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We compare 3 image reconstruction algorithms for use in 3-di-
mensional (3D) whole-body PET oncology imaging. We have
previously shown that combining Fourier rebinning (FORE) with
2-dimensional (2D) statistical image reconstruction via the or-
dered-subsets expectation-maximization (OSEM) and attenua-
tion-weighted OSEM (AWOSEM) algorithms demonstrates im-
provements in image signal-to-noise ratios compared with the
commonly used analytic 3D reprojection (3DRP) or FORE�FBP
(2D filtered backprojection) reconstruction methods. To assess
the impact of these reconstruction methods on detecting and
localizing small lesions, we performed a human observer study
comparing the different reconstruction methods. The observer
study used the same volumetric visualization software tool that
is used in clinical practice, instead of a planar viewing mode as
is generally used with the standard receiver operating charac-
teristic (ROC) methodology. This change in the human evalua-
tion strategy disallowed the use of a ROC analysis, so instead
we compared the fraction of actual targets found and reported
(fraction-found) and also investigated the use of an alternative
free-response operating characteristic (AFROC) analysis. Meth-
ods: We used a non-Monte Carlo technique to generate 50
statistically accurate realizations of 3D whole-body PET data
based on an extended mathematic cardiac torso (MCAT) phan-
tom and with noise levels typical of clinical scans performed on
a PET scanner. To each realization, we added 7 randomly
located 1-cm-diameter lesions (targets) whose contrasts were
varied to sample the range of detectability. These targets were
inserted in 3 organs of interest: lungs, liver, and soft tissues. The
images were reconstructed with 3 reconstruction strategies
(FORE�OSEM, FORE�AWOSEM, and FORE�FBP). Five human
observers reported (localized and rated) 7 targets within each
volume image. An observer’s performance accuracy with each
algorithm was measured, as a function of the lesion contrast
and organ type, by the fraction of those targets reported and by
the area below the AFROC curve. This AFROC curve plots the
fraction of reported targets at each rating threshold against the
fraction of cases with (�1) similarly rated false reports. Results:

Images reconstructed with FORE�AWOSEM yielded the best
overall target detection as compared with FORE�FBP and
FORE�OSEM, although these differences in detectability were
region specific. The FORE�FBP and FORE�AWOSEM algo-
rithms had similar performances for liver targets. The
FORE�OSEM algorithm performed significantly worse at target
detection, especially in the liver. We speculate that this is the
result of using an incorrect statistical model for OSEM and that
the incorporation of attenuation weighting in AWOSEM largely
compensates for this model inaccuracy. These results were
consistent for both the fraction of actual targets found and the
AFROC analysis. Conclusion: We demonstrated the efficacy of
performing observer detection studies using the same visual-
ization tools as those used in clinical PET oncology imaging.
These studies demonstrated that the FORE�AWOSEM algo-
rithm led to the best overall detection and localization perfor-
mance for 1-cm-diameter targets compared with the
FORE�OSEM and FORE�FBP algorithms.
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We present a comparison of 3 image reconstruction
algorithms for use in 3-dimensional (3D) whole-body PET
oncology imaging. PET scanning with the labeled glucose
analog 18F-FDG is increasingly being used in whole-body
oncology imaging to stage cancer and metastatic diseases in
all regions of the body (1,2). Whole-body PET scanning,
however, is typically constrained to short imaging times at
each bed position to maintain a total scan duration that is
acceptable to patients. The 5- to 10-min typical acquisition
time for both transmission and emission data for each bed
position in whole-body imaging results in images with, in
general, poor signal-to-noise levels.

Noise reduction in whole-body emission images has been
addressed by the use of statistical image reconstruction
techniques with standard 2-dimensional (2D) acquisition
mode data. Improvements in image signal-to-noise ratio
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(SNR) have been demonstrated with maximum likelihood
(ML) algorithms compared with the standard analytic 2D
filtered-backprojection (FBP) algorithm (3,4). The ML al-
gorithms incorporate a model of Poisson photon counting
statistics, albeit at the expense of computation time com-
pared with FBP. The introduction of accelerated iterative
algorithms (5) has significantly reduced computation time.
The ordered-subsets expectation-maximization (OSEM) (6)
algorithm in particular is now being routinely used for 2D
whole-body image reconstruction in some centers (7), al-
though convergence in the case of noisy data has not been
proven.

An alternative approach to reducing statistical noise in
whole-body imaging is by acquiring data in 3D mode (8,9).
These data are then typically reconstructed with the analytic
3D reprojection (3DRP) algorithm (10). A synergistic com-
bination is the use of iterative statistical reconstruction
methods with 3D acquisition mode data. Fully 3D statistical
reconstruction methods, however, are computationally in-
tensive (11–14). As a faster alternative, hybrid methods
have been proposed that combine 3D imaging with accel-
erated 2D statistical image reconstruction by rebinning the
3D data into a “stack” of 2D sinograms (15,16). For whole-
body imaging, the Fourier rebinning (FORE) technique (17)
compresses 3D datasets into 2D datasets with sufficient
accuracy (18). The combination of FORE�OSEM, how-
ever, does not account for the effect of necessary data
correction procedures on the statistical distribution of the
rebinned data, even though the multiplicative correction
terms for the effects of attenuation can be as high as 100 in
some cases. A refinement of the hybrid approach was the
incorporation of attenuation weighting (AW) in the statis-
tical model of the data acquisition, resulting in the
FORE�AWOSEM (where AWOSEM is attenuation-
weighted OSEM) algorithm (16), which has shown im-
provements in contrast-to-noise trade-offs compared with
both the FORE�OSEM and the 3DRP algorithms (18). The
2D AWOSEM algorithm incorporates the attenuation fac-
tors in the system matrix used to forward project the esti-
mated sinogram based on the current estimate of the image.
The estimated sinogram is then compared with the mea-
sured (attenuated) sinogram, thus approximately preserving
the Poisson statistics assumed by the EM algorithm. This
approach was first proposed for the EM algorithm by Hebert
and Leahy (19) and can be extended to other data multipli-
cative correction terms (20). The 3D FORE�AWOSEM
algorithm is somewhat more complex, as the 3D sinogram
data must first be corrected for all physical effects, including
attenuation, before the FORE step. To properly model the
statistics, 2D attenuation factors are applied to attenuate the
2D sinograms, which are then reconstructed with
AWOSEM. The attenuated 2D sinograms are Poisson-like,
in that the variance is proportional to the mean. We also
note that the proportionality constant is typically ��1,
which is the desired goal. Under these conditions we have
shown that the behavior of the EM (and OSEM) algorithm

is unchanged (18). The combinations of FORE�OSEM and
FORE�AWOSEM may lead to apparent improvements in
image SNR in clinically feasible reconstruction times, but
the resulting effect on diagnostic utility is not clear. The
purpose of this work is to evaluate the impact of 3 different
reconstruction strategies now available in clinical practice
(FORE�FBP, FORE�OSEM, and FORE�AWOSEM) on
human observers’ ability to detect foci of elevated FDG
uptake, a characteristic of several malignancies. Figure 1
shows illustrations of these 3 reconstruction strategies for
the same patient study.

