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We proposed to train a back-propagation artificial neural network
(aNN) on a cohort of surgically proven non–small cell lung cancers
(NSCLCs) and compare its accuracy with that of a trained 18F-FDG
PET reader. We plan to show that an aNN trained on 18F-FDG PET–
and CT–derived data is more accurate in predicting the true sur-
gicopathologic nodal stage than a human reader. Methods: One
hundred thirty-three NSCLC patients with surgically proven N sta-
tus treated at the University of Washington Medical Center or the
Veterans Affairs Puget Sound Health Care System between Feb-
ruary 1998 and September 2002 were used as inputs for the
creation of an aNN. From CT of the thorax and 18F-FDG PET (neck
to pelvis) performed before surgery, we extracted the primary
tumor size and uptake (maximum pixel SUV [maxSUV]), normal
lung and mediastinal uptake, and nodal uptake (maxSUV). Using
the same 133 cases, the same output (surgical N status, N0 to N3),
and the same software configuration settings, scenarios were cre-
ated to assess which input parameters were most influential in
creating an optimal aNN. To compute this optimal aNN, cases
were split randomly 100 times into a training subset of 103 cases
and a testing subset of 30 cases having the same proportion of N0,
N1, N2, and N3 cases. N status predicted by the aNN was com-
pared with the proven surgical N status to calculate the aNN
accuracy. The N status readings from 18F-FDG PET were also
compared with the surgical N status for the same cases to deter-
mine 18F-FDG PET accuracy. Results: Statistical tests demon-
strate that the best aNN accuracy is achieved by using N1-N2- N3

nodal maxSUV divided by background uptake, the primary tumor
size, and primary tumor maxSUV as inputs. The aNN correctly
predicted the N stage in 87.3% of the testing cases compared with
73.5% for the 18F-FDG PET expert reader. Accuracy of the aNN
increased to 94.8% (PET, 89.4%) when comparing N0 � N1 with N2

or N3 status and to 94.9% (PET, 91.9%) when comparing N0 � N1

with N2 � N3 status. Conclusion: A back-propagation aNN can be
trained to predict hilar and mediastinal nodal involvement with
greater accuracy than an expert 18F-FDG PET reader. Such a tool
could be used to improve clinical interpretations and for clinical
training.
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Lung cancer remains the leading cause of cancer death
in the United States, with over 169,400 new cases and
154,900 deaths expected in 2002 (1). Approximately 80%
of primary lung cancers are of non–small cell histology. The
stage of non–small cell lung cancer (NSCLC) is the most
important factor determining prognosis, management, and
operability. Accurate staging is necessary to (a) prevent
clinical overstaging and the denial of therapy with curative
intent; (b) avoid clinical understaging and the subsequent
morbidity, time, and cost of ineffective therapies, particu-
larly unnecessary thoracotomies; (c) select and enroll pa-
tients in clinical trials. For NSCLC, accurate staging of the
mediastinum is an essential step as treatment options and
decisions hinge on the presence or absence of mediastinal
lymph node involvement. In the absence of distant meta-
static disease, patients with mediastinal node involvement
are not candidates for a primary resection. Instead, the
patients undergo chemotherapy and radiotherapy as induc-
tion treatment before a potential resection for those with
only ipsilateral nodal involvement and as a definitive ther-
apy for those with more extensive nodal disease. Therefore,
every means should be used to establish the correct stage of
a newly diagnosed lung cancer before initiating therapy.

