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Tumor detection depends on the contrast between tumor
activity and background activity and on the image noise in
these 2 regions. The lower the image noise, the easier the
tumor detection. Tumor activity contrast is determined by
physiology. Noise, however, is affected by many factors,
including the choice of reconstruction algorithm. Previous
simulation and phantom measurements indicated that the
ordered-subset expectation maximization (OSEM) algorithm
may produce less noisy images than does the usual filtered
backprojection (FBP) method, at equivalent resolution. To
see if this prediction would hold in actual clinical situations,
we quantified noise in clinical images reconstructed with both
OSEM and FBP. Methods: Three patients (2 with colon can-
cer, 1 with breast cancer) were imaged with FDG PET using
a “gated replicate” technique that permitted accurate mea-
surement of noise at each pixel. Each static image was
acquired as a gated image sequence, using a pulse generator
with a 1-s period, yielding 40 replicate images over the 10- to
15-min imaging time. The images were or were not precor-
rected for attenuation and were reconstructed with both FBP
and OSEM at comparable resolution. From these data, im-
ages of pixel mean, SD, and signal-to-noise ratio (S/N) could
be produced, reflecting only noise caused by the statistical
fluctuations in the emission process. Results: Noise did not
vary greatly over each FBP image, even when image intensity
varied greatly from one region to the next, causing S/N to be
worse in low-activity regions than in high-activity regions. In
contrast, OSEM had high noise in hot regions and low noise
in cold regions. OSEM had a much better S/N than did FBP
in cold regions of the image, such as the lungs (in the atten-
uation-corrected images), where improvements in S/N aver-
aged 160%. Improvements with OSEM were less dramatic in
hotter areas such as the liver (averaging 25% improvement in
the attenuation-corrected images). In very hot tumors, FBP
actually produced higher S/Ns than did OSEM. Conclusion:
We conclude that OSEM reconstruction can significantly re-
duce image noise, especially in relatively low-count regions.
OSEM reconstruction failed to improve S/N in very hot tu-
mors, in which S/N may already be adequate for tumor de-
tection.
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I maging with FDG PET is a valuable technique for tumor
detection (1). Many oncology PET studies require imaging
at several levels of the body to produce a nearly whole-body
PET scan. This requirement often necessitates shortening
the emission acquisition and shortening (or in some cases
eliminating) the transmission scans to keep the total imag-
ing time from becoming prohibitively long. These reduc-
tions in emission and transmission imaging time result in
images that appear noisier than they would otherwise, po-
tentially reducing the reader’s ability to detect tumors.
Some investigators have noticed that reconstruction with
iterative algorithms (e.g., the ordered-subset expectation
maximization [OSEM] algorithm) produces images that
seem visually less noisy than the equivalent images recon-
structed with the standard filtered backprojection (FBP)
algorithm (2–5). Many institutions have therefore consid-
ered switching to these iterative algorithms.

FBP reconstructions have well-understood noise charac-
teristics; in fact, one can easily compute the noise present in
FBP images (6,7). Iterative algorithms such as OSEM (8,9),
however, are nonlinear, and their noise properties are far
more complex (10). Theoretic studies (11) and phantom
studies (2) have shown that iterative reconstruction should
achieve better noise characteristics than does FBP. In addi-
tion, when simulated lesions were inserted into brain im-
ages, improved lesion detection was reported with iterative,
compared with FBP, reconstructions (12). However, be-
cause accurate measurement of noise from patient images is
difficult, few, if any, quantitative analyses of OSEM-recon-
structed image noise in real patient images have been per-
formed (13). Justification for the clinical use of the OSEM
algorithm for oncology rests, therefore, primarily on the
perception that OSEM images “look” better than FBP im-
ages and on the above-mentioned theoretic and simulation
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studies. As promising as these may be, further quantitative
analyses using actual patient data seem warranted. We re-
port here the results obtained with an acquisition technique
(7) that permits accurate measurement of noise in clinical
images, independent of any noise in the transmission data (if
used) or of true spatial variations in image intensity. We
used this method to compare the noise in FBP-reconstructed
clinical images with the noise in OSEM-reconstructed clin-
ical images, both with and without attenuation correction
(AC). Because image noise is an important component of
tumor detection, these measurements provide further insight
into how, and under what circumstances, iterative recon-
struction might improve diagnoses in whole-body FDG PET
oncology imaging.

