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France; 4Unit 29, Institut National de la Santé et de la Recherche Médicale, Marseille, France; and 5Department of Neurology and
Neurosurgery, Reims University Hospital, Reims, France

A tool was developed for automated intrapatient comparison of
brain SPECT images, with specific emphasis on gray-level nor-
malization. Methods: Ictal and interictal 99mTc-ethyl cysteinate
dimer SPECT images were acquired for 6 children with partial
epilepsy (age range, 2–10 y). For each patient, 3-dimensional
rigid geometric ictal-to-interictal image registration optimizing
different classic criteria (correlation coefficient, ratio uniformity)
in a multiscale translation–rotation 6-parameter space was first
performed. Gray-level normalization was then performed with
different methods, using a 1- or 2-parameter linear model. In the
1-parameter case, the scaling factor was equal to the interictal-
to-ictal ratio of the maximum, mean, or median values calcu-
lated within different reference volumes (whole brain or cerebel-
lum) or obtained by linear regression between ictal and interictal
counts in the brain or by maximizing a robust criterion, the
number of deterministic sign changes in the subtraction images.
In the 2-parameter case, the scaling factor and additive con-
stant were estimated using these last 2 methods. For each
patient, registration validity and normalization plausibility were
assessed by considering the correlation scatterplot together
with the different normalization lines and by comparing interictal
and registered normalized ictal images using a twin display (with
isocontours) in the 3 orthogonal planes. Three-dimensional vol-
umes of interest could be selected on coupled interictal–sub-
traction images for further focused numeric comparison. Re-
sults: After a satisfactory and stable geometric registration with
both criteria, the different normalization methods led to similar
subtraction images for 5 of 6 patients, except the maxima ratio,
which gave noticeably different results in 2 patients. For the
remaining patient, with highly dissimilar ictal–interictal images,
the maxima ratio normalization was obviously wrong and the
other 1-parameter methods probably better depicted the data

than did the 2-parameter methods. Conclusion: When compar-
ing intrapatient brain SPECT images, one should be aware of
the potential impact of the gray-level normalization method on
clinical interpretation. For ictal–interictal images, simple robust
scaling should be recommended. In particular, image maximum
should generally not be considered a valid reference, and no
additive constant is needed in the linear gray-level normalization
model.

Key Words: image comparison; image normalization; SPECT;
brain; epilepsy

J Nucl Med 2002; 43:715–724

Intrapatient comparison of brain SPECT images remains
an incompletely solved problem. Indeed, whereas many
geometric registration methods have been validated (1–5),
gray-level normalization remains debated. It has been ad-
dressed for various diseases, for both intrapatient and inter-
patient SPECT and PET comparison, in terms of normal-
ization factor (6), intensity scaling, reference region choice
(7–9), and global (region-independent) effect removal (10).
For the comparison of only 2 consecutive scans acquired for
1 patient, in which average and variance values cannot be
estimated at the pixel level, normalization can be formulated
in terms of the reference region problem. This reference
region should be understood in a wide sense, as a 3-dimen-
sional (3D) subset of connected or nonconnected stable
voxels, ranging from 1 voxel to the whole dataset, which is
selected on the basis of physiologic knowledge or statistical
properties. The basic assumption is that, from this set of
voxels, a global gray-level transformation between the 2
scans can be derived that allows local changes to be exhib-
ited through direct comparison or subtraction. The main
purpose of this study was to compare different normaliza-
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tion methods that are commonly or rarely used and charac-
terized by different degrees of robustness. Interictal and
ictal images from epileptic patients were used as a test set.

MATERIALS AND METHODS

Patients and Data
Ictal and interictal 99mTc-ethyl cysteinate dimer SPECT images

of children with partial epilepsy were used. Six well-documented
patients, aged 2–10 y, were selected from a previous study on
subtraction ictal SPECT that included 27 children (11). These 6
patients were not selected on a clinical basis. They were chosen to
provide a sample of the various types of difference images that
were present in the initial series, representative with respect to the
spread and amplitude characteristics of the apparent differences.
There was variable involvement of the whole brain in 1 patient, at
least 1 more or less diffuse focus in 3 patients, and no visible
difference in 2 patients. Besides the information from the SPECT
images, information about the location of the epileptic focus was
variably available from clinical seizure; ictal videoelectroencepha-
lography; MRI; or, in 2 patients, electrocorticography. Patient
characteristics are listed in Table 1. Image acquisition details can
be found elsewhere (11).