Included in the clinical staging of NSCLC is CT of the
thorax and, more recently, PET with18F-FDG PET.18F-
FDG PET has been shown to be sensitive and specific in
detecting distant metastases as well as more accurate than
CT for mediastinal staging in NSCLC (2–11). However,
18F-FDG PET staging of the mediastinum remains challeng-
ing because of the decreased specificity caused by18F-FDG
accumulation in inflammatory lymph nodes that can lead to
a false-positive interpretation. Conversely, the lack of suf-
ficient 18F-FDG uptake in lymph nodes with minimal met-
astatic involvement can result in a false-negative interpre-
tation. Vansteenkiste et al. (12) demonstrated that in
NSCLC the more intense the18F-FDG uptake in a lymph
node, the more likely it is to be malignant and that nodes
with lower level uptake are more likely to be inflammatory.
However, a significant amount of overlap is present in the
ranges of18F-FDG uptake for both inflammatory and ma-
lignant nodes.
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Practical experience shows that other imaging features
help differentiate malignant from benign nodal disease in
NSCLC. For example, the location of hypermetabolic nodes
relative to the location of the primary tumor influences the
likelihood of a node being malignant. A single hypermeta-
bolic mediastinal lymph node located contralaterally to the
primary tumor is less likely to be related to the primary
tumor. Furthermore, the uptake of malignant lymph nodes is
expected to decrease as the distance from the primary tumor
increases. Although the uptake value in lymph nodes pro-
vides a further stratification of their malignant likelihood
(12), it is unlikely that a single standard uptake value (SUV)
threshold could apply equally well to all NSCLCs given the
wide range of metabolic activity exhibited by primary lung
cancers. Hence, taking into consideration the metabolic
activity of the primary tumor should also be of benefit when
evaluating the nodal stage of lung cancers from 18F-FDG
PET images. Finally, the size of a NSCLC influences sig-
nificantly the incidence of malignant mediastinal adenopa-
thy with larger tumors being more likely to have nodal
involvement than smaller tumors (13,14).

To take into consideration all imaging features that in-
fluence the likelihood of malignant spread to regional lymph
nodes is very challenging. Furthermore, a human interpreter
is unable to integrate the cumulative predictive value of this
information for a large cohort of patients and to apply it to
a new unknown case. Neural networks are software tools
that can be trained on such a cumulative experience. They
offer a unique opportunity to improve the accuracy of nodal
staging with 18F-FDG PET beyond that achieved by trained
interpreters. We therefore proposed to train a back-propa-
gation artificial neural network (aNN) on a cohort of surgi-
cally proven NSCLC cases and to compare its accuracy with
that of an expert reader. We proposed to show that an aNN
trained on 18F-FDG PET–derived nodal uptake, primary
tumor uptake, and size is more accurate in predicting the
true surgicopathologic nodal stage than an expert human
reader.

MATERIALS AND METHODS

Patient Selection
Patients with potentially resectable NSCLC after chest CT and

clinical evaluation were prospectively enrolled in a study of the
prognostic significance of NSCLC 18F-FDG uptake. Patients were
recruited from the University of Washington Medical Center and
the Veterans Affairs Puget Sound Health Care System between
February 1998 and September 2002. Patients with type I diabetes
were excluded before 18F-FDG PET. Patients with stage IV disease
by 18F-FDG PET had their metastatic status confirmed by either
additional anatomic imaging or percutaneous biopsy and were also
excluded from this aNN study. The subsequent surgical staging
was performed as follows and as previously reported (10): Patients
without distant metastases at PET but with PET evidence of
pleural implants underwent thoracoscopy for confirmation if find-
ings were not confirmed as pleural nodules on second review of the
thoracic CT scan. Patients without distant metastases at PET but
with evidence of mediastinal disease in a location that would not

be accessible by mediastinoscopy were surgically staged with
thoracoscopy, mediastinotomy, or thoracotomy as indicated. All
other patients were staged with bronchoscopy and mediastinos-
copy. Surgical confirmation of the nodal status was performed in
all patients without distant metastases or pleural implants indepen-
dently of the size of the lymph nodes on chest CT or the presence
or absence of uptake by PET imaging. None of these patients had
received chemotherapy or radiotherapy before PET or surgical
staging. The results of 18F-FDG PET imaging in the mediastinum
were available to the surgeon before confirming the mediastinal
nodal status. The pathology departments of the University of
Washington Medical Center and the Veterans Affairs Puget Sound
Health Care System reviewed all biopsy and resection specimens.
The non–small cell nature of each tumor was established, as was
the surgicopathologic nodal status. The resulting subset of patients
with surgical proof of their mediastinal nodal status was selected
for the aNN study. Figure 1 reviews the selection protocol. One
hundred thirty-three patients satisfied the enrollment criteria. The
disease characteristics of these patients are summarized in Table 1.
This study was conducted under Institutional Human Subjects
approval.

