Heterotopic Ossification*

Dia Shehab, MD¹; Abdelhamid H. Elgazzar, MD²; and B. David Collier, MD²

¹Department of Medicine, Faculty of Medicine, Kuwait University, Safat, Kuwait; and ²Department of Nuclear Medicine, Faculty of Medicine, Kuwait University, Safat, Kuwait

Heterotopic ossification (HO) is the presence of bone in soft tissue where bone normally does not exist. This condition should not be confused with metastatic calcification—such as may be seen with hypercalcemia—and dystrophic calcification, which occurs in morbid tissues such as tumor. HO was first recognized for many years—and numerous methods of diagnosis and treatment applied—complete knowledge of the etiology of HO and fully successful prevention or treatment of this condition remain elusive. With particular emphasis on the use of bone scanning for diagnosis and treatment planning, this article reviews current concepts of classification, etiology, pathophysiology, diagnosis, and treatment of HO.

CLASSIFICATION AND INCIDENCE OF HO

There are 2 versions of HO. By far the most common is the acquired form. In the acquired form, HO usually either is precipitated by trauma (such as fracture, total hip arthroplasty [THA], or direct muscular trauma) or has a neurogenic cause (such as spinal cord injury or central nervous system injury). In addition, there is the rare hereditary form known as myositis ossificans progressiva, which is briefly discussed near the end of this article.

The more common, acquired form of HO may occur after virtually any type of musculoskeletal trauma (3,7–14). For example, HO may occur after orthopedic procedures such as hip, knee, shoulder, or elbow arthroplasty; fractures; joint dislocations; or soft-tissue trauma, with the musculus quadriceps femoris and musculus brachialis often involved (11). HO includes the specific posttraumatic variant myositis ossificans, in which patients often have soft-tissue ossification at sites of trauma adjacent to long bones. Less commonly encountered sites of posttraumatic HO are abdominal incisions, wounds, the kidneys, the uterus, the corpora cavernosa, and the gastrointestinal tract (15–17). The other common traumatic form of HO occurs after injury to the nervous system (usually without direct trauma to the soft tissues, where bone formation will occur) and is therefore known as posttraumatic neurogenic HO. HO often occurs among patients with recent spinal cord injury, frequently an adolescent or young adult of either sex: HO develops only in sites distal to the level of the spinal cord injury. Closed
head injuries, strokes, and brain tumors also may lead to HO (7,18–22). Notable, but less often encountered in most clinical practices, are cases of HO after burns, sickle cell anemia, hemophilia, tetanus, poliomyelitis, multiple sclerosis, and toxic epidermal necrolysis (23). Finally, some cases of idiopathic HO occur without a recognized precipitating condition.

The incidence of acquired HO varies greatly from one patient population to another. Among patients with spinal cord injury, the incidence ranges from 20% to 30%, and once HO develops there is up to a 35% chance that the patient will eventually have significantly limited joint motion (24). Among patients with closed head injury, HO develops in 10%–20%, and in 10% of these patients with HO, limitations in joint motion will develop (7). The incidence of HO after THA ranges from 0.6% to 90%, although most studies agree that the incidence of HO is approximately 53% in THA (14,25,26). Often, the HO that forms after THA is minor and not clinically significant.

CLINICAL PRESENTATION AND DIFFERENTIAL DIAGNOSIS

The clinical signs and symptoms of HO may appear as early as 3 wk or as late as 12 wk after the musculoskeletal trauma, spinal cord injury, or other precipitating event (27–29). A typical case, such as is frequently encountered in many clinical practices, would be a 25-y-old paraplegic man in whom fever with swelling and erythema develops around a stiffening hip joint 8 wk after a spinal cord injury. In addition to the hip, other commonly involved sites (in decreasing order of frequency) are the knees; the shoulders; the elbows; and even, very rarely, the feet (28,30).