Image Preprocessing
Image Transfer and Conversion. Ictal and interictal axial slices

(128 � 128 � 128 matrix) were sent from Rouen to Reims in the
Interfile format (version 3.3). They were then converted to the Park
format (Park Meditech Inc., Farnborough, U.K.) and sent to a Sun
4 (Sun Microsystems, Mountain View, CA) computer. Pairs of
ictal and interictal images were then processed as follows for each
patient.

Preprocessing. Interictal images were defined as the reference
images, and ictal images were defined as the mobile images, both
in the spatial space and in the gray-level space. A cerebral volume
of interest (VOI) was automatically selected using a simple thresh-
old, usually 40% of the maximum value in the SPECT reference
images. The VOI included 26,000 voxels on average, and it could

be modified interactively by a threshold adjustment and by op-
tional selection of a parallelepiped discarding the noncerebral
structures.

Geometric Ictal–Interictal Registration
Initialization. An approximate brain center was calculated in 2

steps on both the reference and the mobile images, and its coor-
dinates were expressed as integers in pixel units. A rough center of
mass was first calculated for the cerebral VOI using the above-
mentioned threshold. A refined center was then determined, start-
ing from this first estimate and using a radial search of cortex
maxima in the right, left, anterior, posterior, and cranial directions.

Both the reference and the mobile images were centered. An
additional translation of a fraction of pixel (0.5) was applied to the
reference image in all 3 directions to smooth it, like the smoothing
induced by the registration process of the mobile image. This step
was a way to recover a degree of symmetry between the reference
image and the mobile image, to eliminate the pixelization bias
mentioned by Andersson (4), and can be considered an alternative
to reference switching (12), filtering (13,14), or reference resam-
pling (4). On the contrary, the initial centering of the mobile image
did not induce blurring, because translation parameters were cho-
sen to be integers.

Registration. The 3D rigid transformation to be applied to the
mobile image was defined by 3 translation and 3 rotation param-
eters. Two different classic criteria were implemented, that is, the
classic correlation coefficient and the ratio uniformity described by
Woods et al. (3), both calculated within the VOI. The optimal
transformation was found by maximizing one of those criteria
using an iterative translation–rotation relaxation scheme. In each
iteration, the translation parameters were first updated using a
steepest-descent method combined with a 3 � 3 � 3 grid search in
a multiscale 3D parameter space, with the search step taking the
successive values of 2, 1, 0.5, and 0.25 pixels. In the same
iteration, the rotation parameters were then updated in the same
way in a multiscale 3D parameter space, with the search step
taking the successive values of 8°, 4°, 2°, and 1°. The multiscale
method was implemented to increase the robustness of the search

TABLE 1
Patient Characteristics

Patient
no.

Age
(y) Sex

Epilepsy syndrome
(etiology)

Localization

Clinical
seizure Ictal EEG EcoG MRI

MRI/SPECT
subtraction

overlay images

Interictal
SPECT

hypoperfusion

1 10 F Partial epilepsy
(hemispheric atrophy)

RF None RH RFT ���RH

2 3 F Partial epilepsy
(tuberous sclerosis)

RF None RF RF BiF None

3 10 F Partial epilepsy
(cryptogenic)

LF None None LFT �LF

4 8 F Partial epilepsy
(cryptogenic)

None RT None RT �RT

5 5 F Partial epilepsy (cortical
dysplasia)

None None RF RF None None

6 2 F Infantile spasms
(cryptogenic)

None None None None None

EEG � electroencephalography; EcoG � electrocorticography; F � frontal; H � hemispheric; T � temporal; Bi � bilateral.
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by avoiding local maxima and also to speed the convergence.
Displacements of the mobile image were limited by an overlap
requirement of at least 80%; that is, fewer than 20% of the pixels
from the mobile image were allowed to have a zero value within
the VOI defined in the reference image.

Quality Control. This study was not focused on brain SPECT
image registration but did mandate that images be correctly reg-
istered before any further processing aimed at image comparison.
Therefore, the geometric registration quality was visually assessed
on a twin display, where reference and registered mobile images
were juxtaposed in the 3 orthogonal planes and isocontours ex-
tracted from the reference image were superimposed on both
images.