Human observer detection capability is typically assessed
by psychophysical studies that use the receiver operating
characteristic (ROC) methodology (21). The analysis of
ROC curves has been applied to conventional radiologic
imaging, using displays of either single, transverse image
planes or a central target image supported by adjacent image
planes on either side to provide anatomic reference points
(22,23). Similar methodologies have been adopted for ROC
studies in PET and SPECT (24–27). This 2D or planar
mode of display, however, substantially simplifies the volu-
metric display procedures routinely used for clinical inter-
pretations of PET and SPECT images, which simulta-
neously display the 3 main planar sections (transverse,
coronal, and sagittal) through the contiguous image volume.
Another important limitation of the standard ROC analysis
is that it uses only a single detection rating on each image or
case and cannot consider observer’s multiple reports of
several possible targets.

For these reasons, we developed a different procedure for
evaluating human observer performance with PET images,
incorporating the same software tools for enhanced volume
visualization used in PET oncology imaging. We used sim-
ulated data to overcome the practical impediment of acquir-
ing large numbers of experimental datasets and to provide a
gold standard for the location and contrast of the inserted
targets. To replicate clinical conditions and to shorten the
total reading times to feasible levels, we used multiple
targets per volume and did not include any volumes without
targets. These conditions are not consistent with ROC anal-
ysis, but they are compatible with an analysis of the observ-
er’s alternative free-response operating characteristic
(AFROC) curve (28,29), which considers multiple reports
and requires accurate localizations of the targets on the
images. In addition to the AFROC approach, we also used
a nonparametric analysis of measuring the fraction of actual
targets that were found and reported (‘fraction-found’),
which provides a simple and robust measure of observer
performance accuracy.

MATERIALS AND METHODS

For the studies reported here we used simulated 3D whole-body
data with randomly located lesions (targets) of varying contrast
levels. The simulation parameters were based on clinical relevance
and a series of calibration studies. The data were reconstructed
using the different image reconstruction methods, and human
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observers attempted to localize the lesions using a modified ver-
sion of the display software used for routine clinical studies. The
results of the localization studies were analyzed with both a simple
fraction-found approach and an AFROC analysis.

Data Simulations
We used the analytic (i.e., non-Monte Carlo) simulation method

(ASIM) (30) to allow for the generation of multiple noisy realiza-
tions of 3D whole-body sinogram datasets. The principle of ASIM
is to first analytically calculate noiseless transmission and attenu-
ated emission sinograms on the basis of geometric specifications of
the emission and attenuation objects (i.e., the whole-body phan-
tom), the geometry of the scanner, the position of the object in the
field of view, and the number of acquisitions (bed positions) for
whole-body acquisitions. Sinograms of noiseless random and scat-
tered coincidences are approximated by assuming that the total
activity in each transaxial slice of the object is concentrated along
the axis of the scanner. These values are scaled by measured
scanner profiles. Second, predetermined levels of Poisson noise are
optionally added to each of the 4 sinograms on the basis of
user-specified count levels. These sinograms are then combined
appropriately to duplicate measured raw data sinograms with ac-
curate noise properties. Finally, the raw data are corrected for
attenuation, scatter, and randoms by the same techniques as those
used in practice, assuming that the correction terms, although they
may be noisy, are accurate.

The whole-body simulator accounts for effects that are impor-
tant in whole-body PET imaging, including attenuation, random
and scattered coincidences arising from the activity inside and
outside the field of view, detector efficiencies, activity decay
between bed positions, and noise arising from the transmission
scan (30). In addition, resolution effects and detector efficiencies
can be included. The different sources of noise can be turned on or
off as desired. The advantage of this approach is that multiple

independent realizations of 3D whole-body sinograms can be
rapidly generated, unlike Monte Carlo methods, which track indi-
vidual photons. The disadvantage of this approach is that scatter
and random scaling profiles must be measured for each tomograph
and that there is no energy information (if needed). The simulator
was validated by comparing the means and variances measured
from multiple realizations of simulated and measured studies
based on identical phantoms, with several activity levels inside and
outside the scanner field of view. The simulator was also shown to
predict plausible results for a more realistic whole-body geometry
using a simple model of human FDG distribution when compared
with clinical scans.

We generated data that reproduced the FDG distribution in the
torso, with a geometry based on the 3D mathematic cardiac torso
(MCAT) phantom (31) and with the addition of head, arms, and
bladder objects to simulate a true imaging protocol. For the sim-
ulated scanner, we modeled the geometry and the characteristics of
the ECAT EXACT HR� scanner (CTI/Siemens, Knoxville, TN)
(32). The tomograph consists of 32 rings of detectors acquiring
data over 15.5 cm in the axial direction.

Simulated emission data were generated in the 3D mode of
acquisition with a maximum ring difference of 22, which is equiv-
alent to a maximum acceptance angle of 12.5°. The lines of
response were mashed axially into groups of 4 or 5 lines of
response, equivalent to a span factor of 9 (33). These acquisition
parameters replicated those used in clinical practice.

The noise level in the phantom data was set to an average from
clinical whole-body scans corresponding to an injection rule of
approximately 3.7 MBq/kg and a 5-min acquisition per bed posi-
tion starting 60 min after injection. For an acquisition centered on
the liver, the average numbers of true and random coincidences
were set to 22 and 35 million counts, respectively. Because of the
wide variability in how transmission scans are acquired and pro-

FIGURE 1. Illustration of the 3 recon-
struction strategies. These images are same
coronal views of same patient study recon-
structed with FORE�FBP, FORE�OSEM,
and FORE�AWOSEM algorithms.
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cessed, noiseless attenuation factors were used to avoid including
the noise in the transmission scan as a free parameter of the study.

Image Reconstruction
The 3D emission datasets were rebinned using the same imple-

mentation of FORE into sets of contiguous transaxial 2D sino-
grams. Images were reconstructed using the FORE�FBP,
FORE�OSEM, and FORE�AWOSEM algorithms. The OSEM
and AWOSEM implementations used were those described by
Comtat et al. (16), whereas the FBP implementation used was the
standard software available on the ECAT EXACT HR� scanner.
The OSEM and AWOSEM algorithms used 16 subsets and 4
iterations.