Loss of joint mobility and resulting loss of function are the principal complications of HO (28,31,32). For example, the hip that has HO may fuse or become ankylosed in a flexed position, a deformity that makes care of the paraplegic patient difficult. Other complications of HO include peripheral nerve entrapment and pressure ulcers (33,34). Eighty percent or more of cases of HO run a relatively benign course without any of these complications. In the remaining 10%–20% of cases, significant loss of motion develops, with ankylosis in up to 10% of these (7).

Largely because of the nonspecificity of the patient’s signs and symptoms, diagnosis of HO in its initial stages is difficult. Early in the course of the disease, HO may cause pain (if sensation is intact), fever, swelling, erythema, and decreased joint mobility. In this early inflammatory phase, the condition may mimic cellulitis, thrombophlebitis, osteomyelitis, or tumor (2–4,28). Later, reduced range of motion and ankylosis of the joint may occur (32). Clinicians often turn to conventional radiography followed by 3-phase bone scanning to confirm the diagnosis of HO and establish both the extent and the metabolic activity of this ossifying lesion.

PATHOPHYSIOLOGY OF HO

HO is, by definition, the formation of bone within soft tissue. This morbid soft-tissue ossification has a pathogenesis distinct from metastatic and dystrophic soft-tissue calcification. The transformation of primitive cells of mesenchymal origin, present in the connective tissue septa within muscle, into osteogenic cells is thought to be the pathogenesis of HO (35). Chalmers et al. (36) proposed 3 conditions needed for HO: osteogenic precursor cells, inducing agents, and a permissive environment. Urist et al. (35) discovered that demineralized bone matrix could invoke bone formation ectopically and postulated a small (<0.025 μm), hydrophobic bone morphogenetic protein as a causative agent. This protein is apparently capable of changing the development of mesenchymal cells in muscle from fibrous tissue into bone when respiratory and nutritional requirements are also fulfilled (35). It has been postulated that bone morphogenetic protein is liberated from normal bone in response to venous stasis, inflammation, or diseases of connective tissue attachments to bone, conditions that often accompany immobilization or trauma (35). Some investigators proposed the presence of a centrally mediated factor (37,38). The role of prostanoid E2 (PGE2) has recently been suggested as a mediator in the differentiation of the progenitor cells (39). The heterotopic bone may begin some distance from normal bone, later moving toward it (35). Interestingly, experiments have also shown that muscle injury alone will not cause the ectopic ossification, concomitant bone damage also being required (35). Kurer et al. (40) took sera from 4 paraplegic patients with HO and 4 paraplegic patients without HO; the sera were incubated with human osteoblasts in tissue culture, and their metabolic activity was measured quantitatively. These investigators found that the sera of ossifying patients had significantly greater levels of osteoblast-stimulating factors, which may contribute to the pathogenesis of HO. Other contributing factors include hypercalcemia, tissue hypoxia, changes in sympathetic nerve activity, prolonged immobilization, remobilization, and disequilibrium of parathyroid hormone and calcitonin (41,42).

Early in the course of HO, edema with exudative cellular infiltrate is present, followed by fibroblastic proliferation and osteoid formation (5). The distinctive histologic properties of myositis ossificans, which are illustrative of HO as a whole, help the pathologist distinguish myositis ossificans from malignant neoplasms such as parosteal osteosarcoma or osteochondroma. Myositis ossificans shows ossification principally in the periphery, so that an ossified and radiopaque peripheral rim surrounds a nonossified and radiolucent center; the opposite is true of osteosarcoma, a malignant tumor that often forms dense central ossification (43,44). On histologic examination, myositis ossificans shows cellular fibrous proliferation, osteoid, and primitive bone, which, if biopsied too early, may be mistaken for that of osteosarcoma (43). Mature ossified foci may even contain reticuloendothelial cells (45). The periphery of myositis
ossificans shows mature lamellar bone surrounded by a capsule of compressed muscle fibers and fibrous tissue (43). A radiolucent cleft has been identified radiographically around myositis ossificans lesions, further distinguishing these rapidly appearing and maturing lesions both from osteosarcoma, which maintains an attachment to normal bone, and from osteochondroma, which features an open communication between itself and the medullary cavity of the host bone (35).