MATERIALS AND METHODS

Measuring Noise in Clinical Images
The statistical properties of the pixel values within an image can

be computed if one acquires many independent replicate images of
the radioactivity distribution. For example, one could acquire 40
separate sinograms at each bed position. If these 40 sinograms
were acquired sequentially (e.g., using a dynamic acquisition), any
changes in activity or activity distribution occurring between the
first and the 40th scan (typically 10–20 min) would cause the 40
measurements not to be true replicates of each other, introducing
errors into the statistical analysis. To solve this problem, we
acquired the data as a gated set of images, in a manner identical to
a cardiac gated study but using a pulse generator, not an electro-
cardiograph, as the gate signal. The pulse generator rate was set to
1 pulse per second. Because of computer memory limitations, the
40 replicate images were acquired as 2 sets of 20 gated images
each. The gating process guaranteed that all the gated images in a
set sampled the identical activity level and distribution, apart from
any activity changes that might have occurred over the 1-s interval
between the beginning and end of a gate. Therefore, the only
differences between the sinograms in a gated set were caused by
emission counting statistics. Each replicate image was recon-
structed with FBP and with OSEM, once with AC and once with
no AC (NAC). The SD and mean value of each pixel could then be
measured for each of the 4 combinations (FBP1 AC, FBP 1
NAC, OSEM 1 AC, and OSEM1 NAC) by averaging the SDs
and mean values obtained from each of the 2 gated sets. From
these values, an SD image (the intensity of each pixel being
proportional to the SD at that pixel) and a mean/SD image (i.e., a
signal-to-noise ratio [S/N] image) were created. Even though noise
at a pixel depends on AC, the computed SD of each pixel did not
include transmission noise, because the same transmission scan
was used for all 40 replicates.

Data Acquisition and Processing
All datasets were acquired on an Advance PET scanner (Gen-

eral Electric Medical Systems, Milwaukee, WI) with 18 detector
rings, yielding 35 slices at a 4.25-mm center-to-center slice sepa-
ration (14). FDG whole-body studies were performed in 2-dimen-
sional mode (septa in place). The acquisition time was 10–20 min
per bed position, with 5 or 6 positions per patient. The scanner was
coupled to a pulse generator with a 1-s period to generate 2 groups
of 20 replicate measurements per slice (50 ms per gate), or 40
replicates in all. Each emission acquisition was immediately pre-

ceded or followed by an 8-min (ungated) transmission scan. The
arms of the patients were outside the field of view. Transmission
scans were low-pass filtered in the transverse plane (full width at
half maximum [FWHM], 15 mm), the standard procedure in our
institution, and corrected for emission contamination. Replicate
acquisitions were obtained for 3 patients: 2 with colon cancer and
1 with breast cancer. Four representative slices, each containing 40
replicate sinograms, were selected from each patient for analysis.
The total counts per replicate sinogram ranged from 7,000 to
10,000 before AC.