To control the contrast-to-noise trade-off, the images recon-
structed by FBP varied the cutoff of a Hann apodizing window,
whereas the OSEM and AWOSEM algorithms varied the full
width at half maximum (FWHM) of the kernel of a postrecon-
struction 3D gaussian smoothing filter. This form of regularization
for the FORE�OSEM and FORE�AWOSEM algorithms is prob-
lematic as the objective function (the log likelihood in this case) is
not maximized, and so the solution unfortunately depends on the
starting point. Further, the effectively nonconvex objective func-
tion may not even have a unique global maximum. Algorithms
with convex objective functions that are iterated to convergence
may have improved detection task performance. The purpose of
this study, however, was to compare algorithms used in clinical
practice for whole-body oncology image reconstruction.

The smoothing parameters for the 3 reconstruction strategies
were selected by maximizing the contrast-to-noise ratio (CNR),
closely related to a nonprewhitening matched filter (34), for 1-cm-
diameter spheric targets placed inside a simulated elliptic cylinder
with dimensions similar to the MCAT torso (200 � 128 mm). Five
targets were added at different radial positions within the cylinder
with a contrast of 8:1 defined as the target-to-background activity
concentration ratio, that is, (concentration in the target/concentra-
tion in the background). The attenuation coefficient for all objects
was equivalent to water and the sinograms had a noise level similar
to that used for the final observer study. Twenty-five noisy real-
izations of this configuration were generated and reconstructed by
each of the 3 algorithms. The FWHM of the gaussian smoothing
filter used with OSEM and AWOSEM was varied from 4 to 14
mm. For the FBP images, the cutoff frequency of the Hann-
windowed ramp filter was varied from 0.05 to 1.0 of the Nyquist
rate, corresponding to a smoothing with a gaussian filter of 4.2- to
21.5-mm FWHM.

For each smoothing value or cutoff frequency the image CNR
for each target was calculated as:

CNR �
��T � B�/B�

��2�T� � �2�B�
, Eq. 1

where T and B are the activity concentrations, measured using
8-voxel volumetric regions of interest placed over the targets and
background regions in the reconstructed image volumes, � � rep-
resents the ensemble average, and �2(T) and �2(B) are the vari-
ances of these activities estimated across the 25 realizations.

A transverse section of a typical reconstructed image of the
phantom used for the free parameter optimization study is shown
in Figure 2. The average CNRs in the FORE�FBP,
FORE�OSEM, and FORE�AWOSEM reconstructed images are
plotted in Figure 3 as a function of the free parameter.

The CNR for the FBP algorithm index was maximum for a
cutoff frequency of 0.4 of the Nyquist rate (corresponding to a
smoothing with a gaussian filter of 10.6-mm FWHM). The CNR
for the OSEM and AWOSEM algorithms both peaked with a
postreconstruction gaussian smoothing filter of 12-mm FWHM.
These values were used for the observer study described below.

Volumetric Observer Tool
For the purpose of evaluating observer performances in clinical

practice, we have developed an “observer tool” as part of an
enhanced volume visualization software tool used in clinical PET
oncology imaging. The volumetric observer scoring procedure was
incorporated into our dual/fusion clinical software visualization
tool, which is based on the Clinical Application Programming
Package (CTI, Knoxville, TN), which in turn is a superset of the
Interactive Data Language IDL (Research Systems Inc., Boulder,
CO). The dual/fusion display (Fig. 4) allows the standard proce-
dure of interpreting whole-body PET scans by searching a contig-
uous volume in 3 orthogonal directions. It also supports the simul-
taneous display of emission and transmission image volumes with
linked cross-hairs or image fusion. The dual/fusion display can
load sequential emission scans for longitudinal studies and sup-
ports simple region-of-interest functions. When the observer tool is
used with this dual/fusion display, all reports of target locations
and confidence ratings are recorded and linked to their specified
3D positions within the emission-image volume. An observer can
review and edit all of this information and can choose to display or
hide the superimposed image markers for locations of the reported
targets.

Calibration Study
Two important considerations for the observer study are con-

trast levels for the added targets and distance threshold used to
determine when a target has been correctly reported. The target
contrast levels must be selected so that the targets are sufficiently
detectable by human observers, but not too obvious.

When observers report a target by clicking on its location with
the mouse, it is unlikely that they will point exactly at the center

FIGURE 2. Transaxial section through reconstructed volu-
metric image of phantom used for optimization study illustrates
locations of 5 targets, each 1 cm in diameter.
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of the target. The distance between the real and the reported
location may depend on the observer’s visual acuteness and man-
ual dexterity, on the image display and resolution, and on the
lesion contrast. This will be a 3D Euclidean distance, because the
observer can localize the target by clicking on any 1 of the 3 views
(coronal, transverse, or sagittal). The distance threshold needs to
be large enough to allow for observer localization error, but small
enough to minimize the chance identification of a true target.

We performed a preliminary calibration observer study to de-
termine an appropriate value for the threshold distance and to
calibrate sets of target contrast levels that would cover the entire
range of detectability within each organ of interest. Twenty-five

3D emission scans were simulated for the calibration study, each
corresponding to a 2-bed position whole-body scan extending 28
cm from the upper part of the lungs to the bottom of the liver. Five
targets of 1-cm diameter were randomly distributed in the lungs,
the liver, and the surrounding soft tissues. All targets in a given
volume had the same contrast defined as the target-to-organ activ-
ity concentration ratio. Five different contrasts of 12:1, 10:1, 8:1,
6:1, and 4:1 were simulated. Data were reconstructed with the
FORE�OSEM algorithm using 16 subsets, 2 iterations, and a
7-mm FWHM gaussian smoothing. Three observers participated in
the study, each reading 5 images per contrast level (25 volumetric
images).

FIGURE 3. Measured CNR in image vol-
umes according to Equation 1, averaged
over 5 targets shown in Figure 2. (A) FBP
images: CNR vs. cutoff frequency of Hann-
windowed ramp filter. (B) OSEM and
AWOSEM images: CNR vs. FWHM of post-
reconstruction gaussian smoothing filter.

FIGURE 4. Illustration of dual/fusion dis-
play software and linked observer tool. Top
3 images are orthogonal views of recon-
structed whole-body PET oncology scan
using 18F-FDG as tracer. Bottom 3 images
are orthogonal views of corresponding re-
constructed transmission scan. Linked ob-
server tool is controlled from additional
window overlaid (for purposes of this illus-
tration only) on bottom left region of dual-
volume viewer.
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Figure 5 shows the variations of the fraction-found averaged
over observers for different target contrasts and for the different
organs as a function of the distance threshold. The most significant
changes occurred between 5 and 15 mm. The distance threshold
was thus set to the upper limit of 15 mm for subsequent observer
studies. Assuming equal localization errors in all 3 dimensions, the
3D distance threshold of 15 mm corresponds to an average 2D
tolerance of approximately 12 mm in a single image plane. This
value of 15 mm corresponds to approximately 3 voxels of the
reconstructed image.