The development of HO is extraarticular and occurs outside the joint capsule. Bone forms in the connective tissue between the muscle planes and not within the muscle itself (5). The new bone can be contiguous with the skeleton but generally does not involve the periosteum (5,40). Mature HO shows cancellous bone and mature lamellar bone, vessels, and bone marrow with a minor amount of hematopoiesis (27,42).

LABORATORY DATA

Alkaline phosphatase has been recommended as a useful screening tool for HO (7,46). Alkaline phosphatase levels become abnormal approximately 2 wk after injury. In the typical case of HO, the alkaline phosphatase levels reached approximately 3.5 times the normal value 10 wk after the inciting trauma, before returning to normal at approximately 18 wk (46). Unfortunately, alkaline phosphatase levels cannot be used to draw clinical conclusions about maturity or recurrence of HO: Values may be normal in the presence of active HO (46,47) or may remain elevated for years, calling into question whether maturity has been reached at all (48). Nonetheless, this inexpensive and easily obtained test is frequently used to detect early HO.

Recently, measurement of the 24-h PGE2 urinary excretion has been recommended as a valuable indicator of early HO. A sudden increase in PGE2 excretion points to the need for bone scans to qualify the process. The PGE2-blocking agent indomethacin is effective in slowing the HO disease process, and indomethacin is therefore useful in treating HO (49).

IMAGING STUDIES

The typical radiologic appearance of HO is circumferential ossification with a lucent center (50). However, conventional radiographs usually show the evolution of HO lesions, with a detectable calcific density present only 4–6 wk after the results of the 3-phase bone scan have become positive (46,51).

Conventional radiographs have been used to classify HO that develops after THA (31,52). By reviewing the classification of Schmidt and Hackenbroch (52) (Table 1), one can appreciate the typical patterns of HO involvement about the hip. Note, in particular, that HO often forms in the soft tissues above or below the greater trochanter of the femur. HO may progress to ankylosis with bony bridging from the femur to the pelvis.

<table>
<thead>
<tr>
<th>Region or grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region I</td>
<td>Heterotopic ossifications strictly below tip of greater trochanter</td>
</tr>
<tr>
<td>Region II</td>
<td>Heterotopic ossifications below and above tip of greater trochanter</td>
</tr>
<tr>
<td>Region III</td>
<td>Heterotopic ossifications strictly above tip of greater trochanter</td>
</tr>
<tr>
<td>Grade A</td>
<td>Single or multiple heterotopic ossifications < 10 mm in maximal extent without contact with pelvis or femur</td>
</tr>
<tr>
<td>Grade B</td>
<td>Heterotopic ossifications > 10 mm without contact with pelvis but with possible contact with femur; no bridging from femur to proximal part of greater trochanter, with no evidence of ankylosis</td>
</tr>
<tr>
<td>Grade C</td>
<td>Ankylosis by means of firm bridging from femur to pelvis</td>
</tr>
</tbody>
</table>

 Three-phase bone scintigraphy is the most sensitive imaging modality for early detection of HO (7,27,29,45–47, 53–55). Specifically, flow studies and blood-pool images will detect incipient HO approximately 2.5 wk after injury, with findings on delayed scintigrams becoming positive approximately 1 wk later. Radiography findings will not become positive in HO for at least another 1–4 wk (29,46). Activity on the delayed bone scans usually peaks a few months after injury, after which the intensity of activity on these scans progressively lessens, with a return toward normal at 6–12 mo. Most bone scan findings return to baseline within 12 mo. However, in some cases activity remains slightly elevated even though the underlying HO has become mature (48). During the course of HO, the delayed bone scan may show increased activity even after the flow study and blood-pool images have returned to normal.

Serial bone scans have been used successfully to monitor the metabolic activity of HO and determine the appropriate time for surgical resection, if needed, and to predict postoperative recurrence (8,9,27,29). A technique for serial quantitative bone scanning to assess the maturity of heterotopic ossification—based on the original 1977 report of Tanaka et al. (9)—is presented in the Appendix.

