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Lymphedema—edema that results from chronic lymphatic in-
sufficiency—is a chronic debilitating disease that is frequently
misdiagnosed, treated too late, or not treated at all. There are,
however, effective therapies for lymphedema that can be im-
plemented, particularly after the disorder is properly diagnosed
and characterized with lymphoscintigraphy. On the basis of the
lymphoscintigraphic image pattern, it is often possible to deter-
mine whether the limb swelling is due to lymphedema and, if so,
whether compression garments, massage, or surgery is indi-
cated. Effective use of lymphoscintigraphy to plan therapy re-
quires an understanding of the pathophysiology of lymphedema
and the influence of technical factors such as selection of the
radiopharmaceutical, imaging times after injection, and patient
activity after injection on the images. In addition to reviewing the
anatomy and physiology of the lymphatic system, we review
physiologic principles of lymphatic imaging with lymphoscintig-
raphy, discuss different qualitative and quantitative lymphoscin-
tigraphic techniques and their clinical applications, and present
clinical cases depicting typical lymphoscintigraphic findings.
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Effective use of lymphoscintigraphy to plan therapy for
lymphedema requires an understanding of its pathophysiol-
ogy and the influence of technical factors such as selection
of the radiopharmaceutical, imaging times after injection,
and patient activity after injection on the images.

CHARACTERISTICS OF LYMPHEDEMA

Lymphedema is a chronic debilitating disease that is
frequently misdiagnosed, treated too late, or not treated at

all. Lymphedema results from impaired lymphatic transport
caused by injury to the lymphatics, infection, or congenital
abnormality. Patients often suffer in silence when their
primary physician or surgeon suggests that the problem is
mild and that little can be done. Fortunately, there are
effective therapies for lymphedema that can be imple-
mented, particularly after the disorder is characterized with
lymphoscintigraphy.

At the Stanford Lymphedema Center, about 200 new
cases of lymphedema are diagnosed each year (from a
catchment area of about 500,000 patients). Evidence that the
disease is often overlooked by physicians caring for the
patient is seen by the fact that about 60% of the patients are
self-referred for initial evaluation and treatment, even if
they have had lymphedema for years.

Lymphedema is a prevalent disease. Approximately 10
million people have lymphedema secondary to breast and
pelvic cancer therapy, recurrent infections, injuries, or vas-
cular surgery. Worldwide, about 90 million people have
lymphedema, primarily because of parasitic infection.
When chronic venous insufficiency is added as a cause,
there may be as many as many as 300 million cases (1–4).
In our clinic, about 75% of the patients have lymphedema
because of malignancy or its therapy, with about half of
these related to breast cancer surgery.

Arm Lymphedema
Arm lymphedema is a frequent complication of breast

cancer therapy and axillary lymph node dissection, with an
estimated frequency of 5%–30%. This incidence is based
primarily on studies that use volume and circumference
criteria in the first 2–5 y after surgery. Arm volume differ-
ences above 100–200 cm3 or a circumference difference
above 2 cm is used as a cutoff point for the diagnosis of
lymphedema. All these studies disregard milder forms of
lymphedema and miss a significant number of patients with
mild lymphedema, especially in the nondominant arm,
which could be 200 cm3 smaller than the dominant arm
before surgery. Unfortunately, almost all studies are retro-
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spective and do not include arm measurements before sur-
gery (5,6).

One prospective study, by Goltner et al., of 360 women
undergoing breast cancer surgery found that arm lymphe-
dema developed after surgery in 42% of women (7).

Even clinically “mild” lymphedema may cause a signif-
icant disability, especially if it affects the hand. A hand
volume increase of 100 cm3 causes substantial impairment
of function, because any work requiring fine movements of
the hand, such as typing, writing, or playing piano, are
difficult to perform.

A combination of conservative surgery and careful pa-
tient selection for nodal radiotherapy may reduce the inci-
dence of postmastectomy lymphedema (8), particularly
when these therapies are combined with sentinel node bi-
opsy, but their impact on the incidence of postsurgical
lymphatic insufficiency has not yet been adequately as-
sessed. Although axillary surgical staging, with or without
breast conservation techniques, is characterized as relatively
free of significant complications (9), a postoperative study
of 200 patients suggested that lymphatic complications still
occur. Statistically significant changes in ipsilateral arm
volume were detected at the mid biceps, antecubital fossa,
and mid forearm; furthermore, clinically significant arm
edema (arm circumference difference � 2 cm) was detected
in 13% of patients at 1 y or more after surgery, whereas
76.5% experienced postoperative sensorineural dysfunction
of the medial arm or axilla (9).

Axillary lymph node dissection, because it correlates
positively with 10-y survival in breast cancer patients (10),
is still applied to most patients with early breast cancer (10).
Sentinel node biopsy, however, is gaining clinical accep-
tance and offers a chance to avoid axillary node dissection
in patients with early breast cancer. Sentinel node biopsy
will not eliminate the necessity of axillary node dissection
in patients with positive sentinel nodes (28%–46% of eli-
gible patients (11)) and in patients with advanced breast
cancer. One cautionary note about sentinel node biopsy is
the limited utility of this procedure in patients with preop-
erative chemotherapy; up to 33% of patients may have
false-negative results (12).