PET
All PET studies were performed on a dedicated whole-body

PET tomograph (PET Advance; General Electric Medical Sys-
tems). Patients were asked to fast for a minimum of 12 h before
tracer administration. Intravenous access was obtained for tracer
administration and blood sampling. An initial blood sample was
obtained at the time of intravenous catheter placement to screen for
abnormally high plasma glucose levels. Just before tracer admin-
istration, patients received 1 mg of intravenous lorazepam to
decrease benign muscular uptake in the neck and upper thorax that
could compromise image interpretation. 18F-FDG (259–407 MBq)
was infused intravenously over 2 min using a Harvard pump. After
a 45-min rest and uptake period, patients were placed supine in the
scanner with the thorax positioned to fit within 2 contiguous
15-cm-wide tomograph fields of view. Imaging always started with
a 15-min emission scan performed over the thoracic field of view
encompassing the primary lung cancer. This allowed quantitative
analysis of tracer uptake via the SUV in the primary tumor over a
standard time period (45–60 min) after injection to control for the
time dependence of the SUV. The other thoracic field of view as
well as the abdomen was also imaged with 10-min emission scans.
Five-minute emission scans were performed over the neck and
pelvis. This was followed by 15-min transmission studies over the
3 fields of view encompassing the chest and abdomen, performed
after all emission studies had been completed. Overall, total im-
aging time was 90 min.

All studies were collected in 2-dimensional imaging mode with
scatter septa in place. Real-time correction for random counts was
performed using counts obtained with a delayed coincidence win-
dow, and deconvolution-based scatter correction was performed
using algorithms supplied by the manufacturer. The raw PET data
were reconstructed using the standard filtered backprojection tech-
nique available on the PET Advance system. The following re-
construction parameters were used: 12-mm Hanning filter, 55-cm
image diameter, and 128 � 128 array size. Both emission scans
and attenuation-corrected scans were reconstructed for each pa-
tient. The transmission scan that is coregistered to the other 2 scans
was also reconstructed as it provides anatomic localization details
that may not be easily appreciated on the 2 other scans. All
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18F-FDG PET scans were read prospectively on a dedicated work-
station by the same experienced reader and with the benefit of
comparison with the patient’ s thoracic CT scans. The expert reader
had available to him the size of the primary tumor and the FDG
uptake values for the lymph nodes and the primary tumor as
defined below. Subsequent to the PET scan interpretation, feed-
back of surgical nodal staging results was provided to the expert
reader.

From the attenuation-corrected 18F-FDG PET study, regions of
interest (ROIs) were drawn over the primary tumor and the hy-
permetabolic mediastinal or hilar nodes to extract maximal pixel
standard uptake values (maxSUVs). All SUVs are defined by
SUV � C � W/ID, where C is the radiotracer concentration
(MBq/mL) in a voxel of tissue, W is the patient weight (g), and ID
is the injected tracer dose (MBq). From the attenuation-corrected
images and the reconstructed transmission scan, the PET inter-

preter assigned a location to each measured lymph node according
to the American Joint Committee on Cancer TNM staging system
for lung cancer. Metastasis to ipsilateral peribronchial and/or ip-
silateral hilar lymph nodes is considered N1 disease. N2 disease is
considered metastasis to ipsilateral mediastinal and/or subcarinal
lymph nodes, whereas N3 is metastasis to contralateral mediastinal,
contralateral hilar, and ipsilateral or contralateral scalene or supra-
clavicular lymph nodes. The most metabolically active node was
selected for each N station. For each patient, this yielded a max-
SUV for N1, N2, and N3. ROIs were drawn on 3 contiguous axial
planes over the normal lung near the primary tumor or symmetri-
cally in the opposite lung parenchyma to obtain a mean lung
background SUV. ROIs were also drawn on 3 contiguous axial
planes a few millimeters under the carina to calculate the mean
mediastinal background SUV. The mean lung background was
used to correct the primary tumor maxSUV for partial-volume
effect according to a method previously described (15). Lung SUV
also served to normalize the N1 station nodal uptake by either
subtracting or dividing the lung background from the N1 station
maxSUV (N1 lymph nodes are intralobar or hilar in location and
surrounded by normal lung tissue). Uptake at the N2 and N3 nodal
stations was corrected by either subtracting or dividing by the
mean mediastinal background. The significance of FDG uptake in
a mediastinal lymph node depends on its intensity relative to that
of normal mediastinum. Because normal mediastinum varies
slightly in its FDG uptake from patient to patient, we compared
nodal uptake in a patient with mediastinal uptake in that same
patient. To simulate visual perception, the comparison of nodal
uptake with its corresponding background was expressed in 2
different ways, a subtraction and a ratio, and we evaluated which
of the 2 methods provided the most accurate neural network
architecture. In the absence of uptake at the N1, the N2, or the N3

station, the corresponding background value was used for that N
station—that is, mean lung background for the N1 station and mean
mediastinal background for N2 and N3 stations. As an input for the
aNN, the nodal station uptake was therefore a set of 3 numbers
derived from the PET images (iN1, iN2, iN3).