Soft-tissue ossification may be detected at a relatively earlier stage by CT than by standard radiography (56). Although often thought to be a poor choice for evaluating densely calcified bone, MRI also has been used in the evaluation of HO. One study showed that a rim of low signal intensity is the most common finding and is a typical MRI appearance of HO (57).

Tumor, infection, inflammation, and deep venous thrombosis are the major entities from which HO must be distinguished on imaging studies (Fig. 1). The rapid development, histologic makeup, and radiographic configuration of myo-
Heterotopic Ossification distinguish it from other conditions, including osteosarcoma and osteochondroma. Cellulitis and thrombophlebitis also must often be differentiated, particularly in debilitated patients, and the possibility of external compression by HO should be kept in mind when one is investigating deep venous thrombosis (46,47,58).

Osteomyelitis may represent a more difficult diagnostic challenge, particularly because 67Ga- and, rarely, 111In-labeled white blood cells have been reported to accumulate in areas of immature HO (29,59,60). Thus, when imaging a paraplegic patient, one must be aware that uptake of these infection-avid agents may in fact be caused by unsuspected HO. The uptake of 67Ga by foci of HO undergoing active osteogenesis may be explained by the fact that this radio-nuclide shares some of the properties of bone-imaging agents. Fortunately, 67Ga uptake in HO is proportional to the uptake of 99mTc-diphosphonates, in contrast to the relatively greater 67Ga uptake characteristic of osteomyelitis (59,60). 67Ga uptake might otherwise be mistaken for infection or tumor (Fig. 2). 201TI also has been reported to accumulate at sites of HO early in the course of the disease, with less intense uptake of this tracer seen at later dates (61).

When interpreting 3-phase bone scans, one may increase diagnostic accuracy by noting the characteristic patterns of HO. The proximal joints typically are involved: hips and femurs, knees, shoulders, and elbows (Fig. 3) (20,28,62). More than a single joint region often is involved, and the condition often is bilateral (e.g., both hips of a paraplegic patient showing intense soft-tissue uptake because of HO). In addition, although commonly seen in patients with spinal cord injury, HO in the region of the knee is seldom present in patients with traumatic brain injury. When HO does affect the knee region, the most common site of involvement is the medial aspect of the joint (28).

TREATMENT OF HO

Complications of HO include peripheral nerve entrapment, pressure ulcers, and functional impairment if joint ankylosis develops (33,34). Therefore, prophylaxis or early treatment of HO is extremely important. Once the diagnosis of early HO is confirmed, passive range-of-motion exercises to maintain joint mobility are recommended (28,41). More aggressive joint manipulation has been suggested (20), although the trauma resulting from this approach carries the risk of inciting further HO (62).

Diphosphonates and nonsteroidal antiinflammatory drugs (such as indomethacin and ibuprofen) have been used for the prophylaxis or treatment of HO (63–68). However, there is no consensus on which drug should be used and when treatment should begin. As for the use of imaging in directing treatment, Orzel and Rudd (46) recommended starting diphosphonates as soon as elevated alkaline phosphatase is noted or imaging studies establish the presence of HO. Garland and Orwin (47), on the other hand, concluded that the efficacy of ethane-1-hydroxy-1,1-diphosphate (EHDP) in preventing or “arresting” HO was not yet established. Nonsteroidal antiinflammatory drugs have successfully been used as prophylaxis for HO among patients undergoing THA (68).

Radiation therapy has also successfully been used to prevent or treat HO (69–73). For example, Coventry and Scanlon (69) reported in 1981 the efficacy of postoperative irradiation in preventing HO after THA in 48 high-risk patients. A prospective, randomized study by Knelles et al. (72) compared 2 groups: one that received indomethacin for 7 d and another that received a single radiation exposure after THA. On the basis of these data, Knelles et al. recommended that indomethacin be used for 7 d as a prophyl-
laxis against HO for most patients undergoing THA but that a single irradiation of 7 Gy be reserved for those patients in whom HO has developed after a previous operation or who have contraindications to receiving indomethacin.