The incidence of breast cancer in the United States is
projected to increase from 185,000 patients per year to
420,000 per year in the next 20 y (11). The higher incidence
of breast cancer is likely to increase the incidence of
lymphedema despite the developments of breast-conserving
surgery and sentinel node biopsy. In addition, the longer
survival of breast cancer patients is likely to cause an
increased prevalence of arm lymphedema, which may de-
velop many years after surgery.

Leg Lymphedema
Lower-extremity lymphedema resulting from treatment of

pelvic cancer also occurs. The reported frequency of secondary
leg lymphedema ranges from 10% to 49% (13–17). Even

“mild” lymphedema of the leg may cause chronic leg discom-
fort and problems with walking, running, and fitting shoes.
Advanced lymphedema of the leg causes severe lifelong dis-
ability. Genital lymphedema, frequently secondary to therapy
for pelvic cancer, can be devastating for the patient (18,19).

In summary, noninfectious lymphedema is a common
disease and one can expect an increase in the number of
patients rather than a disappearance of this condition over
the next decade. Many of these patients suffer because they
were not properly diagnosed and treated. Early diagnosis
can lead to effective treatment and prevention of secondary
effects, including extremity deformity, disuse atrophy, and
increased susceptibility to recurrent infections.

Diagnosis
Lymphedema can be surprisingly difficult to diagnose,

especially in its early stages. Without a proper diagnosis,
therapy is often delayed, allowing secondary fibrosis and
lipid deposition to take place. Early treatment often results
in rapid clinical improvement and prevents progression to
the chronic phase of the disease.

Lymphoscintigraphy offers an objective and reliable ap-
proach to diagnose and characterize the severity of
lymphedema. The following sections review the anatomy
and pathophysiology of the lymphatic system and the tech-
nique and interpretation of the lymphoscintigram.

LYMPHATIC ANATOMY, PHYSIOLOGY,
AND PATHOLOGY

Components of the Lymphatic System
The lymphatic system is a component of both the circu-

latory and the immune systems. The lymphatic system con-
sists of a series of conduits (the lymphatic vasculature),
lymphoid cells, and organized lymphoid tissues. Lymphoid
tissues include the lymph nodes, spleen, thymus, Peyer’s
patches in the intestine, and lymphoid tissue in the liver,
lungs, and parts of the bone marrow (20). Lymphatics are
found throughout the body, with the exception of the central
nervous system, where cerebrospinal fluid fulfills the nor-
mal role of lymph. Lymphatic vasculature and lymphoid
tissue are prevalent in organs that come into direct contact
with the external environment, such as the skin, gastroin-
testinal tract, and lungs. This distribution is probably a
reflection of the protective role of the lymphatics against
infectious agents and alien particles. Absorption of fat from
the intestine occurs through the lymphatic system, which
transports the lipids (chyle) to the liver. The lymphatic
system also transports cellular debris, metabolic waste prod-
ucts, and fluid excesses (edema safety factor) from local
sites back to the systemic circulation.

In the extremities, the lymphatic system consists of a super-
ficial (epifascial) system that collects lymph from the skin and
subcutaneous tissue, and a deeper system that drains subfascial
structures such as muscle, bone, and deep blood vessels (Fig.
1). The superficial and deep systems of the lower extremities
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merge within the pelvis, whereas those of the upper extremity
merge in the axilla. The 2 drainage systems function in an
interdependent fashion such that the deep lymphatic system
participates in lymph transport from the skin during lymphatic
obstruction (21). The superficial and deep systems drain at
markedly different rates. In the normal leg, subfascial transport
(the deep system) is slower than the epifascial (superficial)
system and transports less lymph. Brautigam et al. found
median radiotracer uptake in the inguinal area to be 7% when
the tracer was administered subfascially versus 13% after sub-
dermal injection (21). Mostbeck and Partsch, however, using
intramuscular injections of Tc-albumin microcolloid, esti-
mated that deep lymphatic transport is only about 7.7% of
superficial lymphatic transport (22).

Disorders of the Lymphatic System
Disorders of the lymphatic system cause primary and

secondary lymphedema and also include lymphatic malig-
nancies (Table 1).

Regional lymphatic insufficiency causes local lymphe-
dema (Tables 2 and 3). A subclinical form of lymphatic
insufficiency can exist when lymphatic transport reserve is
diminished. Subclinical lymphatic insufficiency may rap-
idly progress to clinically apparent edema when the lym-
phatic system is overloaded. Overload can be caused by
local infection (24–26), injury (27–29), barotrauma (air
travel) (30), or increased venous pressure (31–33).

Primary congenital lymphedema may result from genetic
disorders (e.g., missense mutations of vascular endothelial
growth factor receptor 3 (34–36)). In most cases, however,
the etiology remains uncertain. Acquired lymphedema is
usually due to filariasis, which is responsible for �80 mil-
lion cases worldwide, making secondary lymphedema much
more prevalent than primary lymphedema (Table 4). In
developed countries, postsurgical lymphedema (due to
lymph node dissection; Fig. 2) and postphlebitic syndrome
are the most common causes of acquired, regional lym-
phatic insufficiency.