The size of the primary NSCLC was determined by averaging
its 3 greatest dimensions measured on mediastinal windows of the
chest CT. Primary tumor size was also used to correct primary
tumor maxSUV for partial-volume effects (15).

Neural Network
We used the DOS platform version 4R1 of NevProp (16),

distributed freely under the terms of the GNU Public License
(www.gnu.org), to compute all aNNs. This program was used to
derive a feedforward multilayer-perceptron aNN using supervised
learning and the back-propagation algorithm for training. aNNs are
composed of logical units (neurons) grouped and placed into
hierarchic layers before being connected. The feedforward aNN

TABLE 1
Statistic of Cases Ordered by Nodal N Stage

Patients N0 N1 N2 N3

n 66 26 33 8
Sex (M/F) 43/23 17/9 21/12 5/3
Age (y) 67.7 � 1.3 67.4 � 1.8 63.7 � 2.2 56 � 5.7
Primary tumor

size (cm) 2.9 � 0.2 3.5 � 0.3 3.2 � 0.2 4.4 � 0.7

FIGURE 1. 18F-FDG PET–based clinical and surgical staging
and management of NSCLC.
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type refers to a specific connection structure where neurons of 1
neuron layer may only have connections to neurons of deeper
layers. Our aNN was composed of 3 neuron layers: an input layer,
a hidden layer, and a final output layer. The hidden layer always
lies between the aNN input and output layers. It is called hidden
because its neuron values are not visible outside the aNN. The
usage of hidden layers extends the aNN abilities to learn logical
operations. Each time a new set of values is passed to the aNN
input neuron layer the neurons generate output values. Those
values circulate through all neurons interconnected and will be
modified by each of them to finally reach the output layer, producing
the final value of the aNN. Values from the output layer are then
compared with a target output (surgicopathologic nodal status). Based
on the difference between these outputs, the aNN error is computed
and propagated backward (back-propagation) through the network to
modify values of each connection between neuron layers. The aNN
learning process is based on this error back-propagation.

All analyses were implemented on a personal computer equipped
with a 1.8-GHz clock and 256 megabytes of RAM memory. A
dedicated Structured Query Language server was built as an interme-
diate between the patient database and NevProp to allow computing
of many different aNNs and to report the efficacy of these networks.

The neural network study was performed in 2 phases. The first
phase consisted of the identification of the best input parameters
for the aNN. The second phase consisted of the evaluation of the
accuracy of the aNN for these selected best input parameters. The
desired output for a trained aNN consists of a set of 4 values
(aNN-N0, aNN-N1, aNN-N2, aNN-N3) representing the likelihood
of each of the nodal stages as predicted for the patient by the
network. The nodal output with the highest predicted likelihood is
the one selected as the nodal stage predicted by the aNN. For
example, an output of (0, 0.05, 0.80, 0.20) means that the aNN
predicts a 0% chance that a patient has N0, a 5% chance of being
N1, an 80% likelihood that the patient has an N2 surgical status,
and a 20% chance of being N3. Therefore, the aNN predicted stage
for this case would be N2.

Phase One. Twelve different aNN scenarios corresponding to 12
different combinations of inputs were studied to assess which
combination of input parameters was most effective. The follow-
ing parameters were tested: mediastinal and hilar nodes maxSUV
by station (iN1, iN2, iN3) divided or subtracted by their respective

background, primary tumor size in centimeters, primary tumor
maxSUV, and primary tumor maxSUV corrected for partial-vol-
ume effect (PVCmaxSUV). Lymph node size was not used as
input for the aNN or to correct nodal uptake for partial-volume
effect. Scenario 1 was composed only of nodal station maxSUV
(iN1, iN2, iN3) subtracted by its background. In scenario 2, primary
tumor size and background-subtracted nodal maxSUV were con-
sidered; scenario 3, background-subtracted nodal maxSUV and
primary tumor maxSUV; scenario 4, primary tumor size was added
to scenario 3; scenario 5, background-subtracted nodal maxSUV
and primary tumor PVCmaxSUV; scenario 6, primary tumor size
was added to scenario 5. Scenarios 7–12 are composed of the same
combinations as scenarios 1–6 but the ratio of nodal maxSUV to
its corresponding background was used in place of the difference
between nodal maxSUV and its background (Table 2). All scenar-
ios share the same 133 cases (Table 1), the same output definition
(surgicopathologic N status, N0 to N3), and the same software
configuration settings (1 hidden layer of 7 units, 75,000 iterations:
training was done with 50% of cases and cross-checking with the
other 50%). Each scenario was run 100 times, with different case
subsets to obtain an average accuracy for the aNN defined by a
scenario. The scenario yielding the most accurate network was
retained for the second phase of the study.