Planning for surgery performed to increase joint mobility or alter limb position also requires the use of imaging. If surgical resection is delayed until after HO has reached maturity (i.e., until HO becomes less metabolically active and has a decreased rate of bone formation), then both intraoperative complications, such as hemorrhage, and postoperative recurrence of HO are less likely (29). One approach, which does not require bone scanning, is to delay surgery as long as is practical. In fact, Garland (7) has recommended different schedules for surgical intervention, depending on the etiology of the condition underlying the HO: 6 mo after direct traumatic musculoskeletal injury, 1 y after spinal cord injury, and 1.5 y after traumatic brain injury. However, excessive delay leaves patients at risk of

FIGURE 2. Fever (100.5°F) and left knee pain developed in 22-y-old man after closed cranial trauma, raising concern about osteomyelitis or other local infection. Initial radiography findings were normal. (A) ⁶⁷Ga image shows intense increased uptake in anteromedial aspect of distal left thigh. (B) From left to right, selected flow study images, blood pool images, and delayed bone scan images obtained shortly thereafter show increased flow, hyperemia, and increased uptake, respectively, also in anteromedial aspect of distal left knee. ⁶⁷Ga uptake is no more intense than is delayed ⁹⁹mTc-MDP uptake, a finding favoring diagnosis of HO. (C) Subsequently obtained radiograph shows HO at this site. (D) Three-phase bone scan 18 mo after injury shows significantly less abnormal activity on (from left to right) flow study images, blood pool images, and delayed bone scan images. (Reprinted with permission of (58).)
the development of joint ankylosis or other complications of HO. Therefore, attempts have been made to stage the maturity of HO on the basis of imaging studies. Unfortunately, accurate indicators of maturity have remained difficult to obtain. Radiographic depictions of maturity, consisting of lesions with distinct margins and well-defined trabeculations, have not proved to be reliable predictors of nonrecurrence of HO after surgery (48). For several investigators (8,9,27), serial preoperative bone scans that quantify the ratio of heterotopic to normal bone activity have successfully predicted both intraoperative complications and postoperative nonrecurrence; a decreasing or stable scintigraphic activity ratio is considered the hallmark of mature HO (Appendix). As HO becomes mature, there also is a significant decrease, often reaching a normal level, in both flow study and blood-pool activity. The ideal candidate for surgical resection of HO will have no joint pain or swelling, a normal alkaline phosphatase level, and a 3-phase bone scan indicating mature HO (Table 2). As for other imaging modalities, CT has identified a low-density material in the soft tissue adjacent to areas of ectopic ossification postulated to be immature unossified connective tissue, the violation of which may be responsible for the serious intraop-

![FIGURE 3.](Image) In 46-y-old quadriplegic woman, HO developed at multiple sites: both shoulders, left elbow, proximal right clavicle, and left hip. Less intense increased uptake in hands, feet, and knees is caused by arthritis.

berative bleeding frequently experienced during resection of HO (29). Thus, CT may also become part of the presurgical evaluation of HO patients, indicating areas that should either be avoided or be carefully removed during surgery. In any event, given the severe complications frequently accompanying surgery, as well as the increased likelihood of poor wound healing, cellulitis, and osteomyelitis (and possible recurrence of HO) after surgery in many of these patients, it appears that surgery should be undertaken only if the expected benefits clearly outweigh the risks.