Gray-Level Normalization
Different normalization methods were implemented for com-

parison. A method should be understood here as the combination
of a gray-level transformation model, a gray-level similarity cri-
terion between the reference and mobile images, and a 3D refer-
ence region. A linear model described by the equation y � �x �
� was chosen, where the scaling parameter � and the additive
parameter � describe the global assumed relationship between the
ictal counts y and the interictal counts x. This model had 2 options:
a more usual option that had only 1 scaling parameter, �, and that
set � to zero, and a more sophisticated option that had 2 param-
eters, including � and �. Five similarity criteria were considered
within the reference region: the equality of the maximum, mean,
and median values; a least-squares criterion obtained from linear
regression; and a robust criterion to be maximized in the subtrac-
tion images, known as the number of deterministic sign changes
(DSC) (15). Two types of reference regions were used. The first
was the above-defined cerebral VOI, labeled “whole brain”; it was
automatically defined by a threshold, which was varied from 30%
to 50% of the maximum value in the brain, by steps of 5%. The
second type of reference region was a part of the left and right
cerebella delineated by a pair of parallelepipeds that had been
interactively localized on a display of slices in the transaxial,
sagittal, and coronal planes. Two operators were involved so that
interoperator reproducibility could be assessed. Table 2 lists the
different methods that were considered and their abbreviated
names.

For the first 3 criteria, the scaling parameter was equal to simply
the ratio of the maximum, mean, or median values calculated for
the 2 images within the reference region. The 1 or 2 parameters
obtained by linear regression were calculated by analytically min-
imizing the sum, over the VOI voxels i, of the squares (yi – �xi �
�)2. Sign-change criteria were described theoretically by Walter et
al. (15). The stochastic sign-change criterion was not used, because
images were not noisy enough after reconstruction. The DSC
criterion that was instead chosen required the artificial addition of
a deterministic noise, NDSC, which consisted of the alternative
addition or subtraction of a fixed value to or from consecutive
voxel values in the mobile image. A sign change is defined as the
occurrence of a negative value and a positive value in 2 consec-
utive voxels. The DSC criterion was equal to the number of sign
changes detected over the VOI in the subtraction image (refer-
ence � noisy mobile) scanned slice by slice and line by line. This
criterion was maximized within a multiscale 1- or 2-parameter
space (� or (�,�)) using a steepest-descent method combined with
a 3 or 3 � 3 grid search. For �, whose value approaches 1, the
search step took the successive values of 0.01, 0.005, 0.0025, and
0.00125. For �, the search step took the successive values of 40,
20, 10, and 5, where the first value represented approximately 1%
of the maximum value in the reference region. For this DSC
criterion optimization, parameters were initialized with the values
obtained by linear regression. To determine the optimal range of
the noise NDSC, its amplitude was varied from 0% to 10% of the
maximum of the mobile image, with a 1% step. For each patient,
11 criterion maps, 1 for each noise level, were thus calculated as
a function of � and �, with a bin size of 0.005 and 10, respectively.
For each patient, the optimal DSC criterion value together with the
corresponding � and � values were drawn as a function of noise
amplitude.

Analysis of Gray-Level Normalization Results
The objective was to compare the different normalization meth-

ods, that is, to see whether they led to different results and to
decide, whenever possible, whether a method should be recom-
mended or discarded. Several complementary tools were used to
assess the discordance amplitude and the validity or plausibility of
the different normalization results. The different numeric values
obtained by the different methods for the normalization parameters
� and � were compared: � variations were expressed as relative
differences and � variations were expressed as percentages of the
maximum value within the brain. Statistics for these variations
were expressed as the mean � SD of the absolute value of these
variations among the patient population.

The different normalization lines were overlaid on the correla-
tion scatterplot obtained from the reference image and the regis-
tered mobile image, to assess visually the statistical consistency of
the results. This was a global and qualitative analysis.

At the end, the reference image and the different registered and
normalized images together with the corresponding subtraction
images were scrutinized. These images were also evaluated in light
of the clinical and electrophysiologic information (videoelectroen-
cephalography and electrocorticography findings when available)
and the MRI and SPECT conclusions extracted from Véra et al.
(11) and displayed in Table 1. This evaluation allowed us to
quantify the impact of normalization differences on the visual
aspect of SPECT images, especially in cases of nonnegligible
discrepancies between normalization methods.