Phase Two. The 133 available cases were split 100 times into a
training subset of 103 cases and a testing subset of 30 cases. Each
testing subset is composed of randomly selected cases from the
whole database and has the same proportion of N0 (49.5%), N1

(19.5%), N2 (25%), and N3 (6%) cases as the entire cohort of 133
cases. This results in an identical proportion of cases in each N
status group for the matched training subset as well. The aNN
training was done using the input variables determined in phase
one, a hidden layer of 7 units, an adaptive learning rate (step 0.01),
75,000 iterations, and an output composed of the surgicopatho-
logic N status (Fig. 2). Each of the 100 training subsets of 103
cases each was used to train a blank aNN with the other 30 cases
sequestered as a future test set. This training yielded a set of
coefficients defining this aNN (Fig. 3). Its testing against the 30
unknown cases it had never seen yielded an accuracy for this aNN
implementation with the surgicopathologic N status as the truth.
Not to be biased to a high- or low-accuracy run, we repeated this
process 100 times, each time starting with a different set of 103

TABLE 2
Phase 1 Study: aNN Accuracy in Identifying Absolute Nodal Status (N0, N1, N2, and N3)

Scenario Minimum Maximum Mean � SD

1 (Nodes � Bkg) 76.92 81.54 79.19 � 1.27
2 (Nodes � Bkg) � (primary size) 77.42 85.48 81.59 � 1.82
3 (Nodes � Bkg) � (primary maxSUV) 77.69 85.38 81.45 � 1.41
4 (Nodes � Bkg) � (primary maxSUV) � (primary size) 79.03 88.71 83.65 � 2.37
5 (Nodes � Bkg) � (primary PVCmaxSUV) 79.03 85.48 82.21 � 1.53
6 (Nodes � Bkg) � (primary PVCmaxSUV) � (primary size) 77.42 89.52 83.60 � 2.32
7 (Nodes/Bkg) 74.62 78.46 77.30 � 0.83
8 (Nodes/Bkg) � (primary size) 77.42 84.68 81.61 � 1.70
9 (Nodes/Bkg) � (primary MaxSUV) 76.92 83.08 80.05 � 1.35

10 (Nodes/Bkg) � (primary MaxSUV) � (primary size) 79.70 91.73 86.11 � 2.63
11 (Nodes/Bkg) � (primary PVCmaxSUV) 77.42 86.29 81.10 � 1.67
12 (Nodes/Bkg) � (primary PVCmaxSUV) � (primary size) 80.65 89.52 86.42 � 2.04

Bkg � background.
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training cases and a new empty aNN with blank coefficients. The
average of the resulting 100 accuracies is an estimation of the
accuracy of an aNN of this architecture for this task.

We also compared the N status determined by the expert reader
for the same testing cases to the surgicopathologic N status to
calculate the 18F-FDG PET accuracy. This was done by averaging
the accuracies of the human reader for each of the 100 test sets of
30 cases used to test the aNN. Direct comparison between the aNN
and 18F-FDG PET reader accuracies was performed to demonstrate

the benefits of using an aNN to predict mediastinal N status. Figure
3 reviews the analysis protocol. Comparisons of the accuracy
between an aNN defined by 2 different scenarios were performed
using the paired t test.

RESULTS

Results obtained from all scenarios tested in the first
phase of the study demonstrate an increase in accuracy as

FIGURE 2. aNN diagram (scenario 10).