Each replicate was precorrected for random noise and was
either preprocessed for AC or left attenuated. Scatter correction
(14,15) was performed for AC datasets only. Random noise, scat-
ter, and AC can induce negative values that are not compatible
with the Poisson model used in OSEM. Negative projection values
were clipped to zero before reconstruction. OSEM and FBP were
applied to the same zero-clipped datasets to prevent potential bias.
The sinogram bins were also grouped by pairs to a bin size of 4
mm instead of the originally acquired 2 mm. This step was found
desirable because it increased the S/N in each of the short replicate
images without introducing correlations in the projection data.
Each replicate was reconstructed into a 1283 128 image (pixel
size, 4 mm) with FBP (ramp filtered) and OSEM (3 iterations, 21
subsets, roughly equivalent to 63 iterations of the regular expec-
tation-maximization algorithm). We verified that the resolution
obtained with this number of iterations matched the resolution
obtained with FBP by analyzing anatomic features in the images
(hot spots on AC and NAC images, skin on NAC images) and
fitting profiles of those features to gaussian functions. Estimates of
FWHM were equivalent for FBP and OSEM (average FWHM
difference, 06 1 mm) for 17 anatomic features with sizes ranging
from 12 to 20 mm for both OSEM and FBP. All replicate images
were subsequently filtered with a gaussian filter (FWHM, 8 mm)
before computation of the mean and SD images of each set to
increase the S/N of the short replicate images. SD images were
further filtered (FWHM, 8 mm) to reduce the errors in SD esti-
mates. S/N images were obtained by dividing the mean images by
their respective SD images. Finally, we computed an image per-
centage improvement, in which the intensity of each pixel repre-
sented the percentage improvement resulting from use of one
method (i.e., OSEM or FBP) rather than the other. Thus, we could
compare the S/N for OSEM and FBP (either with or without AC)
by:

%IFBP vs. OSEM5
S/NOSEM 2 S/NFBP

S/NFBP

if OSEM was better than FBP or

%IFBP vs. OSEM5
S/NFBP 2 S/NOSEM

S/NOSEM
Eq. 1

if FBP was better than OSEM.
%IFBP vs. OSEMwas, for each pixel, either the percentage improve-

ment resulting from use of OSEM over FBP, if OSEM was better,
or the percentage improvement resulting from use of FBP over
OSEM, if FBP was better. An image was made of the percentage
improvement to allow visual and quantitative assessment of where,
and by how much, the S/N of one method exceeded that of the
other.
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Simulation
The noise measurements characterize the noise in a single

replicate, not in the full acquisition (the sum of the 40 replicate
gates). Mean and variance will scale linearly with the average total
count level for FBP, because FBP involves linear processing. A
simulation was performed to verify that S/N scaled appropriately
with increasing total counts in the data when using OSEM, because
OSEM is a nonlinear process. The reference image was of an
anthropomorphic torso phantom. The distribution was segmented
into 4 components: lungs, hot background, heart cavity, and heart
wall. An activity level was assigned to each component (lungs5
3, hot background5 6, heart cavity5 2, heart wall5 10), and a
sinogram was generated with the same acquisition parameters
(e.g., matrix size and pixel size) as in the patient studies, leading
to a total of 18,786 counts. From this sinogram, 40 replicate
sinograms with Poisson noise were generated for 30 count levels
ranging from 1,878.6 to 1,878,600 (average total number of counts
per replicate sinogram). No effect other than Poisson statistics was
simulated (i.e., attenuation, random noise, and scatter were ig-
nored). All sinograms were reconstructed with OSEM (3 itera-
tions, 21 subsets). The S/N was computed at each pixel. Those
estimates were averaged over each component (e.g., lungs and
heart wall), giving an estimate of the S/N for each component at
each count level.

RESULTS

Figure 1 shows the reconstructed images of 4 represen-
tative slices, chosen to illustrate 4 important anatomic situ-
ations: lungs (column A), normal liver (column B), liver
with tumor (column C), and breast (column D). Each image
in Figure 1 was computed by averaging the reconstructed
images of each of the 40 replicates. For the images in

column C, liver and tumors were very similar on 3 contig-
uous slices. This similarity allowed an additional 3-slice
averaging of sinograms (for this column only) before recon-
structing the replicates to determine whether the relative
performances of OSEM and FBP remained unchanged even
though the count level for column C was 2–3 times higher
than for columns A, B, and D. The first row and the second
row were processed with FBP and OSEM, respectively,
with correction for attenuation (row 1 shows FBP-AC, row
2 shows OSEM-AC). Because some institutions do not
perform AC, the third and fourth rows allow comparison of
the FBP and OSEM algorithms when NAC is applied (row
3, FBP-NAC; row 4, OSEM-NAC). FBP images contained
many negative values that were set to zero for improved
display (but were not set to zero for quantitative analyses).
Each pair of FBP and OSEM images (e.g., rows 1 and 2) are
displayed with the same intensity range. Therefore, a quan-
titatively correct visual comparison of FBP and OSEM can
be made for each slice. The same scheme was used to allow
visual comparison of FBP and OSEM for non–attenuation-
corrected images in rows 3 and 4.