TABLE 2
Gray-Level Normalization Methods

Method
No. of

parameters Criterion
Reference

volume

Max 1 Maximum values equality Whole brain
Max-cer 1 Maximum values equality Cerebellum
Mean 1 Mean values equality Whole brain
Mean-cer 1 Mean values equality Cerebellum
Med 1 Median values equality Whole brain
Lin-1 1 Least-squares from linear

regression
Whole brain

DSC-1 1 Number of deterministic
sign changes

Whole brain

Lin-2 2 Least-squares from linear
regression

Whole brain

DSC-2 2 Number of deterministic
sign changes

Whole brain
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3D Display and VOI Analysis
An additional interactive tool was developed for further focused

numeric comparison of the reference image and the registered
normalized mobile image. Reference and subtraction images were
displayed side by side in the 3 orthogonal planes using the above-
mentioned twin display. Several parallelepiped 3D VOIs of ad-
justable size were selected interactively and simultaneously dis-
played on both images. After the choice of each pair of left and
right VOIs, real-time calculation results were displayed. Calcula-
tions, such as maximum values, mean values, percentage of voxels
exceeding a given threshold, left–right asymmetry indices, and
comparison with a chosen reference VOI, were performed for each
VOI pair in the reference and mobile images and in the positive
and negative absolute and relative difference images.

RESULTS

Geometric Registration
Satisfactory and stable geometric registration was ob-

tained with both criteria. Indeed, the values of the parame-
ters obtained with the correlation coefficient criterion and
the ratio uniformity criterion were generally identical. The
maximal observed difference was 0.25 pixel or 1°. Conver-
gence was obtained within 2 or 3 iterations. About half of
the time, 1 iteration less was needed for the uniformity ratio
than for the correlation coefficient.

Gray-Level Normalization
Normalization Parameters. The influence of the refer-

ence volume, criterion, and model choices will be succes-
sively described.

Varying the threshold defining the brain volume between
30% and 50% did not affect the results for the 1-parameter
methods except for 1 patient. More precisely, for 5 patients,
the � value was stable within approximately 1% for meth-
ods Mean, Med, Lin-1, and DSC-1, whereas for patient 1,
the � value varied by 3%–7% for these 4 methods. Natu-
rally, method Max was independent of threshold variations.
On the contrary, results were less stable for both of the
2-parameter methods, Lin-2 and DSC-2. Indeed, the � and

� values showed a strong correlation and nonnegligible
variations with the varying threshold. Results are summa-
rized in Table 3.

Results obtained with the 2 types of reference volumes
(automatically selected whole brain and interactively se-
lected part of the cerebellum) were compared with the two
1-parameter methods using the maximum (Max and Max-
cer) and mean (Mean and Mean-cer) criteria. For both
criteria and both operators, the � value varied by a few
percentage points (Table 4, lines 1–4). For the Mean crite-
rion, differences were �10% for patient 1. Interoperator vari-
ations were smaller for both criteria (Table 4, lines 5–6).

Concerning the criteria, the optimal amplitude for the
noise NDSC is first discussed. Criterion maps showed a
slightly noisy behavior for a low NDSC level (from 0% to
2%–3%), as illustrated in Figure 1A. Inversely, the signal-
to-noise ratio in the criterion maps increased when NDSC

amplitude was increased, but the full width to half maxi-
mum of the “crest” in the criterion map increased simulta-
neously (Figs. 1B–1D). Thus, to precisely determine the
maximum criterion value, a noise amplitude of approxi-
mately 4% seemed to be a good compromise. The validity
of this choice was also partly confirmed by the relative
stability that was observed above a 4% noise level for the
optimal parameter values, in particular for the 2-parameter
model. Indeed, the noise amplitude proved to be a far less
critical parameter for the 1-parameter model. The instability
of the 2-parameter results was probably enhanced by the
strong correlation that linked the � and � parameters. The
tunnel shape of the criterion surface in Figure 1 clearly
illustrates this correlation.

The optimal criterion value increased naturally with the
NDSC amplitude: slightly between 0% and 1%; more be-
tween 1% and approximately 8%, with an inflection point
near 4%; and then less and less while approaching asymp-
totically its maximum value. A representative curve of the
DSC criterion value dependence on the NDSC amplitude is

TABLE 3
Influence of Brain Threshold on Gray-Level

Normalization Parameters

Method
� Variations (%)

(mean � SD)
� Variations (%)

(mean � SD)

Max 0 —
Mean 1 � 2 —
Med 1 � 2 —
Lin-1 1 � 1 —
DSC-1 1 � 1 —
Lin-2 6 � 2 4 � 2
DSC-2 10 � 3 6 � 2

Brain threshold was varied in range (30%–50%) of maximum
brain value. For each method, statistics were calculated within
patient population from absolute value of � and � variations.