The measured fractions of targets found increased as a function
of the target contrast, but at different rates for lesions in the liver,
in the lungs, and in the soft tissues. Accordingly, separate sets of
5 contrast levels were selected for each organ (Table 1), corre-
sponding to anticipated fraction-found values of 0.1, 0.3, 0.5, 0.7,
and 0.9. These values were chosen to sample the range of the
fractions of actual targets found as indicated.

Observer Detection Performance Study
For the main observer study, we simulated 3D acquisitions of

the extended MCAT phantom over a 41-cm axial extent corre-
sponding to 3 bed positions. Spheric 1-cm-diameter targets were
inserted at randomly generated locations within the phantom,
respecting a minimal distance of 1 cm from the edge of an organ
or from another target. The number of targets per volume was set
to 7, but the number of targets per organ varied randomly on the
basis of a multinomial probability distribution with a mean of 2.5

targets each for the lungs and the liver and 2.0 targets for the other
soft-tissue regions. On the basis of the ratio of the target and organ
volumes, the probability of finding a target by chance was esti-
mated to be 2 � 10	4 in the liver, 10	4 in the lungs, and 2 � 10	5

in the soft tissues. The contrast of each target within a given organ
was randomly chosen from among the predetermined set of 5
values selected by the preliminary calibration study. There were 50
whole-body volumetric images (containing 7 targets each) leading
to approximately 25 targets of each contrast level for the liver and
the lungs (2.5 targets per organ � 50 volumes/5 contrast levels).
The actual number of targets per contrast is reported in Table 1 for
the 3 organ types. The 50 noisy projection sets were reconstructed
with each of the 3 reconstruction algorithms (FORE�FBP,
FORE�OSEM, and FORE�AWOSEM), resulting in a final set of
150 whole-body volumetric images.

Five observers participated to the study (1 nuclear medicine
physician and 4 physicists working in PET facilities). Four ob-
servers were experienced in reading PET images and 1 observer
was highly experienced in psychophysical studies, but less familiar
with PET imaging. All observers were trained using the images
generated for the calibration study. Observers practiced by rating
some targets and comparing their results with the noise-free im-
ages using the dual/fusion volume viewer to display the locations
they marked on both images. No time limits were imposed within
either the training or the actual studies, and observers could “win-
dow” and control the display color scales as in clinical practice.

FIGURE 5. Fractions of actual targets found for different target contrasts (4:1, 6:1, 8:1, 10:1, and 12:1) as a function of threshold
distance in different organs: lungs (A), liver (B), soft tissue (C).

TABLE 1
Contrast Values of Targets Inserted in MCAT Phantom

Fraction-found 0.1 0.3 0.5 0.7 0.9

Lungs 7 (21) 8.5 (26) 9.5 (26) 11 (26) 13 (22)
Liver 3.75 (26) 4.25 (28) 4.75 (32) 5.5 (28) 6.25 (26)
Soft tissue 7 (15) 9.5 (13) 11 (23) 12 (18) 12.5 (20)

Numbers in parentheses refer to actual numbers of targets per contrast used in final observer study.
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Reading sessions were interrupted and later resumed whenever
necessary. Observers were told that each volume would contain
exactly 7 targets but they did not know the precise number of
targets within each organ. They were required to report 7 separate
locations per volume, rating each report on a 5-point ordinal scale
of confidence (5 
 definite strong target, 4 
 medium-strong
target, 3 
 medium-weak target, 2 
 weak target, and 1 

probably not a target). This method was aimed at forcing all
observers to adopt an identical criterion for the number of possible
targets reported per volume. The analysis assigned a default rating
of zero to all unreported targets. Two of the 5 observers read the
complete set of 150 whole-body volumetric images from all 3
reconstruction algorithms, and the other 3 observers each read 100
volumetric images from 2 of the 3 conditions. The studies were
arranged such that each set of 50 images from each algorithm was
read by 4 separate readers. The reconstructed images were split
into subsets of approximately 17 volumes that were presented to
the observers in random order to reduce reading order effects. The
subset approach was used to reduce the observer’s need for con-
stant readjustment to differing physical image characteristics and
to balance the effects of any systematic changes in observers’
strategies or performance over the course of the experiment.

Observer Detection Performance Analysis
The fraction of actual targets found and reported (fraction-

found) by each observer was calculated as a function of the target
contrast for each of the 3 organ types in which targets were
inserted and for each of the 3 reconstruction strategies. Error bars
were calculated, given the number of sampled targets, by assuming
that the estimated fraction-found followed a binomial law. The
overall fraction-found, for all targets within each organ (pooled
across independent target samples at all 5 contrasts), was used for
statistical tests of differences in performance among the 3 recon-
struction algorithms. These intermodality comparisons used z-
score tests of the difference between the overall fractions of
correctly reported targets.

A goal of this observer detection study was to incorporate the
major characteristics of clinical interpretations performed for
whole-body PET scan. To that purpose, the set of simulated
whole-body data contained multiple targets per volume. Observers
viewed a volumetric display of the data and had to locate and rate
the targets in their reports. Because nontarget volumetric images
were not included in the experiment, the acquired data were not
compatible with a conventional ROC analysis but were compatible
with an AFROC analysis.

Free-response methods have been proposed to evaluate observer
detection performance in more realistic tasks by measuring local-
ization accuracy with multiple targets per image (29). The AFROC
curve plots the probability of a correct target report at each rating
cutoff as a function of the probability that the observer will also
report 1 or more false targets at the same rating cutoff. Thus, the
AFROC curve measures an observer’s combined detection and
localization performance in detection tasks that present multiple
targets, either with or without the use of nontarget cases. The area
below an AFROC curve may be interpreted as the probability that
a specified target would be rated higher than the most suspicious
nontarget location (29) or correctly localized (by first choice) on an
image containing only that single target (28). Swensson (28)
proposed a mathematic model that represents the observer’s like-
lihood of making 1 or more false reports of nontarget locations in
terms of an assumed latent perceptual variable for the most sus-

picious (maximum-value) nontarget location in the relevant area or
volume. In the case of an AFROC analysis, this model implies that
the AFROC data can be fitted with the same statistical software
used for the conventional (binormal) ROC methodology.

AFROC curves in this study were generated from an observer’s
rating data for the different tissue types and different reconstruc-
tion strategies. Each set of these AFROC data consisted of the
rating frequencies across the 6 ordinal categories (0–5) for (a) the
targets of all contrast levels within a given organ and (b) the
highest-rated false reports within that organ in each of the 50
separate volumes. As was done for all unreported targets, the
analysis assigned the default rating of zero to any volume that had
no false reports within the given organ (because the most suspi-
cious normal finding had failed to reach the observer’s minimum
threshold for an explicit report).

