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The independent component analysis (ICA) method is sug-
gested to be useful for separation of the ventricles and the
myocardium and for extraction of the left ventricular input func-
tion from the dynamic H2

15O myocardial PET. The ICA-gener-
ated input function was validated with the sampling method,
and the myocardial blood flow (MBF) calculated with this input
function was compared with the microsphere results. Methods:
We assumed that the elementary activities of the ventricular
pools and the myocardium were spatially independent and that
the mixture of them composed dynamic PET image frames. The
independent components were estimated by recursively mini-
mizing the mutual information (measure of dependence) be-
tween the components. The ICA-generated input functions
were compared with invasively derived arterial blood samples.
Moreover, the regional MBF calculated using the ICA-generated
input functions and single-compartment model was correlated
with the results obtained from the radiolabeled microspheres.
Results: The ventricles and the myocardium were successfully
separated in all cases within a short computation time (,15 s).
The ICA-generated input functions displayed shapes similar to
those obtained by arterial sampling except that they had a
smoother tail than those obtained by sampling, which meant
that ICA removed the statistical noise from the time–activity
curves. The ICA-generated input function showed a longer time
delay of peaks than those obtained by arterial sampling. MBFs
estimated using the ICA-generated input functions ranged from
1.10 to approximately 2.52 mL/min/g at rest and from 1.69 to
approximately 8.00 mL/min/g after stress and correlated well
with those calculated with microspheres (y 5 0.45 1 0.98x; r 5
0.95, P , 0.000). Conclusion: ICA, a rapid and reliable method
for extraction of the pure physiologic components, was a valid
and useful method for quantification of the regional MBF using
H2

15O PET.
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On the basis of the differential equations of radiophar-
maceutical kinetics, regional myocardial blood flow (rMBF)
can be estimated using the time–activity curve of the blood
pool and myocardial tissue measured by PET. Water labeled
with 15O is an attractive tracer for the measurement of rMBF
using PET because it is almost entirely extracted from the
blood during its first pass across the myocardium and be-
cause it is metabolically inert. In addition, the short half-life
of 15O facilitates repeated or combined measurements with
other tracers (1–4).

In quantification of rMBF using H215O dynamic PET, the
input time–activity curve can be obtained by sampling the
blood from the artery or, alternatively, by drawing the
region of interest (ROI) on the left ventricular (LV) area of
the PET image. However, arterial blood sampling is a
cumbersome method for both the patient and the operator
because it should be performed in a rapid manner several
times during the PET scanning process. In contrast, the
noninvasive method of drawing the ROI can reduce the
patient’s discomfort and the operator’s burden.

However, it is difficult to identify the anatomic structure
of the LV on a H2

15O PET image to draw the ROI because,
with the bolus injection, the H215O is rapidly and evenly
distributed over the entire cardiac region, such as the LV, the
right ventricle (RV), and myocardial tissues. Therefore, it
has been necessary to use an additional device to generate
radioactive gas and to acquire a C15O PET image for deter-
mination of the LV area to obtain the exact LV input
function (1,2).

Factor analysis has been proposed to extract the LV input
function and the tissue time–activity curve from the H2

15O
PET without C15O PET scanning (5–8). Although such
factor analysis is considered an attractive tool to process
dynamic image sequences, additional assumptions of a pri-
ori knowledge are needed to overcome the nonuniqueness
of the solution (9,10).
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Recently, the biomedical application of blind source sep-
aration by independent component analysis (ICA) has re-
ceived considerable attention because of its plausibility to
biomedical signals (11–13). ICA is a statistical technique in
which observed signals are linearly transformed into com-
ponents that are maximally independent from each other.
Using ICA, we can therefore recover independent sources
given only observed data, which are unknown linear mix-
tures of the unobserved independent source signals. In con-
trast to correlation-based transformations such as principal
component analysis (PCA), ICA not only decorrelates the
signals but also reduces higher order statistical dependen-
cies. Therefore, we could find a linear nonorthogonal coor-
dinate system using ICA, although it is impossible by use of
correlation-based transformations.

In dynamic myocardial PET images, the image of each
frame can be described as a mixture of the independent
elementary activities, such as the LV and RV blood pool
activities and the myocardial tissue activity, because their
anatomic structures do not inherently overlap with each
other in 3-dimensional space and their time courses are
different from each other. The assumption of linear mixture
for the application of ICA is also acceptable because the
accumulation process of PET activities is linear within the
range of activity that we generally use. The aim of this study
was to blindly separate the cardiac components using ICA
and to test whether they could be used for ROI definition to
extract the input function for the quantification of rMBF.

MATERIALS AND METHODS

Theory
Let us assume an M-dimensional random variables(p) 5

[s1(p), . . . , sM(p)]T, such that the componentssi(p) are mutually
independent. This means that the multivariate probability distribu-
tion function (PDF) of the variables(p) can be rewritten as the
product of marginal independent distributions.