TABLE 4
Influence of Reference Volume (Whole Brain or

Cerebellum) on Gray-Level Normalization Parameters

Method
� Variations (%)

(mean � SD)

Max vs. Max-cer (operator 1) 6 � 2
Max vs. Max-cer (operator 2) 4 � 4
Mean vs. Mean-cer (operator 1) 4 � 5
Mean vs. Mean-cer (operator 2) 4 � 4
Max-cer (operator 1 vs. 2) 2 � 2
Mean-cer (operator 1 vs. 2) 3 � 1

Reference volumes were selected automatically (whole brain) or
interactively (cerebellum) by 2 different operators. For the 2 meth-
ods Max and Mean, statistics were calculated within patient popu-
lation from absolute value of � discrepancies observed with differ-
ent reference volumes.
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shown in Figure 2. The fact that the slope of the DSC
criterion is maximal at approximately 4% may be an addi-
tional argument in favor of this value for the optimal noise.

We now compare the criteria. For the 1-parameter model,
4 among 5 criteria (Mean, Med, DSC-1, and Lin-1) gave
very similar results (Table 5, line 1). On the contrary, the
Max criterion led to � values that differed substantially
from the values obtained by the other criteria (Table 5, line
2). Especially, differences reached 17% for patient 1 and
11% for patient 3. For the 2-parameter model, the Lin-2 and
DSC-2 criteria gave comparable results (Table 5, line 3).
The rather high � variations were mainly caused by some
high values (i.e., 13% and 5% for patients 1 and 3, respec-
tively).

For the comparison of the 1- and 2-parameter models,
methods Lin and DSC were considered. From the above-
mentioned similarity of results between DSC-1 and Lin-1
on one side and between DSC-2 and Lin-2 on the other side,
one can deduce that the differences existing between Lin-1
and Lin-2 were similar to the differences existing between
DSC-1 and DSC-2, as summarized in Table 5, lines 4 and 5.
Individual discrepancies � 10% are detailed in the follow-
ing. One should remember that the � value equals zero for
1-parameter models. For Lin-2 versus Lin-1, � values dif-
fered by 28% for patient 1 and by 10% for patient 6,
whereas � values differed by 10% for patient 1. On the other

FIGURE 1. Representative DSC criterion
maps obtained for 1 patient with different
noise amplitudes: 2% (A), 5% (B), 8% (C),
and 10% (D). Criterion value (c-axis) is
drawn as function of � (a-axis) and � (b-
axis), the 2 parameters of gray-level nor-
malization model.

FIGURE 2. DSC criterion value as function of noise amplitude
obtained for 1 patient. Horizontal line at top (below 20,000)
shows theoretic maximum criterion value, toward which crite-
rion value should converge asymptotically with increasing
noise.
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side, for DSC-2 versus DSC-1, � values differed by 33% for
patient 1, whereas � values differed by 14%.

Correlation Scatterplot and Normalization Lines. Results
may be classified into 3 categories as illustrated in Figure 3.
The first one (Fig. 3A) included only patient 1 and was
characterized by a widely spread cluster, which probably
resulted from the mixing of several subclusters. In this case,
3 groups of normalization lines could be distinguished. The
Max method line obviously did not fit the correlation cluster
well. Lines issued from the other 1-parameter methods and
from the 2-parameter methods differed from each other;

they both better fitted the correlation cluster, but neither was
clearly satisfactory and it was difficult to decide which was
the most valid. Even if a 2-parameter model should theo-
retically fit the data more tightly, the visual impression would
be in favor of the 1-parameter model. The second category
(Fig. 3B) included 2 patients (patients 3 and 4). In this case, a
narrower cluster was correctly aligned along all normalization
lines except the Max-method line, which was more or less
deviated toward the upper part of the cluster. The third cate-
gory (Fig. 3C) included 3 patients (patients 2, 5, and 6). In this
case, the even narrower cluster was well described by all
normalization lines, which were very similar to one another.

Reference Images, Registered Normalized Mobile Im-
ages, and Subtraction Images Compared with Clinical Data
and Other Imaging. The 3 categories that were exhibited in
the previous paragraph are illustrated in Figure 4. Three
normalization methods representing the 3 groups of meth-
ods distinguished in the previous paragraph were chosen,
that is, the Max method, another 1-parameter method
(Mean), and a 2-parameter method (DSC-2).