Regardless of etiology, lymphedema usually presents as
slowly progressive extremity edema. Initially, the edema is
soft and pitting, but over the course of weeks to months the
skin thickens and the swelling becomes hard and nonpitting.
Because the cutaneous lymphatics are not functioning, the
local immune response is impaired, and recurrent skin in-
fections are common, leading to further insult to the tissue
and worsening of edema (37,38). If lymphedema is un-
treated it will progress to the point of chronic limb enlarge-
ment, with disfiguration of the limb associated with severe
functional (39) (Fig. 2) and psychologic impairment (40).
Early diagnosis and therapy to reduce edema are required to
minimize the loss of function.

Microanatomy
The lymphatic vasculature consists of initial lymphatics,

or lymphatic precollectors, which coalesce into lymphatic
ducts, which then drain into the lymph nodes (41,42). In the
skin, the initial lymphatics are present in skin papillae as

FIGURE 1. Scheme for superficial lymphatic system. Capillary
density of skin lymphatic network differs in various parts of
body, with higher density in face, soles of feet, and palms of
hands than in trunk.

TABLE 1
Disorders of Lymphatic System

Description of disorder Name of disorder

Absence or obstruction of lymphatic
vessels

Lymphedema

Inflammation of lymphatic vessels Lymphangitis
Inflammation of lymph nodes Lymphadenitis
Obstruction of lymphatic drainage in a

specific organ (gastroenteropathy,
nephropathy)

Lymphostatic
organopathies

Benign neoplasm of lymphatic vessels Lymphangioma
Malignant neoplasm of lymphatic

vessels
Lymphangiosarcoma
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blind-end sinuses (43,44), which form a superficial subpap-
illary network of interconnected sinuses (superficial lym-
phatic plexus). The plexus is formed from single layers of
gracile lymphatic endothelial cells (45,46). Initial lymphat-
ics range in diameter from 10 to 60 �m, significantly larger
than the diameter of arteriovenous capillaries (8 �m) (Fig.
3) (46,47). Lymphatic endothelial cells rest on a discontin-
uous basement membrane that is attached to the surrounding
connective tissue by anchoring filaments (Fig. 4) (48,49).
The basement membrane is composed almost exclusively of
type IV collagen. In contrast to the vascular capillary base-
ment membrane, no heparan sulfate, proteoglycan, or fi-
bronectin (50) is present in the lymphatic basement mem-
brane. There are no tight junctions between the cells, and
interendothelial openings permit extracellular fluid, macro-
molecules, and cells to drain directly into the lumina of the
initial lymphatics through the porous basement membrane
(Figs. 4 and 5) (51–53). Estimates of the pore size, based on
measurements of the intercellular junctional distances, vary
from several micrometers to 15–20 nm (54,55). Interendothe-
lial junctions form an interdigitated and overlapping structure
that can provide a 1-way valve system for fluid movement
(52). These endothelial clefts can open to dimensions of sev-
eral micrometers, allowing macromolecules, colloids, cells,
and cellular debris to pass unhindered, depending on the de-
gree of distension (48,51,53,56,57). Interendothelial junctions
open during fluid inflow from the interstitium because of
in-plane stretching of the lymphatic endothelium or by edema.
In theory, reflux of lymphatic fluid into the interstitium is
prevented by reclosure of the endothelial clefts.

The initial lymphatics are connected in a hexagonal pat-
tern through a set of precollectors, with the deeper lymphat-
ics in the dermis. There, lymph is transported centrally
through collecting ducts and, subsequently, to the lymph
nodes. The superficial precollectors, like the initial lymphat-
ics, exhibit no detectable vasomotor activity. This observa-
tion is consistent with ultrastructural studies that depict a
fine endothelial lining without smooth muscle (53,58,59).
The precollectors coalesce into collecting ducts, which have
thick walls (0.50–0.75 mm in diameter) and contain a thin
layer of smooth muscle separated from the vessel lumen by
a monolayer of endothelial cells (46,60). All the collecting
lymphatics contain unicuspid or bicuspid valves at regular
intervals to prevent backflow of lymph (41,46,48,61,62).

Transport of Particles
The interstitial space is similar in all tissues. The inter-

stitial space consists of a fibrous collagen framework that
supports a gel phase containing glycosaminoglycans, salts,
and plasma-derived proteins (54,63). Glycosaminoglycans
are polyanionic polysaccharides that are fully charged at
physiologic pH. With the exception of hyaluronic acid, they
are covalently bound to a protein backbone, thus creating
the proteoglycans that are immobilized in the interstitium.

Transport of macromolecules within the interstitium may
be physically retarded by the gel structure of the proteogly-
cans and by electrostatic interactions with charged compo-
nents of the interstitial architecture (54,63). One theory
suggests that the negative charge contribution of hyaluronic
acid and the proteoglycans provides a net negative charge to

TABLE 2
Pathophysiology of Lymphedema

Disorder of lymphatic conduitsO¡ Resulting in . . .