In a real environment, we can observe only the mixed signal
x(p) 5 [x1(p), . . . , xN(p)]T at each sampling pointp. If we assume
the linear mixing situation, the relationship between the indepen-
dent source and its mixture can be written as:

x~p! 5 A 3 s~p!, Eq. 1

whereA is an N3 M mixing matrix—that is, source signalssi(p)
are mixed instantaneously by the unknown mixing matrixA.

In H2
15O dynamic myocardial PET, the image of each frame is

a mixture of the independent elementary activities and can be
described by the following equations:

X1 5 ALV,1 3 SLV 1 ARV,1 3 SRV 1 ATI,1 3 STI 1 ABG,1 3 SBG

X2 5 ALV,2 3 SLV 1 ARV,2 3 SRV 1 ATI,2 3 STI 1 ABG,2 3 SBG

···

XN 5 ALV,N 3 SLV 1 ARV,N3 SRV 1 ATI,N 3 STI 1 ABG,N3 SBG,

Eq. 2

where the row vectorSLV, SRV, STI, andSBG represent the spatial
distribution of elementary activities corresponding to the LV and

RV blood pool, the myocardial tissue, and background, respec-
tively, and have a dimension of 13 P (P is the number of spatial
element, such as voxel). Row vectorXi (1 3 P) is the PET image
of ith frame, and the time-dependent coefficientA . .,i represents
the contribution of the activity of each anatomic structure to the
PET image ofith frame. Equation 2 could be represented in matrix
formulation as follows:

X 5 A 3 S, Eq. 3

whereS (4 3 P) is the matrix of the independent component map,
A (N 3 4) is the mixing matrix, andX (N 3 P) is the PET data
matrix.

If A is not an identity matrix, the observed datax(p) is different
from the source signals(p). Therefore, it is necessary to derive
independent source signals(p) from the datax(p). However, this is
not easy to do because we do not know about the mixing matrixA.
ICA makes it possible to derive an independent source signal from
the observed data using the fact that source signalssi(p) are
mutually independent.

The goal of blind source separation using ICA is to find a linear
transformationW of the mixed signalx(p) to make its outputs as
independent as possible, which is written as:

u~p! 5 W 3 x~p! 5 W 3 A 3 s~p!, Eq. 4

where theu(p) is an estimate of the sources (14,15). A schematic
diagram of this process is shown in Figure 1.

The sources are recovered exactly whenW is the inverse matrix
of A up to a permutation and scale change (13). Among the many
methods to find a linear transformation matrixW, we adopted the
extended infomax ICA algorithm (13,16): a simple learning algo-
rithm for a feed-forward neural network that blindly separates the
linear mixtures of independent sources with a variety of distribu-
tions using information maximization theory (Appendix).

Image Acquisition and Reconstruction
H2

15O PET scans were performed on 7 dogs at rest and after
pharmacologic stress using adenosine or dipyridamole. All scans
were acquired with an ECAT EXACT 47 scanner (CTI/Siemens,
Knoxville, TN), which has an intrinsic resolution of 5.2 mm full
width at half maximum and images simultaneously 47 contiguous
planes with thicknesses of 3.4 mm for a longitudinal field of view

FIGURE 1. Schematic diagram of processor for blind source
separation problem: Demixer extracts estimates of independent
source signal from mixed input data by adjusting weights be-
tween its input and output nodes.
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of 16.2 cm. Before H215O administration, transmission scanning
was performed using 368Ge rod sources for attenuation correction.
Dynamic emission scans (5 s3 12, 10 s3 9, 30 s3 3 ) were
initiated simultaneously with the injection of approximately 555–
740 MBq H2

15O and continued for 4 min.
Arterial blood samples were taken from the 7 dogs at 5-s

intervals for the first 2 min to compare with the LV input function
derived by the ICA.

Transaxial images were reconstructed by means of a filtered
backprojection algorithm employing a Shepp–Logan filter with
cutoff frequency of 0.3 cycle/pixel as 1283 128 3 47 matrices
with a size of 2.13 2.1 3 3.4 mm.

Microsphere Studies
To compare with the rMBF using the ICA-generated input

function, the MBF was measured with radiolabeled microspheres
(NEN Life Science Products, Boston, MA) of 15.5-mm diameter in
5 dogs. The microspheres labeled with46Sc, 85St, or 113Sn were
administered over approximately 10–15 s into the LV simulta-
neously with the injection of water.

After killing the dogs, the hearts were removed and cut into
1-cm-thick LV short-axis cross sections, and each cross section
was further divided into 4 segments of anterior, lateral, and inferior
regions and septum. The regional blood flow of each segment was
calculated with the standard microsphere reference techniques
(17).

Processing of H2
15O PET Images

The initial 18 frames (2 min) of PET images were used for
analysis. Schematic representation of the various processing steps
is given in Figure 2.