Not surprisingly, these methods differed noticeably in the
first category (Fig. 4A). Normalized images were apparently
either not enough saturated or too much saturated for methods
Max and DSC-2, respectively. From the global visual aspect,
the most satisfactory method was probably the Mean method
in this particular case. Number, size, and intensity of hot spots
also changed significantly in the subtraction images between

TABLE 5
Influence of Criterion and Normalization Model on

Gray-Level Normalization Parameters

Method
� Variations (%)

(mean � SD)
� Variations (%)

(mean � SD)

Mean, Med, Lin-1, DSC-1
vs. each other �1 —

Max vs. other 1-parameter
methods 6 � 6 —

Lin-2 vs. DSC-2 4 � 5 2 � 1
Lin-1 vs. Lin-2 11 � 9 6 � 3
DSC-1 vs. DSC-2 9 � 11 5 � 5

Statistics were calculated within patient population from absolute
value of � and � discrepancies observed between pairs of methods.

FIGURE 3. Correlation scatterplots with
overlay of different normalization lines.
Plots are shown from 3 representative pa-
tients, patients 1 (A), 4 (B), and 2 (C). Each
voxel within reference volume is repre-
sented by a point whose coordinates are
equal to interictal and ictal counts. These
counts have been scaled to maximum in-
terictal and ictal counts, respectively. Di-
agonal dashed line is normalization line
obtained by method Max. All other lines
through origin are normalization lines ob-
tained by 1-parameter methods; the 2 lines
deviating from origin are normalization
lines obtained by 2-parameter methods.
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the 3 classes of methods. In this case of hemispheric atrophy,
extensive abnormalities were already present in the interictal
state, and the whole brain seemed to be variably involved in the
epileptic process; it was thus difficult to know which subtrac-
tion image better approached the clinical reality. However,
clinical seizure and SPECT–MRI overlay images had shown
right frontotemporal involvement, which is compatible with
the findings of subtraction images obtained by all normaliza-
tion methods apart from the Max method. Also, the contralat-
eral temporal spot, which is exhibited with all methods but the
Max method, is clinically plausible.

For the second category (Fig. 4B), the Max method differed
to a variable degree from the other 2 methods. In the example
shown here, the ictal images were slightly undersaturated for
the Max method, leading, in the subtraction image, to a smaller
and less intense difference in the right temporal region, when
compared with the other 2 methods. Despite the consistency of
ictal electroencephalography and SPECT–MRI overlay images
with this temporal spot, the state of this patient (patient 4) was
not improved after surgery. Other foci exhibited in the sub-
traction images, as well as surgical sequelae, might explain this
outcome. The 2 patients of this category presented with limited
abnormalities consisting of a focal area of hypoperfusion on
interictal SPECT images.

For the last category (Fig. 4C), all methods gave similar

normalizations and hence comparable subtraction images. In
the case of patient 2, shown here, clinical seizure, electrocor-
ticography, MR images, and SPECT–MRI overlay images
gave a concordant right frontal localization, but overlay images
and subtraction images showed bilateral involvement. The
unilateral surgery was not successful in this patient. In patient
5, on the contrary, the right frontal focus exhibited in all
subtraction images and consistent with MRI and electrocorti-
cography was successfully cured by a right frontal lobectomy.
The 3 patients of this category had interictal SPECT images
visually interpreted as normal.

3D Display and VOI Analysis
An example of reference, mobile registered normal-

ized, and difference images is displayed in Figure 5.
Numeric results are given in Table 6. In the column
showing the ictal-to-interictal ratios of the means in
cerebellar VOIs, the ratio corresponding to method Mean
deviates from 1 for patients A and C. This deviation
illustrates the above-mentioned impact of the reference
volume choice on normalization. As expected, the 3 types
of normalization methods exhibited large discrepancies
for patient A, a noticeable discrepancy between method
Max and other methods for patient B, and comparable
results for patient C.

FIGURE 4. Reference images (interictal),
registered and normalized images (ictal),
and corresponding subtraction images
(ictal – interictal), which were obtained by
3 different normalization methods (Max,
Mean, and DSC-2). Images in A, B, and C
are from same patients as in Figures 3A,
3B, and 3C, respectively. Isocontours
drawn from reference images are superim-
posed on all images. Subtraction images
are saturated at 30% of maximum of ref-
erence images, but no background has
been removed.
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DISCUSSION

Gray-level normalization has been addressed in different
contexts (6–10,16–18). Finding the optimal gray-level nor-
malization method for comparing 2 scans from the same
patient is not simple. This normalization is, however, man-
datory, whatever method may be used for the comparison.
In the case of epilepsy, ictal and interictal images are
currently directly compared (5,19–21) and subtraction im-
ages have become a standard (9,11,18,22–26). Registration
and normalization should also precede any VOI analysis,

making it more accurate than if performed separately. The
normalization method (reference volume, normalization cri-
terion, and model), its validation, and some limitations are
discussed below.