FIGURE 3. Phase 2: summary of aNN
protocol.
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additional input information is entered into the aNN (Table
2; Fig. 4). Taking the scenarios using only nodal maxSUV
corrected either by background division or by subtraction
(scenarios 1 and 7) as a starting point, a significant increase
(p1�3,p7�9�0.001) in accuracy is observed when the primary
tumor maxSUV is added as an input (scenarios 3 and 9). A
further increase in accuracy (p3�5,p9�11�0.001) is obtained
when using primary tumor PVCmaxSUV instead of max-
SUV (scenarios 5 and 11). Because tumor size is indirectly
included in PVCmaxSUV, no significant difference in ac-
curacy (p4�6 � 0.866, p10�12 � 0.353) was observed using
primary tumor PVCmaxSUV and primary tumor size (sce-
narios 6 and 12) when compared with primary tumor max-
SUV and primary tumor size (scenarios 4 and 10). The
above aNN implementations also permitted comparisons
between 2 methods for correcting nodal uptake with sur-
rounding background uptake. An important increase in ac-
curacy (p4�10�0.001) is observed when using the nodal
maxSUV/background ratio, primary tumor size, and tumor
maxSUV (scenario 10) as compared with scenario 4, which
uses nodal maxSUV with background subtracted, primary
tumor size, and tumor maxSUV. The highest accuracy was
reached with scenario 10 (nodal maxSUV/background, pri-
mary tumor size, tumor maxSUV) and scenario 12 (nodal
maxSUV/background, primary tumor size, tumor PVCmax-
SUV) without significant difference in accuracy between
the 2 (p10�12 � 0.353). We elected to use scenario 10 over
scenario 12 for the following reasons. First, because partial-
volume correction may not be available at all PET centers,
maxSUV is simpler to implement than PVCmaxSUV. Sec-
ond, partial-volume correction could compound any error
made in lesion size determination.

The second phase of this study was executed using the
aNN with inputs defined by the ratio of nodal uptake/

background at N1, N2, N3, primary tumor maxSUV, and
primary tumor size (scenario 10). When considering all 133
cases available, the accuracy of the PET reader in determin-
ing the surgicopathologic N status was 72.2% (Table 3). For
the task of differentiating N0 � N1 from N2 or N3 status, the
PET reader accuracy increases to 89.5%. It reaches 91.7%
when differentiating N0 � N1 from N2 � N3 status.

The average accuracy of the 100 networks trained in
phase 2 was evaluated and compared with that of the PET
reader for the same 100 testing sets of 30 cases each. The
average accuracy of all 100 trained aNNs in determining the
surgicopathologic N status was 87.3% � 0.54% as com-
pared with 73.5% � 0.55% for the PET reader (Table 4).
The average accuracy of the networks increased to 94.8% �
0.31% (PET reader, 89.4% � 0.45%) for the task of differ-
entiating N0 � N1 from N2 or N3 and to 94.9% � 0.31%
(PET reader, 91.9% � 0.39%) when differentiating N0 � N1

from N2 � N3 status. For the vast majority of trained aNNs,
the aNN accuracy was higher than that of the PET reader
with very high significance (P � 0.001) (Fig. 5).

DISCUSSION
18F-FDG PET provides more accurate noninvasive medi-

astinal staging than standard CT staging as reported in a

FIGURE 4. aNN accuracy for predicting surgicopathologic N
status. CI � confidence interval.

TABLE 3
PET Reader/Surgicopathologic N Status Comparison

for all 133 Cases

PET reader

Surgicopathologic N status

N0 N1 N2 N3

N0 60 18 6 0
N1 5 6 2 0
N2 1 2 24 2
N3 0 0 1 6

TABLE 4
PET Reader and aNN-Predicted N Status Compared with
Surgicopathologic N Status for 100 Subsets of 30 Cases

aNN PET
reader

Surgicopathologic N status

N0 N1 N2 N3

N0
1521* 151* 100* 0*
1448† 347† 133† 0†

N1
73* 332* 30* 0*

129† 113† 48† 0†

N2
6* 17* 570* 3*

23† 40† 496† 52†

N3
0* 0* 0* 197*
0† 0† 23† 148†

*aNN accuracy.
†PET reader accuracy.
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meta-analysis of published results for 14 PET studies and 29
CT studies (17). The mean sensitivity and specificity were
79% � 3% and 91% � 2%, respectively, for PET and
60% � 2% and 77% � 2%, respectively, for CT (17). For
all 133 cases enrolled in our study, the sensitivity and
specificity of the expert PET reader were 80.5% and 96.7%,
respectively, in staging the mediastinum, which is therefore
in keeping with published series.