These sets of AFROC data were fitted using the CORROC
program developed by Metz et al. (35) for pairwise comparisons of
the separate, but correlated, ratings from 2 conditions that pre-
sented the same cases. The CORROC program assumes bivariate
normal distributions for the 2 distributions of an observer’s latent
perceptual variables that underlie ratings of the same cases in the
2 separate conditions. For AFROC data, those cases refer either to
the locations of actual targets or to the maximum-value nontarget
locations within the sampled areas or volumes. In this study, the
same target locations and nontarget organ volumes were assigned
ordinal ratings on the basis of separate interpretations of the
images reconstructed by different algorithms. Rating correlations
would be induced by the targets of different contrast levels. When
the rating judgments in 2 separate modes are positively correlated,
a CORROC analysis permits more sensitive statistical tests for
intermodal differences in such estimated indices as areas below
their 2 fitted AFROC curves. Our intermodality comparisons used
z-score tests of the null hypothesis that the difference in areas
below the 2 fitted AFROC curves arose from binormal AFROC
curves with equal areas.

RESULTS

Coronal sections of images reconstructed from 1 of
the simulated 3D datasets are shown in Figure 6 for the
3 algorithms: FORE�FBP, FORE�OSEM, and
FORE�AWOSEM. The top row of Figure 7 plots the
detectability curves (fraction-found vs. target contrast)
for 1 observer for each reconstruction strategy and for
each organ type. The ranking of algorithms was similar
for all observers and the absolute levels of performance
were also similar for all but the least experienced ob-
server. The bottom row of Figure 7 plots the fraction-
found averaged over all observers for each reconstruction
strategy and organ type. Tables 2, 3, and 4 show values
of the fraction-found in the lungs, liver, and soft tissues
for each observer, averaged over target contrast, as well
as results of z-score tests for comparing each pair of
reconstruction strategies.

In Figure 7 there are noticeable cases of apparent non-
monotonic behavior of the fraction-found as a function of
contrast level. This is particularly evident in the fraction-
found in liver using FORE�OSEM (Figs. 7B and 7E)
between the second and third contrast levels. To determine
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if this could be explained by the necessarily small sample
size (�25 targets per contrast level), we estimated the 95%
confidence intervals for the measured difference in fraction-
found between adjacent contrast levels assuming the true
fraction-found increases with contrast. If the confidence
intervals drop below zero then there is a possibility of a
decrease in the measured fraction-found values. The under-
lying fraction-found (“truth”) value FFi at each contrast
level i was based on a simple linear fit to the measured
values of Figure 7, which was then used to generate the
expected difference E{FFi�1 	 FFi} between adjacent con-
trast values i and i � 1. The measurement error of the
fraction-found was assumed to be based on a binomial
model, yielding s(FFi) 
 �pi(1 	 pi)/Ni, where pi 
 Ri/Ni

is the probability of a correct report, and Ri and Ni are the
number of correct reports and targets for contrast level i.
With these assumptions the 95% confidence interval for
the measured difference in fraction-found between adja-
cent contrast levels is given by (E{FFi�1 	 FFi} 
1.96�pi(1 	 pi)/Ni � pi�1(1 	 pi�1)/Ni�1), where the factor
of 1.96 corresponds to the 95% confidence interval of
(mean  1.96 � SD). These intervals were estimated for the
4 contrast changes for all 9 combinations of algorithms and
organs, yielding 36 contrast changes. Recalling that the
possible fraction-found ranges from 0 to 1, the average 95%
confidence interval for the measured difference in fraction-
found between the 36 adjacent (increasing) contrast levels
was 0.00 to 0.27. In addition, 17 of the 95% confidence
intervals included negative values, albeit marginally. For
the specific case of the change from the second to third
contrast levels in liver, the 95% confidence interval for the
measured difference was 	0.04 to 0.21 for FORE�OSEM,
0.00 to 0.26 for FORE�FBP, and 	0.02 to 0.24 for
FORE�AWOSEM. These results indicate that the apparent
nonmonotonic behavior of the fraction-found as a function
of contrast level is within measurement error and is a
consequence of the limited sample size at each contrast
level.

Figure 7 shows that, with the levels of target contrast
chosen for each tissue type, the fraction-found varied across
a wide range between 0 and 1.0 using images from the 3

reconstruction algorithms. For the fraction-found among
targets pooled across all contrast levels (Tables 2–4), the
binomial SE of the fraction-found was about 0.05 for all 5
observers and for all 3 organs.

The mean fraction-found was higher with images re-
constructed with the FBP algorithm than with images
reconstructed using the standard OSEM algorithm for all
organs. This difference of detection performance was
region specific, with larger differences in the liver and
smaller differences for targets located in the soft tissues
(indicated by the P values in Tables 2– 4). Indeed, this
difference was not statistically different for any observer
in the soft tissues, whereas it was significant for all
observers in the liver.

Comparisons of the FORE�AWOSEM and the
FORE�OSEM algorithms in Figure 7 indicate that the AW
of OSEM led to an improved fraction-found as a function of
target contrast for all observers. This difference was statis-
tically significant for all observers for targets located in the
liver and for 2 of 3 observers for targets located in the lungs
and the soft tissues.

Finally, comparisons of the FORE�AWOSEM and the
FORE�FBP algorithms indicate that the iterative algorithm
tended to increase the average fraction-found, although this
difference was not consistently significant across observers
or organs.

The top row of Figure 8 plots the estimated AFROC
curves from 1 observer for the 3 reconstruction algorithms
and for the 3 organ types. The bottom row of Figure 8 shows
similar plots of the representative AFROC curves obtained
by averaging across observers the estimated linear parame-
ters of their individual fitted AFROC curves. The AFROC
curves from all individual observers had similar rank order-
ings for the 3 algorithms, and the averaged AFROC curves
in the bottom row of Figure 8 show little crossover. This
means that the relative ranking of the 3 algorithms remained
consistent at all levels of specificity and, thus, the AL, the area
below the AFROC curve (as estimated by the CORROC
procedure), was a reasonable figure of merit for comparing
the different reconstruction strategies. Tables 5-7 give the
estimates of AL for each individual observer, each organ,

FIGURE 6. Coronal sections of typical 3D simulated dataset reconstructed by each of 3 algorithms: FORE�FBP, FORE�OSEM,
and FORE�AWOSEM. Data were simulated based on an extended MCAT phantom, which in this example shows 2 targets (arrows).
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and each reconstruction strategy, together with the results
from correlated z-score tests of differences in AL for each
pair of reconstruction strategies. The SEs for individual
estimates of AL were obtained from the ML fitting procedure

and were similar for all observers and all organs with values
of about 0.04.

