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Use of Artificial Intelligence in Cardiac Imaging

There has been a trend over the past
few decades toward increasing use of
quantitation in cardiac perfusion imag-
ing, initially for planar imaging (1–3)
and subsequently for SPECT imaging
(4–8). Such quantitation may assist the
novice reader, thereby increasing the ac-
curacy of the interpretation. Even in the
setting of relatively expert readers, quan-
titation provides the opinion of a second
experienced observer, possibly alerting
the reader to defects that may have been
overlooked. Artificial intelligence has
the potential to further improve the
quality of this second computer-ob-
server through the use of expert sys-
tems or neural networks.

EXPERT SYSTEMS

The study presented by Garcia et al.
(9) in this issue ofThe Journal of Nu-
clear Medicinetakes quantitation to this
next step, creating an expert system
(PERFEX; Syntermed, Atlanta, GA) to
analyze the results of the image quanti-
tation and generate an interpretation of
the examination. An expert system is a
rule-based reasoning program, which
uses a series of “if/then” rules in se-
quence to arrive at a conclusion. For
example, one rule might be, “If a mild
defect is present in the anterior wall, and
the defect is nonreversible, and the pa-
tient is female, then it can be concluded
with high certainty that the defect is ar-
tifactual.” Such rule-based systems have
been shown to function reasonably well,
even when dealing with uncertain data
(i.e., possible rather than definite abnor-
malities). The degree of certainty can be
propagated through the reasoning system
to arrive at appropriate conclusions. Cre-
ation of such a set of rules requires

lengthy interviews between the program-
mer and an expert reader, and subse-
quent refining of the rule set using sam-
ple cases. However, once the set of rules
is created, the result is an expert system
that is portable and available any time of
day, bringing an “expert” to settings
where the local expertise may be quite
limited.

As noted by Datz et al. (10), care must
be taken in validating the portability of
computer diagnostic systems to assess
the effect of differences in tracers, cam-
eras, and acquisition techniques. Inter-
estingly, the article by Garcia et al. (9)
dealt with a mixture of protocols, includ-
ing thallium stress-redistribution, same-
day low-dose/high-dose sestamibi stud-
ies, and dual-isotope examinations, with
a variety of stress techniques. However,
because the inputs to the expert system
for each study were the 32-segment
quantitative bull’s-eye scores (expressed
in SD units), such variation was likely
accounted for by use of the appropriate
reference database for each type of ex-
amination.

Several aspects of the article by Gar-
cia et al. (9) deserve special attention. If
the right coronary artery and circumflex
artery territories are combined (which
resolves certain problems arising from
computer vs. human scoring), the sensi-
tivity and specificity values are nearly
identical for both the human and the
computer readers when compared with
an angiography gold standard (Table 1),
which is an impressive result.

However, a concern with these results
is the low specificity of the interpreta-
tions (21%–29% for presence of coro-
nary artery disease, when operating at an
approximately 85% sensitivity level).
Whereas it is well known that referral
bias can significantly drop the apparent
specificity of a test (11), especially in
the setting of an imperfect gold stan-
dard, these specificity values are lower
than those of comparable quantitative

and semiquantitative trials. For exam-
ple, sensitivity and specificity were, re-
spectively, 97% and 44% (12), 83% and
82% (13), 92% and 85% (14), and 93%
and 78% (15) in other studies during
which patients underwent both cardiac
catheterization and perfusion imaging. It
would be useful to assess the perfor-
mance of the PERFEX expert system in
a set of patients with a low probability of
disease (sometimes referred to as the
normalcy rate) to better measure its di-
agnostic accuracy. Given the extensive
work of the authors in this area and the
flexibility of the program with regard to
exact imaging protocol, it is likely that
they have an appropriate patient data-
base available for this evaluation.

Also worthy of consideration is
whether the expert system adds signifi-
cant value when quantitation is already
being used. There is fairly extensive lit-
erature on the sensitivity and specificity
of the various cardiac perfusion quanti-
tation programs, using simple thresholds
for the number of abnormal pixels in
each vessel territory (when compared
with the appropriate sex-matched data-
base). Using these thresholds is roughly
comparable with creating an expert sys-
tem with only 3–4 rules (e.g., “If the
number of abnormal pixels in the right
coronary artery territory exceeds the
threshold, then the study is abnormal and
suggests right coronary artery disease,”
with similar rules for the other vessels
and for the study overall). The expert
system used by Garcia et al. (9) used 253
rules, and it would be interesting to as-
sess the added value of the additional
rules compared with the (simpler) stan-
dard quantitation. It might be possible
for Garcia et al. to perform this compar-
ison relatively easily, because no addi-
tional human interpretation of the studies
would be required and because standard
quantitation was already performed as an
input to the expert system.
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NEURAL NETWORKS

Neural networks provide an alterna-
tive use of artificial intelligence in inter-
pretation of myocardial perfusion stud-
ies. In a neural network, the programmer
does not create explicit rules for inter-
pretation but instead gathers a large col-
lection of sample cases for training. To
reduce the number of cases required for
training and accelerate learning, a pro-
cessed image may be used as the input
for the system in place of the raw slice
data or full bull’s-eye images. Authors
have used coarser segmented bull’s-eye
images (with only 8–16 “pixels”), Fou-
rier derivatives of the bull’s-eye image
reduced to 30 values, and segmented
blackout maps (from standard quantita-
tion) as inputs to the neural networks
(16–22). The output nodes (diagnoses)
are connected to the input nodes through
a layer of “hidden” nodes to increase the
flexibility of the reasoning system.
Weighting functions connect the layers
of the network; these functions are de-
rived from repeated presentation of case
examples (“training”) rather than being
programmed into the system by an ex-
pert reader. Results of applications of
these systems toward the diagnosis of
coronary artery disease have been en-
couraging, with recent sensitivity and
specificity values comparable with stan-
dard quantitation programs (16).

A potential disadvantage of neural
networks is that once they are created,
their method of function is difficult to

describe in a way that can be compre-
hended by humans, making it impossible
for the user to figure out how the pro-
gram arrived at a given conclusion.
Given that their exact function is ob-
scure, great care must be taken in mov-
ing neural networks from one site to
another, for fear that a trivial difference
in procedure or processing technique
may significantly alter the resulting in-
terpretation. Despite this, a multicenter
trial of a cardiac neural network system
yielded good results even when differ-
ences in technique were known to be
present (16).

Case-based reasoning programs are
similar to neural networks in that they
use a large set of examples with known
diagnoses to arrive at a conclusion.
However, they omit the neural network
“training” step and instead give a di-
agnosis by finding the most similar
case in their database of known exam-
ples. Khorsand et al. (23) report results
similar to standard cardiac quantitation
using this method.

THE FUTURE

Regardless of its exact nature, a vali-
dated computer interpretation assistant is
likely to improve the quality of cardiac
study interpretation. Lindahl et al. (18)
compared physician interpretation of
bull’s-eye images with and without
such decision support, which in this
case was provided by a neural network
system. That study showed that in-
traobserver variability dropped by 10%,
with a similar improvement in interob-
server variability, and noted a signifi-
cant improvement in diagnostic accuracy
when compared with results of cardiac
catheterization.

Although quantitative aids and artifi-
cial intelligence systems are valuable in
an adjunct capacity, human readers will
remain essential, with a superior ability
to identify image artifacts and processing
errors, compensate for variation in pa-
tient body size, and discuss examinations
with referring physicians.
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