Lymphatic aplasia, hypoplasia, primary
valvular insufficiency

Lymphatic hypertension, decreased contractility
Secondary valvular insufficiency

Primary decreased lymphatic contractility
Obliteration or disruption of lymphatic vessels

Lymphostasis with accumulation of lymph, interstitial fluid, proteins, and
glycosaminoglycans in skin and subcutaneous tissue

Stimulation of collagen production by fibroblasts
Disruption of elastic fibers and activation of keratinocytes, fibroblasts, and adipocytes
Skin thickening, subcutaneous tissue overgrowth, and fibrosis

TABLE 3
Lymphangiographic Classification of Primary Lymphedema

Congenital primary lymphedema Acquired primary lymphedema

Aplasia or hypoplasia of lymphatics Intraluminal or intramural lymphangio-obstructive edema
Abnormalities of abdominal or thoracic lymph trunks Distal
Valvular incompetence (associated with megalymphatics and often Proximal obliteration, often with distal dilatation

chylous reflux) Combined
Obstruction of lymph nodes by hilar fibrosis

Modified from Browse et al. (23).
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the interstitium (64). An alternative hypothesis suggests that
macromolecular diffusion through the interstitium is dic-
tated by molecular size, the presence of diffusional mi-
crodomains, and physical and electrostatic interactions with
interstitial components (54).

Entry of extracellular fluid and protein into the initial
lymphatics occurs through interendothelial openings and by
vesicular transport through the endothelial cells (52,65).
Both ways might be equally important in particle transport
into the lymphatics. Interendothelial openings may allow
cells (macrophages, lymphocytes, erythrocytes) and cellular
debris to directly enter lymphatics (53,66). Particles can
also enter initial lymphatics within macrophages after
phagocytosis (51). Interstitial fluid pressure in the skin and
subcutaneous tissue is slightly negative (�2 to �6 mm
H2O) (64,67), whereas lymphatic capillary pressure in skin
is positive (68,69), thus suggesting that fluid transport into
the initial lymphatics occurs against a pressure gradient.
Current theory proposes the presence of a suction force that

is generated through the contraction of the collecting lym-
phatics, coupled with the episodic increases in interstitial
fluid pressure that are created through tissue movement
(70). In skeletal muscle, lymphatics are usually paired with
arterioles, so that arterial pulsation and muscle contraction
contribute to the periodic expansion and compression of
initial lymphatics to enhance fluid uptake (Fig. 5) (61).
Additional mechanisms of particle transport from the inter-
stitium to initial lymphatic include active transendothelial
vesicular transport and phagocytosis with subsequent mi-
gration of macrophages into the lymphatic vessels (51,52).
Particle size and surface properties may determine which
way is preferred (71,72).

Lymph Flow and Lymphatic Contractility
A systemic driving force exists for the basal propulsion of

lymph that is independent of the local pressure gradients
that promote uptake (73,74). Lymph flow in the collectors
depends predominantly on lymphatic contraction (75,76).

FIGURE 2. Lymphedema of arm in patient after axillary dissection during breast cancer surgery. Ant � anterior.

TABLE 4
Etiologic Classification of Lymphedema

Primary lymphedema Secondary lymphedema

Congenital Parasitic (filariasis)
Familial (Milroy’s disease) Postsurgical (lymph node dissection, after vascular surgery)
Syndrome associated (Turner’s, Klippel-Trénaunay, Noonan’s, etc.) Postinfectious
Sporadic Post-traumatic
Precox Malignant (secondary to tumor obstruction of nodes)

Familial (Meige’s disease) Lymphedema complicating chronic venous insufficiency
Sporadic

Tarda
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Intrinsic generation of action potentials within the smooth
muscle induces the spontaneous contraction of one or more
chambers, with the resultant active propulsion of lymph.
The rate of lymph transport can be significantly affected by
humoral and physical factors that influence the rhythm and
amplitude of spontaneous constrictions (77,78). Activation
of �-adrenoceptors has been shown to decrease the fre-
quency and force of spontaneous constrictions in bovine
mesenteric lymphatic vessels (79). Oxygen free radicals
(80) and endothelium-derived nitric oxide (81) reduce the
efficacy of action potential generation of lymphatic smooth
muscle pacemaker potentials and, hence, lymphatic phasic
constrictions.

Lymph flow and lymphatic contractility increase in re-
sponse to tissue edema (edema safety factor) (33), exercise

(76), hydrostatic pressure (standing position) (82), mechan-
ical stimulation (massage, pneumatic compression) (83–
85), and warm baths (86). Interestingly, it has been demon-
strated that exposure to cold (ice packs, near 0°C) also
stimulates lymphatic flow (87).