The AFROC curves for the lungs (Fig. 8D) and the soft
tissues (Fig. 8F) had similar shapes and were ranked in

FIGURE 7. Fractions of actual targets found obtained for 1 observer (A–C) and averaged over all observers (D–F) for 3
reconstruction strategies as function of target contrast in lungs (A and D), liver (B and E), and soft tissues (C and F).

TABLE 2
Fraction-Found Results for Lungs, Averaged Over Contrast Levels

Algorithm Parameter Obs. 1 Obs. 2 Obs. 3 Obs. 4 Obs. 5

FBP FF 0.67 0.66 0.67 0.51
OSEM FF 0.64 0.52 0.52 0.58
AWOSEM FF 0.74 0.67 0.66 0.71
FBP vs. OSEM P 0.342 0.012 0.009
AWOSEM vs. FBP P 0.130 0.446 0.009
AWOSEM vs. OSEM P 0.062 0.009 0.015

Obs. 
 observer; FF 
 fraction of targets found; P 
 probability value of z-score test for each intermodality comparison.
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similar orders. They showed that the FORE�AWOSEM
algorithm substantially improved the target detectability in
these organs, as compared with FORE�FBP, and that
FORE�FBP was ranked higher than FORE�OSEM. For the
liver, FORE�FBP and FORE�AWOSEM led to similar
levels of performances (Fig. 8E), and the relative decrease
in performance of FORE�OSEM was markedly larger
compared with that measured in the lungs and soft tissues.
Statistical tests of the differences in area under the
CORROC fitted AFROC curves showed general decreases
in the P values, compared with those for the z-score test of
the fraction-found. For example, although comparisons of
the fraction-found between images reconstructed by the
FORE�FBP and FORE�OSEM algorithms failed to dem-
onstrate any significant difference for targets in the soft
tissues, the differences in estimated AL indicated significant
improvements with the FORE�FBP algorithm for 2 of the
3 observers. Similar comments apply to the comparison of
the FORE�AWOSEM and FORE�FBP algorithms in the
lungs and in the soft tissues.

In summary, observer detection performances were sig-
nificantly higher with images reconstructed with the
FORE�AWOSEM algorithm than with images recon-
structed using the FORE�OSEM algorithm for all organs.
FORE�FBP allowed higher target detectability than
FORE�OSEM for all organs, although the difference was
not significant for targets located in the soft tissues. Finally,
FORE�AWOSEM produced better overall target detection
and localization as compared with FORE�FBP, although

detection performances were equivalent for targets located
in the liver.

DISCUSSION

For this study an important decision was the choice of
reconstruction parameters for each algorithm because the
human observer studies could not be repeated for choice of
parameters. Instead, we relied on numerical observers to
select optimal parameters for each algorithm. We then com-
pared these optimal implementations of each reconstruction
algorithm. We chose to set the reconstruction parameters
(the cutoff frequency of the Hann-windowed ramp filter for
FBP and the FWHM of the 3D gaussian smoothing kernel
for OSEM and AWOSEM) that would optimize the CNR,
which is equivalent to the nonprewhitening matched filter
(NPWMF) numerical observer (34). For some cases, this
image-based criterion is correlated with the detection per-
formance of human observers for signal-known-exactly and
for background-known-exactly detection tasks (36), al-
though its correlation with human observers has not been
explored for whole-body PET images. The selected recon-
struction parameters optimized the CNR for the target size
and the level of statistical noise used in the human observer
studies.

With these parameter settings, all observers showed im-
provements in detectability for images reconstructed with
FORE�AWOSEM and FORE�FBP, as compared with
FORE�OSEM, although these differences in detectability

TABLE 3
Fraction-Found Results for Liver, Averaged Over Contrast Levels

Algorithm Parameter Obs. 1 Obs. 2 Obs. 3 Obs. 4 Obs. 5

FBP FF 0.61 0.69 0.58 0.51
OSEM FF 0.41 0.39 0.28 0.42
AWOSEM FF 0.61 0.63 0.49 0.66
FBP vs. OSEM P �0.001 �0.001 �0.001
AWOSEM vs. FBP P 0.500 0.156 0.406
AWOSEM vs. OSEM P �0.001 �0.001 �0.001

Obs. 
 observer; FF 
 fraction of targets found; P 
 probability value of z-score test.

TABLE 4
Fraction-Found Results for Soft Tissue, Averaged Over Contrast Levels

Algorithm Parameter Obs. 1 Obs. 2 Obs. 3 Obs. 4 Obs. 5

FBP FF 0.47 0.60 0.57 0.36
OSEM FF 0.45 0.48 0.48 0.49
AWOSEM FF 0.58 0.67 0.58 0.65
FBP vs. OSEM P 0.382 0.065 0.114
AWOSEM vs. FBP P 0.065 0.137 0.001
AWOSEM vs. OSEM P 0.035 0.004 0.016

Obs. 
 observer; FF 
 fraction of targets found; P 
 probability value of z-score test.
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were region specific. This rank ordering was clearly seen in
the performance averaged across all observers, the mean
fractions of actual targets found and reported (bottom row
of Fig. 7), and the parameter-averaged fitted AFROC curves
(bottom row of Fig. 8). The numerical results of Tables 2–7
are summarized in Table 8 by averaging the fraction-found
and the areas under the AFROC curves for all observers and
also for all regions.

One result of this study is that the iterative
FORE�OSEM algorithm produced the poorest detection
performance. This is despite what seems to be a growing
consensus that iterative methods generally produce images
that are superior in some sense, compared with those recon-
structed by analytic methods such as FORE�FBP. Our
contrary results reaffirm the need for caution when at-

tempting to predict diagnostic utility from subjective
judgments of the image quality. One possible explanation
of the poorer performance of FORE�OSEM is that the
rebinned projection data no longer have Poisson charac-
teristics, so that the statistical model of the OSEM algo-
rithm is no longer valid. The violation of this assumption
may result in artifacts that reduce the observer ability to
detect and localize targets. In addition, the postrecon-
struction smoothing with a 10- to 12-mm 3D gaussian
filter may well increase false detection reports of 1-cm
targets because the smoothing introduces 3D noise cor-
relations that produce “lumps” similar to the expected
size of those targets.

It should be noted that, although the FORE�OSEM
algorithm had significantly worse detection performance

FIGURE 8. AFROC curves obtained for 1 observer (A–C) and averaged over all observers (D–F) for 3 reconstruction strategies as
function of target contrast in lungs (A and D), liver (B and E), and soft tissues (C and F).
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than FORE�FBP and FORE�AWOSEM (Table 8), the
CNRs were similar for the 3 algorithms (Fig. 3). This
indicates that the CNR may not be a good model for
predicting human detection performance for whole-body
PET imaging for different algorithms. The channelized Ho-
telling observer (37) may offer a more appropriate estima-
tion of the trade-off between correct and false reports for
human observers and, thus, a better figure of merit than the
CNR (or NPWMF) to guide the optimal choice of regular-
izing parameters.