The reference volume choice should be driven by knowl-
edge or at least assumptions depending on the disease under
study. In the absence of precise knowledge, the chosen refer-
ence volume should probably be large enough using anatomic
or statistical (18) arguments. For epilepsy, the classic choice of
cerebellum is not appropriate, because of its possible involve-
ment in the epileptic process (20,27). The contralateral lobe has
been proposed for lateralized foci, whereas the cerebellum was
kept as a compromise for bilateral foci (9). In our study
population, the cerebellar VOI led to normalization that gen-
erally differed from whole-brain normalization. Additionally,
some interoperator variability was also observed in results that
issued from different cerebellar VOI choices. For other dis-
eases, such as schizophrenia, whole brain has been reported to
be a more “reliable and specific” reference than cerebellum (6).

Whole brain seems to be a satisfying choice if interictal
reference images show only limited abnormalities (focal hy-
poperfusion or no visible abnormality), which was the case for
all patients but one. The threshold value defining the brain
seems to be a somewhat insensitive parameter and should,
besides, not be critical if a robust similarity criterion is used.
However, the validity of a global normalization method for
extreme cases such as patient 1 is questionable, and hence, so
also is the existence of any valid reference volume.

Concerning the normalization criterion, there were, sur-
prisingly, no major differences between criteria with differ-
ent degrees of robustness apart from the maximum, which
should be discarded. Mean and median were similar, despite
the a priori low robustness of the mean. The DSC criterion or

FIGURE 5. Reference images (interictal), reg-
istered and normalized images (ictal), and cor-
responding subtraction images (ictal – interic-
tal) for same patient as in Figures 3C and 4C
are shown in 3 orthogonal planes. Isocontours
delimiting cerebral VOI drawn from reference
images, and contours delimiting parallele-
piped target VOI, are superimposed on all
images.

TABLE 6
Comparison of Interictal and Ictal Images

Using VOI Analysis

Patient Method

Ictal-to-interictal
ratio of means
in cerebellar

VOI

Ictal-to-interictal
relative differences in
1 selected target VOI

Mean
(%)

Pixels above
10% (%)

A Max 0.96 44 97
Mean 1.11 65 97
DSC-2 1.32 93 97

B Max 0.95 12 56
Mean 1.00 17 73
DSC-2 1.00 17 70

C Max 1.07 23 84
Mean 1.05 21 81
DSC-2 1.04 19 76

Patients A, B, and C are the patients of Figs. 3, 4, and 5,
respectively, and are representative of the 3 categories distin-
guished for gray-level normalization. Ratio of means and relative
differences were calculated between reference image and mobile
normalized image, according to different normalization methods.
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its variant, the stochastic sign changes criterion, was initially
proposed for the comparison of 2-dimensional scintigraphic
images (28). This criterion has also been used for 3D geomet-
ric registration (29), occasionally including a normalization
factor (1). But, to our knowledge, it has not yet been explicitly
applied to gray-level normalization of 3D data. Results using
this criterion did not differ strongly from linear regression in
the cases presented here, apart from the complex case of
patient 1. Other authors have used another robust criterion, that
is, the minimization of entropy in the difference histogram
after initialization using linear regression (25). All criteria rely
on assumptions that cannot always be verified about the dif-
ference images. However, these assumptions are usually less
restrictive for robust criteria.

Like the reference volume, the gray-level transformation
model should be chosen from a priori knowledge (physiologic
or physical) or from a posteriori knowledge (statistical and,
more generally, driven by the data). In the absence of certitude,
a linear model seems to be a reasonable choice. A robust
implementation of a 2-parameter linear model has already been
proposed for the comparison of 2-dimensional scintigraphic
images using the stochastic sign changes criterion (28) and
applied in different contexts, such as immunoscintigraphy or
parathyroid thallium–technetium scintigraphy (30). Another
robust implementation of a 2-parameter linear model, the so-
called mode line, has been proposed in 2-dimensional abdom-
inal leukocyte imaging (31). Concerning the number of param-
eters, the 1- and 2-parameter models sometimes led to strongly
different results. Even if a 2-parameter model would fit the data
more tightly a priori, we think that, if there is no physiologic or
physical argument for a 2-parameter model and if the data do
not support such a model, a 1-parameter model has a lower
probability to artificially wrongly describe the data. Indeed, an
additional degree of freedom gives the freedom to approach the
truth but also to freely generate erroneous results. Arguments
for choosing a simple proportional scaling, as recommended
elsewhere (32), could be the simplicity of the model and the
stability of the results when either the reference region thresh-
old or the noise level for the DSC criterion was varied. This
stability should be opposed to the relative instability of the
results for the 2-parameter model, at least partly due to the high
correlation linking these 2 parameters.