The interpretation of nodal uptake at 18F-FDG PET im-
aging of NSCLC remains challenging because (a) 18F-FDG
accumulation in inflammatory lymph nodes can result in
false-positive readings and (b) minimal nodal tumor burden
may yield a low 18F-FDG uptake and consequently a false-
negative interpretation. Furthermore, the significance of
nodal uptake depends on the metabolic activity of the cells
of a given cancer as reflected in the activity of the primary
tumor. Moreover, the larger the primary tumor, the more
likely it has spread to regional lymph nodes (13,14). Finally,
the location of hypermetabolic nodes relative to the primary
tumor has significance. Because of these many factors in-
fluencing the interpretation of nodal uptake, we investigated
whether an aNN could perform better than a human inter-
preter in predicting the surgicopathologic stage of a
NSCLC. To our knowledge, an aNN has not been previ-
ously applied to the interpretation of 18F-FDG PET scans.

All patients enrolled in our study had disease considered
potentially resectable prior to 18F-FDG PET imaging. By
eliminating those cases with distant metastases and pleural
implants, we were left with patients for whom accurate
mediastinal nodal staging by 18F-FDG PET was critical in
determining their clinical management. These patients

present a diagnostic challenge because they have a nodal
disease burden that covers a wide range of stages with
varying degrees of nodal uptake. Of the 133 patients en-
rolled, 66 were surgicopathologically identified as having
no nodal involvement (N0, 49.5%); 26 had only extension to
the N1 station (19.5%), 33 to the N2 station (25%), and 8 to
the N3 station (6%). This distribution of disease is compat-
ible with a patient population screened by CT for potential
resectability and where patients with bulky nodal burden are
eliminated.

Phase 1 of our study clearly demonstrated that the size
and the metabolic activity of the primary tumor are impor-
tant variables in interpreting 18F-FDG PET of NSCLC as
they affect the likelihood of malignant involvement in hy-
permetabolic nodes. The importance of the primary tumor
size as an input for the aNN is in keeping with the corre-
lation found between size and nodal N status in our database
and published data (13,14). Furthermore, nodal hypermeta-
bolic activity has to be related to the local background
18F-FDG uptake to determine its true significance. We found
that dividing nodal maxSUV by background activity re-
sulted in better aNN performance than background subtrac-
tion.

In phase 2 of our study, we trained an aNN using the
inputs determined to be most significant: the nodal maxSUV
(N1, N2, and N3) divided by background, the primary tumor
size, and the primary tumor maxSUV. From the 133 avail-
able cases, 30 cases were randomly moved into a new data
subset (testing subset) that subsequently served as an un-
known set of cases to test the aNN. This splitting procedure
was done 100 times to calculate an aNN average accuracy.
The 100 subsets of 30 cases were all composed of the same
proportion of N0, N1, N2, and N3 nodal disease in order to
not bias the aNN learning process because the aNN accu-
racy will vary with the number of cases in each category.
For example, if there were less N3 cases in one subset than
in the others, the aNN would consequently have less expe-
rience in identifying N3 nodal disease than the other aNNs.
With this kind of split procedure, we avoided such bias in
the aNN learning process.

When reading all 133 available cases, the expert PET
reader had an accuracy of 72.2% in identifying the exact
nodal status (N0, N1, N2, N3), an accuracy of 89.5% in
identifying N0 � N1 from N2 or N3, and an accuracy of
91.7% in identifying N0 � N1 from N2 � N3. Analyzing
only the 100 subsets, each consisting of 30 cases, the
average accuracy of the PET reader was 73.5% � 0.55% for
differentiating N0 from N1, N2, or N3. The PET reader
average accuracy increased to 89.4% � 0.45% when dif-
ferentiating N0 � N1 from N2 or N3 and increased to
91.9% � 0.39% when differentiating N0 � N1 from N2 �
N3 status. Therefore, the PET reader accuracy was similar
for the 133 cases when compared with the 100 subsets of 30
cases. This demonstrates that the random selection process
of the 100 subsets of 30 cases is representative of the whole
group of 133 cases. The subset creation did not induce

FIGURE 5. Comparison of aNN and PET reader accuracy for
each of 100 training sessions. The larger the frequency of ac-
curacy, the larger the symbol.
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selection bias that could benefit either the aNN or the expert
PET reader.