FACTORS AFFECTING UPTAKE OF COLLOIDS
AND PROTEINS

Most radionuclide lymphatic flow studies use particulate
materials. The agents studied include 99mTc-sulfur colloids,
99mTc-nano- and microaggregated albumin, 99mTc-antimony
sulfide, colloidal gold particles, liposomes, and emulsions
administered into the interstitial space of animals and hu-
mans (46,88–93). Particles smaller than a few nanometers
usually leak into blood capillaries, whereas larger particles
(up to about 100 nm) can enter the lymphatic capillaries and
be transported to lymph nodes (46). However, even large
particles were detected in venous blood immediately after
subcutaneous injection, probably as a result of direct capil-
lary disruption by the needle (94). The optimal colloidal size
for lymphoscintigraphy is believed to be approximately
50–70 nm (91). Individual estimates vary from 1 to 70 nm
(90,92). Larger particles (�100 nm) are believed to be
trapped in the interstitial compartment for a relatively long
period (46). One study has demonstrated that transport of
perfluorocarbon emulsions of 0.08–0.36 �m exhibits an
inverse correlation to colloid particle size (72). Mechanical
massage over the colloid injection site enhances the uptake
and weakens this inverse correlation. The same study dem-
onstrated that the particle surface properties may influence
the uptake of colloid (72). Interestingly, an increase in
venous pressure decreased lymph colloid and lymph leuko-
cyte concentration (72).

Lymph node uptake of colloids of similar size can vary
substantially. Differences in surface characteristics of the
colloids may account for these observations (72,76). Early
studies with liposomes have shown that specific surface
properties, such as charge, hydrophobicity, and the presence
of targeting ligands, can influence both the rate of particle
drainage from a subcutaneous injection site and the distri-
bution within the lymphatic system. In rats, for instance,
small, negatively charged liposomes localize more effec-
tively in lymph nodes than positively charged vesicles when
administered subcutaneously into the dorsal surface of the
footpad (93,95).

Particle uptake by the lymphatic system is temperature
dependent. Protein transport across canine lymphatic endo-
thelium is enhanced with increasing temperature (96). In
addition to temperature, the pH of lymph or interstitial fluid
may also alter lymph or particle uptake and transport. The
colloid osmotic pressure of body fluids is increased when
pH is increased (2.1 mm Hg per pH unit) (97). Whether pH
differences in interstitial or lymphatic fluid affect particle
uptake in vivo, however, remains to be investigated.

FIGURE 3. Lymphatic capillary (top), in comparison with
blood capillary (bottom). Lymphatic capillary has larger diame-
ter, no pericytes (P), and thin and porous basal membrane (BM)
and is attached to surrounding tissue with anchoring filaments.
Erythrocytes (E) are visible within lumen of blood capillary.
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LYMPHOSCINTIGRAPHY

Injection of radiolabeled tracers with subsequent gamma
camera monitoring has been used to study the lymphatic
system since the 1950s. This minimally invasive procedure
simply requires intradermal or subcutaneous injection of the
chosen radiolabeled tracer. The method has largely replaced
the more invasive and technically difficult technique of
lymphangiography (98). Specific clinical applications of
lymphoscintigraphy are summarized in Table 5.

The protocol for lymphoscintigraphy is not standarized
and differs among diagnostic centers. Differences include
the choice of radiotracer, the type and site of injection, the
use of dynamic and static acquisitions, and the acquisition
times themselves.

Methodology
Radiotracers. Deposition of radioactive colloids in re-

gional lymph nodes was first observed by Walker after
subcutaneous injection of colloidal gold (198Au) (99). Be-
cause a significant fraction of the dose remained at the
injection site after subcutaneous administration of colloidal
198Au (a tracer with a significant component of �-decay),
radiation burden at the injection site limited the adminis-

tered dose and led to a search for agents with more favor-
able characteristics. 198Au was replaced by the 99mTc-labeled
tracers. 99mTc-antimony sulfide colloid, 99mTc-sulfur colloid,
99mTc-albumin colloid, and 99mTc-labeled human serum al-
bumin (HSA) have become the primary agents for clinical
use. Unfortunately, neither 99mTc-antimony sulfide nor
99mTc-HSA is presently available in the United States.
99mTc-albumin nanocolloid and 99mTc-rhenium sulfide col-
loids are used in Europe (22,100,101).

99mTc-Filtered sulfur colloid (particle size � 100 nm),
one of the most commonly used radiotracers for lympho-
scintigraphy, is inexpensive, has an excellent safety profile,
and has demonstrated clinical value. The agent also has
several disadvantages, including minimal absorption from
the injection site (typically �5% is absorbed) and slow
transport from the injection site after subcutaneous admin-
istration (intradermal administration is associated with rapid
absorption; cutaneous lymphatics are often visualized
within 1 min of tracer deposition). Even in the absence of
�-radiation, the conversion electrons from 99mTc result in a
dose of 1–5 rad per injection site, for a dose of �92.5 MBq
(depending on the volume administered). The slow transit