From the observer studies, the maximum fraction-found
for the FORE�OSEM algorithm in the liver was of 0.65
instead of the approximate value of 0.9 expected from the
calibration study. These differences may be attributed to the
different reconstruction parameters used in the calibration
study and in the comparison study. The calibration study
was based on images reconstructed with the FORE�OSEM
algorithm using 16 subsets, 2 iterations, and a 7-mm
FWHM gaussian smoothing. In the comparison study, we
used 16 subsets, 4 iterations, and a smoothing of 12-mm
FWHM based on the results of the contrast-to-noise opti-
mization. These differences may have limited the maximum
performance with liver targets in the OSEM images, but the
maximum fraction-found exceeded 0.9 for both of the other
2 reconstruction algorithms (FORE�AWOSEM and
FORE�FBP). The levels of target contrast in the lungs and
soft tissues successfully varied observer performance over a
wide range for all 3 algorithms.

The relatively large number of iterations (4) and subsets
(16) for the FORE�OSEM and FORE�AWOSEM algo-
rithms was chosen so that regularization would be con-
trolled by the kernel width of the postreconstruction 3D
gaussian smoothing filter. These algorithms are typically
regularized by a combination of controlling the number of
iterations and subsets and the postreconstruction gaussian
smoothing. It has been heuristically observed by ourselves
and others that, with a small number of iterations, the
resolution or contrast recovery depends on the true image
value and that this undesirable coupling reduces with in-
creasing iterations. To avoid this coupling we used a large
number of iterations and controlled the image smoothness
with the width of the 3D postreconstruction gaussian kernel.
In a separate test using the same whole-body phantom we
verified that the pixel SD and the contrast recovery did not
change significantly with small changes in the number of
iterations for both FORE�OSEM and FORE�AWOSEM
(data not shown).

Results from this study are in good agreement with re-
sults from previous comparisons, demonstrating an im-
provement in SNR with FORE�AWOSEM as compared
with FORE�OSEM (16,20), and they indicate the useful-
ness of the AWOSEM for the specific diagnostic task stud-
ied here. We also note that detection performance with
FORE�FBP was actually better than or equivalent to that
with FORE�AWOSEM in the liver, as indicated on Figure
8E. Barrett et al. (38) showed that the variance in images

TABLE 5
Areas Under Fitted AFROC Curves for Targets Located in Lungs

Algorithm Parameter Obs. 1 Obs. 2 Obs. 3 Obs. 4 Obs. 5

FBP AL 0.64 0.78 0.68 0.49
OSEM AL 0.55 0.58 0.53 0.70
AWOSEM AL 0.73 0.76 0.72 0.84
FBP vs. OSEM P 0.042 0.001 0.011
AWOSEM vs. FBP P 0.033 0.749 �0.001
AWOSEM vs. OSEM P �0.001 0.025 0.035

Obs. 
 observer; AL 
 area below AFROC curve; P 
 probability value of z-score test.

TABLE 6
Areas Under Fitted AFROC Curves for Targets Located in Liver

Algorithm Parameter Obs. 1 Obs. 2 Obs. 3 Obs. 4 Obs. 5

FBP AL 0.52 0.53 0.59 0.37
OSEM AL 0.28 0.28 0.25 0.28
AWOSEM AL 0.51 0.48 0.42 0.56
FBP vs. OSEM P �0.001 �0.001 �0.001
AWOSEM vs. FBP P 0.899 0.241 0.323
AWOSEM vs. OSEM P �0.001 �0.001 �0.001

Obs. 
 observer; AL 
 area below AFROC curve; P 
 probability value of z-score test.
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reconstructed with the ML-EM is related to the local signal
intensity, in contrast to FBP reconstructions, whose vari-
ance is dominated by the overall photon attenuation at each
point. We thus expect significantly increased variance in the
liver, relative to the lungs, for both AWOSEM and OSEM
compared with FBP. This may explain the relatively better
performance of the analytic reconstruction algorithm in the
liver and also why the incorrect statistical model of OSEM
has its most deleterious effects there.

The error bars and estimated P values in Tables 2–4 are
based on an assumption that the fraction-found could be
described by a binomial model. These values are thus min-
imal estimates, which should be considered when interpret-
ing the results of the z-score tests of statistical significance
of the difference between the 3 reconstruction strategies.
The binomial model assumes that the underlying probability
of a success remains the same for all N samples (i.e., no
dependence on target position within organ). If that proba-
bility is itself a random variable, however, then the true SE
will be larger than the binomial calculated value. This
would suggest using a lower null-hypothesis probability in
testing for significance with fraction-found. This does not,
however, affect the consistency that was found between the
rank ordering achieved with both types of performance
measurements, the fraction-found and the area below the
AFROC curve (Table 8).

This study chose to evaluate observer detection perfor-
mance in the clinical setting of whole-body PET image
interpretation. A recent study by Wells et al. (39) suggests
that the mode of image display may affect the observers’

ability to detect small lesions in thoracic SPECT scans. In
particular, they showed a reduced significance of the differ-
ences in performance between different reconstruction strat-
egies in going from a single 2D display to multiple contig-
uous 2D images. The authors hypothesized that this is the
result of noise correlations being introduced between trans-
verse image planes by 3D image reconstruction methods. A
full volumetric display might magnify the effects seen be-
tween different reconstruction strategies, over those mea-
sured in an ROC study based on planar displays. Such
effects could depend on the 3D noise correlations and
artifacts that may be introduced by standard data correction
and image reconstruction techniques.

In developing a method of assessing observer detection
performance using a clinical volumetric display, we chose
to study a multiple-target detection task. In addition to the
advantage of approximating the clinical task more closely,
this multiple-target task substantially increased the target
sample sizes without increasing the number of image vol-
umes that had to be read by observers. This is an important
consideration, because the reading of volumetric displays
requires large amounts of observer time estimated to be
about 5–15 min per volume, depending on the observer. For
the same reason, nontarget images were not included in our
study. This study design did not permit a conventional ROC
analysis of the observer data, but it was compatible with an
AFROC analysis.

In this study there were exactly 7 targets per volume, which
was known by the observers, although an unknown random
number of targets per volume would have been more realistic.

TABLE 7
Areas Under Fitted AFROC Curves for Targets Located in Other Soft Tissues

Algorithm Parameter Obs. 1 Obs. 2 Obs. 3 Obs. 4 Obs. 5

FBP AL 0.49 0.60 0.51 0.35
OSEM AL 0.44 0.45 0.41 0.47
AWOSEM AL 0.61 0.71 0.56 0.63
FBP vs. OSEM P 0.238 �0.001 0.039
AWOSEM vs. FBP P 0.030 0.025 �0.001
AWOSEM vs. OSEM P �0.001 �0.001 �0.001

Obs. 
 observer; AL 
 area below AFROC curve; P 
 probability value of z-score test.