The FBP images shown in row 1 of Figure 1 appear (by
subjective visual assessment) to be noisier than the corre-
sponding OSEM images in row 2, despite the fact that both
images have the same resolution. Streaks, the hallmark of
FBP reconstructions, are clearly seen in all slices of row 1
(FBP-AC), although most obviously for slices A and B. The
OSEM-AC reconstructions (row 2) show no streaks. The
periaortic region of high intensity in slice A, the liver tumor
in slice C, and the breast and the mediastinal tumors in slice

FIGURE 1. Mean of reconstructed image
replicates for OSEM and FBP with and
without AC for 4 different slices (A, B, C,
and D). Negatives in FBP images are not
displayed. For every slice, FBP-AC and
OSEM-AC images are displayed to 1 com-
mon maximum, as are FBP-NAC and
OSEM-NAC images. Hot tumor images
have been clipped for display. Last row
contains corresponding reconstructed at-
tenuation maps with lung, heart, and liver
regions of interest (ROIs). Whereas col-
umns A, B, and C are displayed in standard
supine position, breast images in column D
are displayed in prone position.
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D are visible with both the OSEM and the FBP reconstruc-
tions (rows 1 and 2, labeled with arrows) despite the appar-
ent increase in noise in the FBP-AC images. Apart from
noise, the average measured activity distribution (and visual
intensity pattern) of the images was nearly identical.

Percentage difference images ([OSEM2 FBP]/OSEM)
showed only an approximately random scatter of pixels,
indicating no large differences in intensity between OSEM
and FBP. Drawing regions of interest (ROIs) (all but 3 of
which are shown on the corresponding attenuation images at
the bottom of Fig. 1) and computing the average percentage
difference between OSEM-AC and FBP-AC showed
OSEM-AC to be lower by 1%6 3% in the liver area (5
ROIs on slice B, 7 on slice C), by 3%6 2% in bright tumors
(1 ROI on slice C, 2 on slice D—ROIs are not shown but
were drawn around the tumors labeled with arrows in row
1), and by 6%6 3% in the heart. OSEM-AC was higher by
10% 6 10% in the lung (8 ROIs), possibly because of the
constraint requiring OSEM pixels to remain positive.

Non–attenuation-corrected FBP and OSEM images are
shown in rows 3 (FBP-NAC) and 4 (OSEM-NAC) of Figure
1. The images show the typical behavior caused by not
performing AC: falsely high intensity in the lung and signal
loss toward the center of the body (causing severe inhomo-
geneity in the liver slices). Because of this signal loss, the
hot spot in the periaortic region of slice A, which is clearly
seen in the attenuation-corrected images (rows 1 and 2) with
both FBP and OSEM, is no longer visible in either the FBP
or the OSEM images with NAC (rows 3 and 4). There is
also (erroneously) high apparent uptake at the surface of the
body, where total attenuation is low. Just as in the compar-
ison of FBP and OSEM with AC (rows 1 and 2 of Fig. 1),
the OSEM-NAC images appear to have less noise than the
FBP-NAC images, although the degree of improvement is
visually less dramatic. Again, the intensity distributions and

magnitudes of the OSEM-NAC and the FBP-NAC images
(apart from noise) were quite similar. One should remember
that for NAC images, intensity values (i.e., the “signal” in
NAC images) do not reflect the true activity distribution.
Indeed, because both algorithms attempt to reconstruct an
image from inconsistent projections, difference images
showed some noticeable patterns, in particular at very low
intensity regions of the image, where artifacts caused by
lack of AC were most apparent. Nonetheless, the overall
observed intensity was similar for the two, as can be seen in
rows 3 and 4 of Figure 1. ROIs indicated OSEM to be only
slightly greater than FBP in the liver (5%6 14%) and to be
slightly less in the lung (4%6 5%). For the tumors, FBP
exceeded OSEM by only 5%6 2%. For the heart ROIs,
FBP was less than OSEM by 36%6 42% (because of the
large attenuation at the heart, intensity was near zero, so
small differences caused large percentage differences).