FIGURE 4. Filling mechanism of initial
lymphatics: interendothelial clefts. (A)
Cross-sectional view shows that stretching
of anchoring filaments (tissue edema, mas-
sage) pulls apart endothelial cells, allowing
interstitial fluid to flow freely into lymphatic
capillary. (B) Lymphatic endothelial cells
are pulled apart and porous basement
membrane is visible, acting as sieve for
interstitial fluid entering lymphatic capillary
(luminal surface of capillary).
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requires prolonged times for imaging. The unpredictable
nature of the absorption and transit makes reliable calcula-
tion of tracer disappearance rates difficult. 99mTc-sulfur col-
loid also requires an acidic pH to remain stable; such a pH
often causes the patient to experience burning at the injec-
tion site. (To minimize discomfort at the time of injection,
some investigators use a cutaneous cream containing a

eutectic mixture of local anesthetics or add some lidocaine
to the injection. Even when the tracer is administered with-
out these aids, the discomfort is usually minimal and dis-
appears within a few minutes of injection.) The large par-
ticle size of 99mTc-sulfur colloid (30–1,000 nm) (102)
contributes to the minimal absorption and slow transit. To
circumvent this problem, filtered sulfur colloid was advo-

FIGURE 5. Scheme for lymph formation.
A � Arterial capillary; V � venous capillary.

TABLE 5
Clinical Applications of Lymphoscintigraphy

General application Specifics

Differential diagnosis Distinguish lymphatic from venous edema, myxedema, lipedema, or other etiology
Assessment Assess pathways of lymphatic drainage
Identification Identify sentinel nodes in patients with melanoma, breast, or genitourinary cancer

Identify patients at high risk for development of lymphedema after axillary lymph node dissection
Quantitation Quantify lymphatic flow
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cated for lymphoscintigraphy (102). Use of a 0.1-�m filter
yielded sulfur colloid with a stable particle size of �50 nm.
The properties of this filtered colloid are similar to those of
antimony trisulfide colloid. Albumin microcolloid has a
reproducible colloid size distribution (95% is �80 nm) and
ease of labeling. Its rapid clearance from the injection site
makes it suitable for quantitative studies, and injections are
painless. Thus, 99mTc-albumin microcolloid may be more
suitable for quantitative studies than is 99mTc-sulfur colloid.
Colloidal radiotracers and their particle size are summarized
in Table 6.

Noncolloidal tracers reported in the literature include
99mTc-HSA (108,109), 99mTc-labeled dextran (110), and
99mTc-labeled human immunoglobulin (111). The more
rapid absorption of 99mTc-HSA allows shorter study times,
provides better visualization of lymphatic trunks, and may
be preferable for quantitative analyses (108,109,112,113).
Although the noncolloidal tracers clear from the injection
site, they clear by a dual mechanism, with both resorption
into capillaries and transport through lymphatics. As a re-
sult, use of these agents requires different criteria for inter-
pretation than does use of colloidal tracers.

Subcutaneous, Intradermal, and Subfascial Injection.
Both subcutaneous and intradermal injections are used in
routine studies of superficial lymphatics of the extremity.
Weissleder and Weissleder prefer subcutaneous injections
of 99mTc-HSA microcolloid, arguing that intradermal injec-
tions lead to significant uptake of radiotracer by blood
vessels (98). According to Mostbeck and Partsch, who
compared subdermal and intradermal injections of 99mTc-
albumin microcolloid, subcutaneous injections produced
more reliable results (22,114). In patients with primary
lymphedema of the entire lower extremity, slow uptake was
seen after intradermal injection, whereas in distal and sec-
ondary lymphedema, uptake in nodes was nearly normal.
Subcutaneous injections, in contrast, suggested lymphatic
obstruction. Opinions differ about which injection tech-
nique is best. Subcutaneous tracer injection is recommended
by many investigators (98,100,115), but intradermal injec-
tion is preferred by others (82,112,116–118). Intradermal

administration of noncolloidal agents (99mTc-HSA) is asso-
ciated with rapid lymphatic transport, facilitating rapid eval-
uation and better quantification of lymphatic flow (82).
Intradermal injection of colloidal tracers or other noncolloi-
dal agents may not be as efficacious as HSA. However,
comparison of intradermal and subdermal injections with
99mTc-HSA reveals better tracer kinetics after intradermal
injection and slow or no transport after subcutaneous injec-
tions (119). Available data suggest that the optimal route of
injection may vary depending on the tracer used, with
subcutaneous injection being optimal for the colloidal
agents (22,114).

Subfascial injection of radiotracers is used for investiga-
tions of the deep lymphatic system of the extremities. In-
jection can be intramuscular (22), subfascial in the lateral
retromalleolar region (120), or in aponeurotic sites of the
soles or palms (G. Mariani, written communication).

Two-compartment lymphoscintigraphy (epifascial �
subfascial) may be preferable for the differentiation of var-
ious mechanisms of extremity edema (21,101,114,120). The
injection sites are prepared by swabbing the area with either
an iodine solution (especially in patients with frank
lymphedema) or alcohol. The 9.25 MBq per injection in a
0.05- to 0.1-mL dose is administered using a 26-gauge
needle for each of 4 injection sites (the web space between
the first and second and the second and third digits of the
hands or feet). Generally, both limbs receive injection (typ-
ically to use one side as a control for patients with unilateral
lymphedema).