TABLE 8
Summary of Tables 2–7 Averaged Over All Observers and All Regions

Algorithm

FF AL

Lungs Liver
Soft

tissue
Average over

all regions Lungs Liver
Soft

tissue
Average over

all regions

FBP 0.63 0.60 0.50 0.58 0.65 0.50 0.49 0.55
OSEM 0.56 0.37 0.47 0.47 0.59 0.27 0.44 0.43
AWOSEM 0.69 0.60 0.62 0.64 0.76 0.49 0.63 0.63

FF 
 fraction of actual targets found; AL 
 area under fitted AFROC curves.
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The use of a fixed number of targets per volume, however,
forced all observers to adopt an identical criterion for the
number of suspicious findings (possible targets) reported per
volume. We deliberately simplified the clinical detection task
to control variables unrelated to an observer’s ability to find
and report target lesions on the images reconstructed with
different algorithms. The number of targets per organ (lungs,
liver, soft tissues) did vary randomly from 1 volume to another,
however, and observers did not know the precise number
within each organ. Although we did not simulate all details of
the clinical interpretation situation, we believe that the use of
even a fixed number of multiple targets, and using the same
display software as that used in practice, is a significant step in
that direction.

To justify the use of nonphysician observers, we note that
the effects of interest were how the human observer’s ability to
detect simple focal densities (e.g., tumor nodules) varied with
using different reconstruction algorithms. Although experi-
enced physician observers perform realistic clinical tasks at
much higher levels of accuracy than nonphysicians, for simple
detection tasks it has been our experience that physician and
experienced nonphysician observers have similar performance,
although the physicians typically complete the readings more
efficiently. This was the case in the current study.

To justify the required pooling of data from volumes with
multiple targets and multiple reports, we checked for the
stationarity of observer performance, as assumed by the
model proposed by Swensson (28) for AFROC target de-
tection and localization. This model assumes that the criteria
an observer uses for reporting and assigning ratings to
findings remains stationary across all multiple choices made
during an image interpretation. This assumption was tested
by plotting the mean number of an observer’s correct and
false reports, as a function of the actual number of targets
(0–5) in the organ considered (data not presented). Those
results generally supported the hypothesis of stationary ob-
server performance. The mean numbers of correct reports
increased in close proportion to the number of actual targets,
whereas the false reports either remained nearly constant (in
the liver and soft tissues) or slowly declined with an in-
creasing number of targets (in the lungs). Further investi-
gations are needed, however, to explore the applications of
AFROC methodology in whole-body PET volume imaging.
The results obtained by the AFROC analysis were similar to
those for the nonparametric fraction of actual targets found
and reported (fraction-found), as shown in Table 8, which
supports the validity of this AFROC approach.

To explain the differences in shape between the AFROC
curves shown here and classical ROC curves, we first note
that for ROC studies the CORROC binormal fitting soft-
ware uses a statistical model that assumes the observer has
rated normally distributed samples drawn from 2 different
populations of cases. When this binormal model is applied
to fit ROC data, the 2 presumed types are (a) abnormal cases
(usually containing 1 single lesion) and (b) normal cases
(containing no lesion). The ROC curve measures the frac-

tion of abnormal cases rated above a given threshold (true-
positive fraction) against the correspondingly rated fraction
of normal cases (false-positive fraction). These measured
true-positive rates almost always exceed their correspond-
ing false-positive rates, so that fitted ROC curves usually
(but not always) lie above the chance-performance diago-
nal. The area below such a fitted ROC curve is �0.5 be-
cause (on average) a sampled abnormal case is likely to be
rated higher than a sampled normal case.

When that same binormal model is applied to fit AFROC
rating data, the 2 (presumed normal) populations are as-
sumed to reflect an observer’s degree of suspicion for (a) the
image locations of actual targets and (b) the location of the
maximally suspicious nontarget (normal) finding on the
image(s) from each sampled case. The AFROC curve plots
the measured fraction of actual targets reported at each
rating criterion against the fraction of cases in which the
most-suspicious nontarget finding also exceeded that same
rating criterion (The latter fraction would correspond to the
false-positive rate for cases that contained no lesions.).
Fitted AFROC curves may have a wider range of shapes
than fitted ROC curves, and the AFROC curve for a weak
target may lie substantially below the diagonal. The area
below the AFROC curve gives the probability that a de-
tected (true) target will be rated higher than the most-
suspicious normal finding, which may be �0.5 for a low-
contrast target (as in our data). In summary, although the
same binormal statistical model and fitting software can be
applied to both the AFROC and the ROC curves, the 2 types
of measured data have different empiric constraints. The
fitted ROC curve is usually constrained by the data to lie
above the chance-diagonal line, whereas the locus and shape
of a fitted AFROC curve depends entirely on the target’s
strength or conspicuity.

Finally, we note that the absolute observer detection
performances measured in this study are valid for the spe-
cific acquisition parameters, patient size, PET scanner ge-
ometry, and level of statistical noise used in this study. We
reproduced standard clinical settings, but for substantial
changes of scanner design, acquisition protocol, or patient
size, these results may need to be reevaluated.

CONCLUSION

This study measured observer detection performance to
evaluate the diagnostic impact of 3 reconstruction strategies
currently used in 3D PET whole-body oncology, the ana-
lytic FORE�FBP algorithm and the 2 iterative strategies,
FORE�OSEM and FORE�AWOSEM. The observers
used a volumetric display of the PET whole-body data to
replicate the clinical diagnostic setting.

This initial investigation shows that a methodology based on
volumetric display of the images is a promising tool for per-
forming comparison studies to design optimal whole-body
PET acquisition and reconstruction protocols. In this study, we
performed both an AFROC and a simple fraction-found anal-

3D WHOLE-BODY PET ONCOLOGY IMAGING • Lartizien et al. 289



ysis to assess changes in human observer detection perfor-
mances across the images produced by 3 different reconstruc-
tion algorithms currently used for 3D whole-body clinical
protocols in PET. Results show that the FORE�AWOSEM
algorithm produced the best overall target detection and local-
ization, compared with FORE�FBP and FORE�OSEM, al-
though the performance was region specific and FORE�FBP
was similar to FORE�AWOSEM for liver targets. The
FORE�OSEM produced significantly worse target detection
performance, especially in the liver. We speculate that this is
the result of using an incorrect statistical model in
FORE�OSEM and that the incorporation of AW in
AWOSEM (by far the dominant data correction term) com-
pensates for this model inaccuracy.
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