To quantify the noise differences between FBP and
OSEM, we used the replicate images to compute SD maps.
The brightness of each pixel in the SD map was directly
proportional to the SD of that pixel value, as computed from
the replicate data. Figure 2 shows the SD maps correspond-
ing to the mean images of Figure 1, displayed in the same
order. The first 2 rows of Figure 2 allow comparison of the
image noise (as measured by the SD) for FBP (row 1) and
OSEM (row 2) when AC is applied. Each SD map in row 2
is displayed with its maximum-value pixel given maximum
brightness, and the identical display range was used for the
corresponding map in row 1. Therefore, every pair of SD
images (e.g., the pair of SD maps for slice A, rows 1 and 2,
and the pair of SD maps for slice B, rows 1 and 2) is
displayed on the same brightness scale and so can be di-
rectly compared visually. The SDs of the FBP images (row
1, Fig. 2) appear fairly uniform, showing little of the struc-
ture in the corresponding mean images (row 1, Fig. 1). In

FIGURE 2. SD images displayed in same
order as in Figure 1. Intensity of each pixel
indicates magnitude of noise at that pixel.
For every slice, FBP-AC and OSEM-AC im-
ages are displayed to 1 common maxi-
mum, as are FBP-NAC and OSEM-NAC
images.
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contrast, the SD maps of the OSEM images (row 2, Fig. 2)
look similar to the corresponding mean images of Figure 1,
except for the slightly reduced contrast. The noise at a pixel
in the OSEM images seems strongly related to the intensity
value of the corresponding pixel in the mean image. The SD
values are high where the original image intensity (from
Fig. 1) was high, and the SD is low where the original image
intensity was low.

The SD maps for the NAC case are shown in rows 3
(FBP-NAC) and 4 (OSEM-NAC). Again, the level of noise
in all regions of the FBP-NAC image is quite uniform and
seems nearly unaffected by the local image intensity. In
contrast, just as with AC, the OSEM-NAC SD map shows
nearly the same structure as the original NAC image. Where
the OSEM-NAC image is bright (e.g., the lungs), the noise
is high, whereas where the image intensity is low (e.g., the
center of the image), so too is the noise.

Figure 3 shows S/N images depicting the ratio of the
signal intensity at each pixel to the noise at each pixel
obtained by dividing the mean images of Figure 1 by the SD
images of Figure 2. The S/N images of Figure 3 are all
displayed on a single common gray scale (with S/N val-
ues. 2.2 set to maximum brightness) and are displayed in
the same order as in Figures 1 and 2. Therefore, one can
directly compare (visually) the S/N values between all the
images of Figure 3. All S/N images had a similar range,
despite the differences in AC and in the reconstruction
algorithm. The S/N images for OSEM and FBP have a
drastically different structure: FBP S/N images (rows 1 and
3 of Fig. 3) show a high S/N where the intensity is high and
a low S/N where the intensity is low. OSEM S/N images
(rows 2 and 4 of Fig. 3) are, on the other hand, much more
uniform across the image.

To make quantitative comparisons between the S/N lev-
els in OSEM and FBP, we computed the percentage im-
provement images (as specified by Eq. 1), which are shown

in Figure 4. In these images, the color scale allows one to
visualize and quantify how much better or worse OSEM
will be than FBP, in terms of S/N. Red and yellow indicate
areas in which OSEM had a better S/N than did FBP,
whereas blue and black indicate areas in which FBP had a
better S/N. The amount of the difference is indicated by the
color bar on the right. Improvements of greater than 100%
were set to the maximum brightness (white for OSEM and
black for FBP). In row 1, the attenuation-corrected FBP and
OSEM algorithms are compared. In the areas of the lung
(slices A and D), the images are bright yellow, indicating
OSEM had far better (70% to.100% better) S/N in these
regions. This finding was expected because the noise with
FBP is nearly constant everywhere (Fig. 2) but the signal
(Fig. 1) is low in the lung, whereas both signal and noise are
low in the lungs with OSEM, giving a higher S/N than with
FBP. In hotter regions (e.g., the liver in slices B and C and
the heart in slices A and D), the images are a darker red,
indicating a much smaller improvement of OSEM over
FBP. In fact, the only areas of consistent blue are in the
tumors themselves (slices C and D and, to a lesser extent,
the periaortic hot spot in slice A). In these regions of
localized high intensity, FBP actually gave a better S/N than
did OSEM. However, these regions already had very high
S/Ns for both methods.