For the technical validation of registration and normal-
ization, the 3D display and the correlation scatterplot to-
gether with the normalization line are useful tools. The
correlation scatterplot contains more information than does
the 1-dimensional pixel-intensity distribution of the subtrac-
tion images. Thus, the criterion sometimes used to validate
a gray-level normalization—that is, the requirement that
this distribution should be approximately centered on zero
(23)—may probably lead to erroneous conclusions more
often than does the criterion of a good visual global fit
between the normalization line and the correlation cluster.

The clinical validation is particularly difficult, because dif-
ferences between methods are not so important that they would
lead to diverging conclusions. As long as we do not know

exactly what happens in the epileptic brain, there is no refer-
ence technique to get the ground truth and consequently to
know whether an apparently correct normalization is better
than another normalization. A 2-y follow-up after surgery is
usually recommended to draw conclusions about the actual
localization of epileptogenic foci. This information was not
available for each patient in this study and would not always be
able to exhibit the optimal normalization method. Moreover,
this study was essentially focused on the intrinsic technical
comparison of different normalization methods and not on
clinical validation that would require a large series of patients
with a long postsurgical follow-up.

Using physical or numeric phantoms would not help one
to compare methods or to assess their validity. Indeed, in
this way one could test only simplified models, not models
that reproduce the complexity of the unknown reality,
which is the core of the problem and precisely what makes
the comparison difficult.

No statistical analysis was performed. We intentionally
did not average images across patients using a classic ana-
tomic standardization (33) as was done by Lee et al. (34).
We believe that such a standardization is particularly un-
suited to an ictal–interictal comparison in which variable
patterns of hypo- and hyperperfusion are of unknown and
variable localization and affect both ictal and interictal
images. With a restricted number of scans, 2 in our case, any
statistical analysis at the pixel level is not applicable. This
holds for parametric statistical analysis (32) and even for
nonparametric statistical analysis, although the latter, like
statistical analysis involving permutation, typically requires
fewer assumptions (35).

We addressed only the gray-level normalization issue and
did not try to assess any significant differences at a pixel or
cluster level. Such a further step would require knowledge
about the noise or variance in the reconstructed images. When
more than 2 scans are available, either from the same patient or
from different patients after anatomic standardization, noise
can be estimated directly from the data. More generally, in-
cluding the 2-scan case, noise can also be derived from sim-
ulations (36) or from theoretic models that have been devel-
oped for different reconstruction methods (37,38). But these
noise estimations suffer from uncertainties and approxima-
tions. Moreover, applying this noise knowledge in the 2-scan
case is not straightforward. Another approach could be noise
suppression by some regularization procedure (39,40) that
would lead to almost noise-free images and, hence, almost
noise-free subtraction images.

Among possible extensions, the patient sample could be
enlarged to further validate this comparison tool, especially
to check that no category was missed. A clinical validation
could also be performed on a large series of patients cov-
ering a wide variety of epileptic patterns. Further, it would
be interesting to extend and adapt this tool to other brain
pathologies (e.g., Parkinson’s disease, Alzheimer’s disease,
and depression) or to other conditions (e.g., activation and
drug action). This tool could also be valuably combined
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with available multimodality software that fuses functional
images (PET, SPECT) with anatomic images (MRI, CT).

CONCLUSION

When comparing intrapatient brain SPECT images, one
should be aware of the potential impact of the gray-level
normalization method on clinical interpretation. Normalized
and subtraction images together with numeric VOI analysis
results should always be considered with care because of the
sometimes unavoidable uncertainty associated with the nor-
malization choice (reference volume, optimized criterion,
number of parameters) and its consequences on the number,
intensity, and size of spots in the difference images. From the
results of this study, however, a simple robust scaling should
be recommended for ictal–interictal images. More precisely,
the classic scaling based on the mean in the brain volume
seems to be a good approximation in most cases. On the
contrary, scaling based on the maximum value should be
discarded. Moreover, a 2-parameter gray-level normalization
model is not necessary; that is, only the scaling factor needs to
be determined in the linear model, with the additive constant
set to zero. Only in rare cases with highly dissimilar ictal–
interictal images does the question of a valid normalization
remain open.
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