Imaging. Images should be recorded with a dual-detector
instrument, using high-resolution parallel-hole collimators,
in the whole-body scanning mode. Images should be re-
corded with a 20% window centered on the 140-keV pho-
topeak of 99mTc, using a scan speed of 10 cm/min, into a
dedicated computer. The data should be displayed with the
upper level set to display the small fraction of tracer that
emigrates from the injection site to the nodes (this setting
usually causes substantial blooming of the image near the
injection site but optimizes the likelihood of seeing the
nodes). A transmission scan should also be recorded to

TABLE 6
Colloidal Radiotracers and Their Particle Size

Agent Particle size Reference

198Au-Colloid 5 nm; 9–15 nm Strand (92), Kazem (103)
99mTc-Rhenium colloid (TCK-1) 10–40 nm; 50–500 nm Nagai (104), Bergqvist (90)
99mTc-Rhenium colloid (TCK-17) 50–200 nm; 45 nm; 3–15 nm Bergqvist (90), Nagai (105)
99mTc-Antimony sulfur colloid 2–15 nm; 40 nm Warbick (106), Bergqvist (90)
99mTc-Sulfur colloid 100–1,000 nm Davis (107)
99mTc-Filtered sulfur colloid 38 nm (mean) Hung (102)
99mTc-Stannous sulfur colloid 20–60 nm Kleinhans (124)
99mTc-Albumin microcolloid �80 nm Manufacturer
99mTc-Microaggregated albumin 10 nm Bergqvist (90)

Modified from Bergqvist et al. (90).
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permit anatomic localization of the areas visualized. The
transmission source is typically placed on the posterior
detector, and the camera windows are reset to image both
the cobalt-sheet source activity for the transmission data and
the 99mTc activity for the emission data, using the anterior
detector to record the data. Typically, the body scan data are
recorded within about 10 min of injection, at 1–2 h, and
finally at 4–6 h after tracer administration.

Stress Lymphoscintigraphy. Lymphoscintigraphy can be
performed after an intervention designed to augment lym-
phatic flow—such as changes in temperature, physical ex-
ertion, or administration of a pharmacologic agent. Al-
though stress lymphoscintigraphy is recommended by most
authors for its enhanced sensitivity and for its utility in the
quantitation of lymphatic flow (114,121), this approach is
not universally used (100,119). In the lower extremities,
stress maneuvers include walking (122), standing (82), limb
massage (116,123), standardized treadmill exercise (22),
and bicycle exercise (101). In the upper extremities, repet-
itive squeezing of a rubber ball, use of a hand-grip exercise
device (124), or massage (116) have been proposed. Mas-
sage, exercise, and standing enhance radiotracer transport
from the injection site (52,82,123).

Lymphoscintigraphy is usually performed after injection
into the web space of the upper or lower extremities, fol-
lowed by imaging for 30–60 min. Thereafter, the patient
performs the stress activity (walking, massage, or squeezing
a ball) for �20 min, and then imaging is repeated. A marked
change in the appearance of nodes or clearance of the tracer
identifies a response to the intervention.

Quantitative Lymphoscintigraphy. Quantitation of lym-
phatic flow may be a more sensitive approach to the diag-
nosis of lymphatic impairment (Table 7) (98). Quantitation
of the regional lymph node accumulation of radiotracer is
preferred (22,114). Clearance from the injection site may
not allow discrimination between healthy patients and pa-
tients with lymphedema (114). Quantitation of disappear-
ance rates from the injection site is preferred by investiga-
tors using labeled HSA (127).

Weissleder and Weissleder compared quantitative and

qualitative lymphoscintigraphy in 308 extremities with dif-
ferent grades of lymphedema and found that qualitative
interpretation confirmed the diagnosis of lymphedema in
70% of extremities, whereas quantitative analysis detected
abnormal lymphatic function in all 308 examined limbs. All
cases missed by qualitative interpretation were mild, grade
I, lymphedema (98).

Clinical Applications of Extremity Lymphoscintigraphy
Differential Diagnosis of Extremity Edema. Lympho-

scintigraphy offers objective evidence to distinguish lym-
phatic pathology from nonlymphatic causes of extremity
edema (100,115,127–130). Criteria for lymphatic dysfunc-
tion include delay, asymmetric or absent visualization of
regional lymph nodes, and the presence of “dermal back-
flow.” Additional findings include asymmetric visualization
of lymphatic channels, collateral lymphatic channels, inter-
rupted vascular structures, and lymph nodes of the deep
lymphatic system (i.e., popliteal lymph nodes after web
space injection in the lower extremities) (Figs. 6 and 7)
(100). Quantitative analysis may increase the sensitivity and
specificity of lymphoscintigraphy in the diagnosis of lym-
phatic disorders (98).

Scoring systems have also been suggested to enhance
diagnostic differentiation in borderline cases (115,124,131).
Baulieu et al. proposed factor analysis of lymphoscinti-
graphic data to increase specificity and provide an objective
evaluation of the efficacy of therapy (132).