To quantify the S/N differences between FBP and
OSEM, we analyzed the same ROIs described above
(shown in the last row of Fig. 1): lungs (in slices A and D);
liver, excluding tumors (in slices B and C); and tumors (in
slices C and D). The average percentage improvement of
OSEM over FBP was 160%6 65% in the lung regions,
21% 6 9% in the liver regions, 29%6 9% in the heart
region, and241% 6 7% in the tumor (the negative sign
indicates that FBP was better there). Because the differences
in mean values were small, the S/N changes were driven
primarily by differences in noise between OSEM and FBP.

FIGURE 3. S/N images displayed in same
order as in Figure 1. Intensity of each pixel
reflects intensity of S/N at that pixel. Images
are clipped so that all can be displayed on 1
common scale (0–2.2).
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Row 2 of Figure 4 compares OSEM and FBP for the case
when NAC is applied. In the lungs, only slight or near-zero
improvement is seen using OSEM (dark red color). The
more attenuated regions of the body (heart, mediastinum,
and other soft tissue) had a much greater improvement with
OSEM than with FBP. The exceptions are the tumors them-
selves, which again had a better S/N with FBP than with
OSEM (dark blue colors). The same lung, liver, heart, and
tumor regions as above were applied to the non–attenuation-
corrected images, yielding an average percentage improve-
ment for OSEM of 46%6 13%, 84%6 40%, 125%6
49%, and243% 6 7%, respectively.

Figure 5 shows the S/N plot with respect to the count
level on a log–log scale for the simulated data. A regression
over log(S/N) showed that the S/N was a linear function of
the square root of the average count level (regression coef-
ficient of 1.00 for all components of the simulated distribu-
tion). Therefore, the results of Figures 2–4 are expected to
hold true even for count levels considerably above or below
the 7,000–10,000 counts per replicate measured for the
patients we studied.

DISCUSSION

For some time, researchers have observed that iterative
reconstruction methods, such as the OSEM algorithm, seem

to produce less noisy images than does the conventional
FBP method (2,10,11,13,16). Schiepers et al. (13) observed
that in 18F-fluoride bone imaging of the pelvis and hips, in
which the bladder was in the field of view, FBP produced
images that were difficult to interpret clinically because of
streak artifacts. Schiepers et al. found that OSEM appeared
to eliminate these artifacts, resulting in images that they
believed could be analyzed much more reliably (although
for kinetic analysis, both FBP and OSEM gave similar
parameters for18F bone uptake). Theoretic studies and com-
puter simulations (10,11,16) lend credence to these and
other empiric observations of apparent reduction in noise by
iterative reconstruction methods. Meikle et al. (2) compared
S/Ns for FBP and OSEM in a mathematic phantom meant to
represent the chest with inserted spheric tumors. Noise was
simulated with a random, approximately Poisson, number
generator. Compared with FBP, OSEM improved the S/N
(defined slightly differently from our definition) from 68%
to 168%, although this result depended on the number of
iterations used for OSEM. In another study, simulated brain
tumors were introduced into real brain images (12) and the
ability of physicians to see the artificial tumors with OSEM
and FBP reconstructions was compared. “Borderline” arti-
ficial tumors (i.e., tumors not differing much from back-

FIGURE 4. S/N percentage improvement
(%I) images. First row compares FBP-AC
S/N images (Fig. 3, row 1) with OSEM-AC
S/N images (Fig. 3, row 2). Second row
compares FBP-NAC S/N images (Fig. 3,
row 3) with OSEM-NAC S/N images (Fig. 3,
row 4). Light blue background indicates
that FBP and OSEM had comparable S/N.
Red-to-yellow areas are where OSEM was
better than FBP. Dark blue–to–black areas
are where FBP was better than OSEM.