From these 100 subsets, the aNN correctly identified the
exact nodal status in 87.3% � 0.54% of the cases (PET
reader, 73.5% � 0.55%). The aNN reliably identified 95%
of the cases with N0 disease (PET reader, 90.5%), 67.6%
with N1 disease (PET reader, 22.6%), 80.1% with N2 dis-
ease (PET reader, 70.8%), and 99% with N3 disease (PET
reader, 74%). The lack of sensitivity of the PET reader for
N1 disease likely originates from the fact that N1 lymph
nodes are often located close to the primary tumor and their
modest 18F-FDG uptake, compared with the more intense
uptake of the adjacent primary mass, makes them very
difficult to identify. In addition, this low sensitivity for N1

disease may result, in part, from the small size of intralobar
N1 nodes making them difficult to visualize by PET. These
small nodes are also difficult to identify on chest CT and are
often found only during pathologic examination of resected
specimens. In several cases, the aNN was able to predict the
presence of N1 disease in the absence of definite N1 nodal
uptake on 18F-FDG PET. It did so based on its training and
on the size and uptake of the primary tumor.

For one of the most important differentiations to be made
for preoperative treatment planning, the aNN accurately
differentiated N0�1 from N2�3 disease in 94.9% � 0.31%
(PET reader, 91.9% � 0.39%). Patients with N0–1 status are
preferably treated by primary resection without preoperative
chemotherapy if their T status allows resection and if there
is no distant metastatic disease; N2 patients are considered
for chemotherapy or chemoradiotherapy before resection
and N3 patients undergo definitive chemoradiotherapy.

The trained aNN performed consistently better than a
human expert reader in determining (a) the surgicopatho-
logic N status (N0 vs. N1 vs. N2 vs. N3), (b) N0 � N1 versus
N2 or N3, and (c) N0 � N1 versus N2 � N3. The strength of
the aNN resides in the fact that it can be taught to predict the
presence of microscopic nodal involvement based on the
size and uptake of the primary tumor even in the absence of
nodal uptake noted at 18F-FDG PET imaging. Furthermore,
the aNN can learn from many cases and then gauge any new
unknown case against its acquired experience. Although a
trained human observer uses its experience to interpret new
cases, he or she is unable to compare a new case with a large
personal database.

For example, in the event of no mediastinal or hilar
uptake read as N0 by the human reader but found to have
microscopic N1 or N2 disease at surgery (false-negative
FDG interpretation), the aNN may be able to predict the
accurate N1 or N2 stage by realizing that the primary tumor
is large and very metabolically active and that in its “expe-
rience” such tumors usually have positive N1 or N2 status.
Similarly, the aNN can avoid false-positive interpretation
by realizing that the uptake in a node is not high enough to
be interpreted as positive. It does so among other things by
comparing the nodal uptake with that of the primary tumor.
More metabolically active tumors are expected to have

“hotter” positive nodes than less metabolically active tu-
mors.

For an aNN to learn, rigorous techniques need to be
observed to limit error. Therefore, standardized protocols
were followed for PET imaging. Data extraction from PET
and CT scans was standardized and 1 experienced reader
read all scans and extracted all data. Also, all patients
followed the same surgical pathway with uniform staging.
For this study, the aNN aimed at establishing the nodal
status of a patient and not at establishing the entire TNM
stage as the N status at 18F-FDG PET presents unique
interpretative challenges. To be of use in a clinical setting,
an aNN needs to be easy to implement and use. We, thus,
elected to limit the number of input parameters required by
the aNN to primary tumor size and maxSUV and to nodal
uptake. We defined these parameters in a simple fashion so
that extracting the input data from PET and CT scans could
be easily accomplished by the individual interpreting 18F-
FDG PET scans in a clinical setting. However, care should
be taken before exporting a trained aNN to another center,
primarily because of variations in 18F-FDG PET protocol
among imaging centers. These variations will affect the
SUVs used as inputs for the aNN. These variations include
time from 18F-FDG injection to imaging, type of image
reconstruction algorithm (filtered backprojection vs. or-
dered-subsets expectation maximization vs. row-action
maximization-likelihood algorithm) and reconstruction fil-
ter, different transmission and emission scan length, and
different attenuation correction methods. Standardization in
these areas should be made before exporting an aNN to
another medical center. As an alternative, this network
definition could be used but would need to be trained with
locally acquired data.

CONCLUSION

A feedforward multilayer-perceptron aNN, with back-
propagation algorithm, can be trained to predict hilar and
mediastinal nodal involvement from 18F-FDG PET images
of NSCLC with greater accuracy than an expert PET inter-
preter. Such a tool can be used to enhance the accuracy of
clinical interpretations. It could also serve to train residents
and fellows in reading PET scans.
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