Assessment of the Results of Therapeutic Interventions in
Lymphedema. Qualitative and quantitative lymphoscintigra-
phy has been widely used in the assessment of therapeutic
interventions for lymphedema, ranging from microsurgery
(128,133–135) and liposuction (136) to manual lymphatic
massage (137–140), pneumatic compression (86,132), hy-
perthermia (141), and pharmacologic interventions (142–
144).

Slavin et al. evaluated lymphatic regeneration after free-
tissue transfer with lymphoscintigraphy (145). These inves-
tigations used both quantitative and qualitative lymphoscin-
tigraphy.

TABLE 7
Quantitative Lymphoscintigraphy in Lymphedema

Radiotracer Route ROI Stress Measurement Reference

99mTc-HSA sc IS Walking Clearance rate Kataoka (122)
99mTc-Albumin microcolloid sc (im) LN Treadmill LN uptake, depth correction Mostbeck (22)
99mTc-Albumin microcolloid sc LN, IS, lymph vessels Bicycle LN uptake Brautigam (21)
99mTc-Albumin microcolloid sc IS, LN Passive exercise Clearance rate, LN uptake Weissleder (98)
99mTc-Rhenium colloid sc IS None Clearance rate, LN uptake Pecking (100,142)
99mTc-Sulphur colloid sc IS, LN None Clearance rate, LN uptake Carena (125)
99mTc-HIG ic IS None Clearance rate Svensson (111)
99mTc-HSA ic IS None Clearance rate, LN uptake Nawaz (126)

HSA � human serum albumin; sc � subcutaneous; IS � injection site; im � intramuscular; LN � regional lymph nodes; ic �
intracutaneous; HIG � human immunoglobulin.
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Prediction of the Outcome of Lymphedema Therapy. In a
recent study of 19 women undergoing therapy for post-
mastectomy lymphedema, Szuba et al. found that the degree
of impairment of lymphatic function before the treatment
correlated with the outcome of manual lymphatic therapy
(131).

Assessment of the Risk of Development of Lymphedema.
When postoperative lymphoscintigraphy in patients under-
going axillary dissection during breast cancer surgery dem-
onstrates disruption of lymphatic drainage, the risk that arm
lymphedema will develop increases (146). Pecking et al., in
their study of 60 women treated with surgical axillary
lymph node dissection and radiation therapy, demonstrated
that an abnormal lymphoscintigram 6 mo after radiation
therapy can predict the development of arm lymphedema
(147). Baulieu et al. analyzed 32 lymphoscintigrams from
patients with tibial fractures treated surgically (29). Lack of
visualization of inguinal lymph nodes predicted late post-
operative leg edema.

These studies suggest that postoperative lymphoscintig-
raphy can identify patients with a high risk of development
of extremity lymphedema. Early identification of these pa-
tients will allow specific implementation of preventive strat-
egies to minimize the risk of lymphedema. However, more
studies are necessary to establish clinical guidelines for the
performance of lymphoscintigraphy in patients undergoing
therapeutic lymph node excision or radiation therapy.

CONCLUSION

Lymphatic flow and sites of lymph drainage can readily
be evaluated with lymphoscintigraphy. Lymphatic imaging
can play a pivotal role in defining the etiology of extremity
swelling and in predicting the success of common therapies.

From a technical perspective, better radiopharmaceuticals
are needed. Agents that clear from the injection site and
localize in the nodes could markedly enhance the value of
the procedure. Although radiolabeled albumin has been

FIGURE 6. Lower-extremity lymphoscintigram from patient with history of lymphadenitis in right groin because of herpes zoster
(shingles) affecting her right buttock and inguinal area. Shown are immediate images in anterior and posterior views (left), late
images (about 3 h after injection) in anterior and posterior views (middle), and superimposition of anterior emission scan on
transmission scan (right). Inguinal node visualization on right and dermal backflow on medial aspect of upper thigh are minimal,
suggesting lymphatic obstruction of superficial system. Ant � anterior; Post � posterior.
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used for many years, it does not remain in the nodes and
requires continuous imaging to define the lymphatic chan-
nels. An alternative, 99mTc-annexin V, has been tested in
experimental studies in rabbits. This agent was selected
because the protein is small, enhancing its clearance from
the injection site, but it also concentrates in lymph nodes
because lymphocytes undergo apoptosis (a target for an-
nexin V) in the nodes. Such an agent will shorten the
procedure and enhance the ability to obtain quantitative data
in patients with partial lymphatic obstruction.

Because many institutions are establishing lymphedema
centers, lymphatic imaging will become more prevalent. As
this occurs, it will be important to develop standardized
procedures and radiopharmaceuticals to perform these ex-
aminations and standardized criteria to interpret the results.
Imaging at rest and after stress allows the procedure to
provide more useful data than do rest studies alone. As a
result, application of physical stress should be considered
part of the routine approach to assess lymphatics. Until a
new radiopharmaceutical is approved, filtered 99mTc-sulfur
colloid should become the standard, since it is available
throughout the world.
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