FIGURE 5. (A) Emission distribution (seg-
mented slice of anthropomorphic torso
phantom study) used for simulating emission
replicate sinograms at different count levels.
(B) Plot of average S/N with respect to count
level in reconstructed OSEM images in heart
cavity, lungs, hot background (Bck), and
heart wall of simulated distribution. Lines
through data points are fits of data to straight
line.
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ground and therefore difficult to detect reliably with FBP
images) were slightly easier to see with OSEM.

As mentioned previously, the linearity of the FBP process
allows one to make theoretic predictions of the noise that
will occur in a real, clinical FBP image. The nonlinearity of
the OSEM algorithm makes such a computation exceed-
ingly difficult (to our knowledge, it has never been achieved
for clinical images) and is the reason that many previous
investigations were based on simulations. Haynor and
Woods (17) proposed an elegant “bootstrap/jackknife”
method for creating a sort of “pseudo-replicate” data-
set based on certain statistical assumptions, using list
mode acquisitions. Using the gated replicate measurement
method, we could make direct S/N measurements on actual
clinical FDG PET scans without relying on any assumptions
or simplifications that might be necessary in some simula-
tions. These replicate measurements were then used to de-
termine whether OSEM resulted in S/N improvement over
the FBP method, and if so, in what parts of the image and
by how much. Such a comparison is meaningful only if the
resolution of the 2 reconstructions is matched. Resolution
assessment is straightforward for FBP-reconstructed images
but complex for OSEM images, because at the limited
number of iterations used here and in clinical practice,
resolution may differ for different objects within the image,
depending on their relative size and intensity (18). By
selecting several structures in the actual image data and
inferring resolution from those structures, we believed we
had objectively determined the number of iterations re-
quired, although the finite size of the objects used made
such determinations difficult. Nonetheless, our choice of 63
effective iterations was slightly greater (and therefore more
in favor of FBP in terms of noise) than that of Llacer et al.
(11), who showed OSEM and FBP to match with a ramp
filter after 35–45 iterations, and was similar to that of
Meikle et al. (2), who optimized the number of iterations
according to tumor size, with a minimum of 8 iterations and
a maximum of 64 iterations. Certain unusual distributions of
uptake for which the number of iterations used here may be
insufficient are possible (19) and may introduce some bias.
If more iterations are needed, the noise in the OSEM images
will be higher. However, we believe that the situations
studied here spanned a reasonably wide range of practically
encountered clinical situations.

The data from Figure 1 showed that FBP and OSEM gave
nearly identical signals, especially when AC was applied.
That is, apart from noise differences, the mean intensity of
the 2 image sets was very similar. Therefore, the S/N
comparison reduces to a comparison of noise. Figure 2
shows the image noise for OSEM and FBP. FBP produces
noise that is quite uniform throughout the image. The noise
is almost completely uniform when NAC is applied but is
still relatively uniform even with AC. This phenomenon had
been predicted (6,20) from theoretic considerations. Most of
the noise is caused by high-count projection lines. Even
though high-count projection lines have a low percentage of

noise, they have high absolute noise that, when back-
projected across low-count areas (e.g., the lung), produces a
high percentage of noise in the low-count regions. This is
the reason that noise in the lung regions of FBP images is so
high. The OSEM algorithm behaves differently. When a
pixel value is high, the noise at that pixel is high, and when
a pixel value is low, the noise is low. The noise from hot
pixels does not spread out over other pixels, as with FBP.
This is seen clearly in Figure 2, and this general behavior
has been suggested by theoretic considerations (10,11). We
expect OSEM, therefore, to most surpass FBP in regions of
the image where counts are comparatively low. This is
exactly what is observed in Figures 3 and 4: the lungs show
the greatest improvement with OSEM in the attenuation-
corrected images. In hotter areas, FBP and OSEM have a
comparable S/N and there is less to be gained by using the
OSEM method. In fact, in the very localized hot tumors
examined in this study, FBP actually had a better S/N than
did OSEM. These hot local tumors, however, already had
such a high S/N that their detection might be less at issue.
Interestingly, without AC, OSEM most surpasses FBP in
the most attenuated areas, not in the lung. This finding is
expected because, with NAC, the most attenuated areas
have lower measured relative uptake.