The autosomal dominant, congenital form of HO, myositis ossificans progressiva (also known in the literature as fibrodyssplasia ossificans progressiva), is extremely rare (74–83). It is associated with skeletal abnormalities including malformation of the great toes and shortening of digits, as well as other clinical features such as deafness and baldness (74,75,77,79,83). Although symptoms have been reported to develop before patients with this disease are 4 y old, the diagnosis is frequently missed because of misunderstanding of the nature and cause of the soft-tissue ossification present, which has been mistaken for bruising, mumps, and sarcoma (75), and because of initial failure to appreciate the significance of the malformations of the toe and other digits (75,79). Progression to severely impaired joint mobility and ankylosis by early adulthood is the hallmark of this disease. Treatment options are limited: The trauma of surgery may actually aggravate the condition, and medical treatment with diphosphonates to inhibit the crystallization of hydroxyapatite in the bone (7) has not been found to be effective, although such treatment has been used as prophylaxis against recurrence of HO after surgical resection (75).

CONCLUSION

HO presents multiple diagnostic and therapeutic challenges. Although clinically significant HO occurs infrequently, appropriate use of laboratory and imaging data, particularly alkaline phosphatase values, PGE₂, and bone

<table>
<thead>
<tr>
<th>TABLE 2</th>
<th>Criteria for Recommending Surgical Removal of Heterotopic Ossification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterion</td>
<td>Description</td>
</tr>
<tr>
<td>1</td>
<td>Significantly limited range of motion for involved joint (e.g., hip should have <50° range of motion); for most patients, progression to joint ankylosis is most serious complication of heterotopic ossification</td>
</tr>
<tr>
<td>2</td>
<td>Absence of local fever, swelling, erythema, or other clinical findings of acute heterotopic ossification</td>
</tr>
<tr>
<td>3</td>
<td>Normal serum alkaline phosphatase</td>
</tr>
<tr>
<td>4</td>
<td>Return of bone scan findings to normal or near normal; if serial quantitative bone scans are obtained, there should be a sharply decreasing trend followed by steady state for 2–3 mo.</td>
</tr>
</tbody>
</table>
scintigraphy, permits early detection and more successful management of this fascinating yet troublesome ailment. For many patients at risk for HO, either a nonsteroidal antiinflammatory drug (such as indomethacin or EHDP) or local radiation therapy is recommended. Clinicians may request bone scanning to confirm the diagnosis of HO, to determine whether medical treatment is warranted, and to choose the appropriate time for surgical resection of HO.

APPENDIX

Technique for Serial Quantitative Bone Scans to Assess Maturity of HO

The following technique is based on the report of Tanaka et al. (9).

Imaging

- Radiopharmaceutical: 740 MBq (20 mCi) 99mTc-methylenediphosphonate.
- Imaging time: 3 h after intravenous injection.
- Patient positioning: anterior supine view of hips or other involved regions. Consistent positioning on serial studies is important.
- Data acquisition: 500,000-count images. Use a 256 × 256 matrix for a gamma camera with a 400-mm field of view. For other systems, use a matrix size that will provide approximately 2-mm-wide pixels.

Data Analysis

Using 2 × 2 pixel (approximately 4 × 4 mm) square regions of interest, search over the site of HO for the area of highest activity. When analyzing serial quantitative bone scans, present results as a percentage relative to the most abnormal result in the series. For example, such a serial quantitative data analysis might show uptake ratios for the most active site of HO as follows: 100% at 2 mo, 80% at 3 mo, 83% at 4 mo, 75% at 5 mo, 60% at 6 mo, 35% at 10 mo, and 30% at 12 mo. Instead of using absolute uptake in the form of counts, one may use serial determinations of abnormal uptake relative to a normal skeletal structure (such as the opposite hip).

Recommendations

If the technique is to be used to time surgical resection, obtain a baseline quantitative bone scan as soon as possible after the onset of clinical symptoms of HO. Obtain serial scans at between 1- and 6-mo intervals. More frequent serial scans improve the accuracy of the technique.

Quantitative results depend on consistent technique, particularly with respect to radiopharmaceutical dose, collimation and other imaging parameters, and both patient and gamma camera positioning. Changes in renal function also alter results.

Serial quantitative bone scans that show a sharply decreasing trend followed by a steady state over a 2- to 3-mo period are the most reliable scintigraphic parameter for determining whether HO has reached maturity.

REFERENCES

