6 and 24 h, respectively,
after injection). The area under the curve
of the concentration of radiolabeled an-
tibody versus BLyS will determine the
relative radiation absorbed doses in tu-
mor and blood (bone marrow). These
studies suggest that radionuclide doses
delivered by BLyS will require large ad-
ministered radionuclide doses. The radio-
sensitivity of B cell lymphomas has con-
tributed to successful treatment with ra-
diolabeled monoclonal antibodies that
bind to human leukocyte antigen DR10
(16,17), CD20 (18–24), and CD22
(25,26) antigens, and promising results
have been reported with pretargeting ra-
dioimmunotherapy (27–29). An important
concern with radiolabeled BLyS is
whether a sufficient radiation absorbed
dose will be deposited in tumor at the max-
imum tolerated dose. This dose will be
influenced by the level of receptor expres-
sion, whether the receptor undergoes en-
docytosis or modulation after cytokine
binding, and the retention time of the ra-
diolabeled cytokine in tumor.
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The level of radiolabeled BLyS local-
ization in J558 plasmacytoma tumors
relative to spleen and lymph node was
modest, with a ratio of less than 0.7,
possibly because of the low level of
BLyS receptor expression in tumor, the
short plasma half-life of BLyS, or the
low dose of BLyS administered. Further-
more, dehalogenation occurred with
high levels of radioiodine present in the
thyroid, stomach, and salivary glands,
presumably as a consequence of inter-
nalization of the 125I-BLyS-receptor
complex in B cells. Previous studies
have shown that 125I-labeled anti-CD22
antibody underwent modulation from
the surface of BCL-1 tumor cells in vivo,
whereas the anti-MHC class II antibody
did not undergo modulation (15). Radio-
iodinated monoclonal antibodies target-
ing antigens that are not modulated from
the surface of tumor cells have been
found to be more therapeutically effec-
tive than those that are modulated
(15,30–32). However, radiometal-la-
beled antibodies show a longer tumor
retention time if the antibodies are inter-
nalized (33). Labeling of BLyS with ra-
diometals has not yet been reported but
could enhance radioactive persistence at
tumor sites. Although 125I-BLyS had a
low uptake in kidney, it is unknown
what the kidney uptake and toxicity
would be if BLyS were labeled with a
radiometal such as 90Y. Another concern
is the extent to which unlabeled BLyS
produced in tumor and lymphoid tissues
would compete with radiolabeled BLyS
for binding to tumor cells, thus lowering
the radiation absorbed dose delivered to
tumor. It remains to be determined
whether radiolabeled BLyS will have
greater therapeutic efficacy than conven-
tional or pretargeted radioimmuno-
therapy both in preclinical animal mod-
els and in clinical trials. An additional
concern based on the studies with radio-
labeled peptides and antibody fragments
is the high radionuclide doses required to
achieve efficacy (34–36). Nevertheless,
this article presents the first results on the
biodistribution of this B cell–specific
molecule and offers a novel direction for
further studies of radioimmunotherapy
of B cell malignancies in mice and hu-

mans. The results of this initial study are
interesting and provocative, but more an-
imal and human data with maximum tol-
erated dose information, toxicity, and
therapy outcomes are needed.
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Erratum (continued from page 330)

FIGURE 2. DCF values vs. �0 for (C4 CS)
where CS represents cell surface. Plots for
several different cellular dimensions are
shown and denoted by (RC, RN), representing
radius of cell and of nucleus, respectively.
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