The data of Figure 4 show that in most parts of the image,
OSEM produces a better S/N than does FBP. This finding is
true regardless of whether AC is performed. The improve-
ment was greatest in the dimmer parts of images that con-
tained both low-intensity and high-intensity regions and was
smallest in the brighter parts of the images. In fact, FBP
gave a better S/N at the site of the tumors themselves.
Therefore, it is possible that OSEM would not improve
detection of bright tumors embedded in a hot background
(e.g., tumors in the liver). This possibility is consistent with
our findings from the liver tumor of Figure 4 with AC. In
those data, although S/N in the normal liver background
tissue improved 21% with OSEM, S/N in the hot tumor was
reduced 41%. The situation would be different for a less
intense tumor, especially if it were in a lower intensity
background region such as the lungs (with AC), where the
improvements in S/N were found to be greater than 100%,
and especially if the tumor had an intensity not much greater
than background intensity. Such marginally detectable tu-
mors would presumably be the most clinically interesting
circumstance, and our data suggest that the S/N in such
tumors would be significantly better with OSEM, making
their detection easier with OSEM than with FBP. However,
tumor detection depends on many other factors besides the
S/N of the tumor—most notably on the relative signal and
noise in both the tumor and its surrounding tissue.

The one situation not studied here was that of tumors near
a hot bladder (as studied by Schiepers et al. (13)). The
arguments above indicate that OSEM would produce a large
percentage improvement over FBP in this situation (as
supported by the data of Schiepers et al.).
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One might think that the dataset used here to compare
FBP and OSEM could be used equally well to quantitatively
compare noise in attenuation-corrected and non–attenua-
tion-corrected image sets. Unfortunately, comparisons of
AC versus NAC are more difficult than comparisons of FBP
versus OSEM. The “signal” itself is very different between
AC and NAC images, as is the tumor-to-background con-
trast. In NAC images, the tumor-to-background contrast can
also vary markedly from one side of the tumor to the other,
because signal falls off so rapidly toward the center of the
patient. The validity of using the S/N image for comparing
AC and NAC images is made suspect by these difficulties,
and for this reason, we did not attempt such comparisons.

Finally, the knowledge of each pixel’s variance does not
describe the noise entirely. Noise texture was not consid-
ered, and it is possible that differences in noise texture exist
between FBP and OSEM and that some observer retraining
will be required to optimize visual interpretation of OSEM
images.

CONCLUSION

We compared quantitative measures of noise in clinical
PET images reconstructed with an iterative method (OSEM)
and with the conventional FBP method. Forty replicate
images were acquired for each patient and were recon-
structed with each method. Over most regions of the im-
ages, OSEM resulted in better S/Ns than did FBP, regard-
less of whether AC was performed. The improvement was
most dramatic in the cold regions of images, such as of the
lungs (with AC), that had both cold and hot regions. In such
cases, improvements averaged 160%. Improvements were
less dramatic in hotter areas such as the liver (averaging
25% improvement in the AC images), and in very hot
tumors FBP actually produced higher S/Ns than did OSEM.
We judged that this last occurrence did not preclude the use
of OSEM because these tumors were already easily detect-
able. The improved performance of OSEM resulted princi-
pally from the ability of the algorithm to localize noise, with
hot areas having high noise and cold areas having low noise.
In contrast, because FBP images produced noise that was
more uniform over each image, high noise from hot areas
spread out over large parts of the image and caused poor
S/Ns in low-count regions. On the basis of our noise mea-
surements, we believe that tumor detection may be better

with OSEM than with FBP regardless of whether AC is
used.
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