The dynamic PET images were also reoriented to the short axis
and resampled to have 1-cm thickness to increase the signal-to-

noise ratio. We reoriented each frame of the dynamic images using
the parameters for rotation and the translation parameters deter-
mined on the static images obtained by summing the dynamic
images.

Then, only the cardiac regions were masked to remove the
extracardiac components and to reduce the burden of calculation.
The resulting masked images with a dimension of 323 32 3 6 3
18 (pixel 3 pixel 3 plane3 frame) were reformatted to 183
6,144 (frame3 pixel) matrices for further analysis.

Before the application of ICA, PCA using singular value de-
composition was performed to decorrelate the input images. The
first 4 components with the largest variances were selected as input
data for ICA, and the remaining noise components were discarded.

A neural network with 4 input and 4 output nodes was trained
to perform the ICA process. All data points were passed 25 times
into the network through the learning rule using a block size of 100
for batch learning. The learning rate was fixed at 0.0005. The
log-likelihood (Appendix) was computed continuously to measure
the independency of the output of the network and to determine the
optimal repetition time of the training.

In the LV component images, the voxels with activities.50%
of the maximum were considered to be included in the LV, and
these voxels were used as an ROI on each dynamic frame to obtain
LV time–activity curves. We determined the threshold by compar-
ing the time–activity curves obtained by ICA with those obtained
by blood sampling and by the ROI on the LV region. Small
changes of the threshold did not significantly alter time–activity
curves because most of the LV component images have sharp
boundaries.

MBF Estimation
MBFs were estimated using the ICA-generated LV input func-

tions and tissue time–activity curves obtained from the ROIs on
the identical regions defined in microsphere studies. We drew the
ROIs on the independent component images of myocardium with
the thickness of about 3 pixels and copied them onto the dynamic
images to obtain tissue time–activity curves of those regions.

MBF was estimated using the single-compartment model (18).
Radioactivity in myocardial tissue can be described by the

following equation:

CT~t! 5
F

V
Ca(t) ^ expS2Ft

Vl D, Eq. 5

where R denotes the convolution integral,CT(t) is the tissue
time–activity curve observed in the myocardial region (counts/g),
Ca(t) is the arterial blood input function (counts/mL),F/V is the
rMBF per unit of tissue volume (mL/g/min), andl is the tissue/
blood partition coefficient (mL/g).

Because partial-volume and spillover effects contaminate the
time–activity curve observed on the PET image, the tissue time–
activity curve should be related to the true activities by the fol-
lowing relationship:

CT,PET~t! 5 FMMFF

V
Ca~t! ^ expS2Ft

Vl DG 1 FBM 3 Ca~t!,

Eq. 6

whereCT,PET(t) is the observed PET tissue activity (counts/g),FMM

is the recovery coefficient of tissue activity, andFBM is the fraction
of blood activity observed in tissue activity.

Tissue time–activity curves were fitted to Equation 6 to estimate
F/V, FMM, andFBM with the fixed partition coefficient (l 5 0.92).FIGURE 2. Flow chart of image-processing steps.
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The correlation coefficient between the rMBFs obtained by the
above 2 methods was computed.

RESULTS

In all cases, we could obtain 3 cardiac components (RV,
LV, and myocardium) using ICA as shown in Figure 3. LV
was well identified in the central region of the mask.

The log-likelihood increased rapidly and reached a pla-
teau after 5–10 repetitions of training as shown in Figure 4.
Even though we realized the ICA algorithm and reading
process of the PET image with the low-speed computer
language, Matlab (The Mathworks, Natick, MA), computa-
tion time for whole process was,15 s on the workstation
with 333-MHz central processing unit and 128-megabyte
memory (DEC AlphaStation 600; Digital Equipment Corp.,
Maynard, MA).

LV input functions were extracted successfully by the
ICA method as well. The results were consistent in all 10
canine studies. Figure 5 shows the ICA-generated LV input
function, which is compared with the input function by
arterial blood sampling. Their shapes were very similar
except for the smoother tail of the ICA-generated one,
attributed to the removal of the statistical noise in the
time–activity curve and the short time lags in the input
function by arterial sampling.

MBFs determined using the ICA-generated input func-
tion were in agreement with previously reported values.
They ranged from 1.10 to approximately 2.52 mL/min/g at
rest (mean6 SD, l.806 0.372) and from l.69 to approxi-
mately 8.00 mL/min/g after stress (mean6 SD, 4.196
2.10). MBFs obtained by ICA corrected well with those
using microspheres as shown in Figure 6. The correlation
coefficient was 0.95 (P , 0.000,n 5 139), and the fitted
line (y 5 0.451 0.98x) had almost unit slope.

DISCUSSION

In this study, we applied the ICA method, a new approach
to linear decomposition and blind source separation, in

extraction of physiologic factors from a dynamic sequence
of PET images. For the ICA method to separate the activity
of each cardiac component, its distribution must be spatially
independent from each other. This does not mean that their
time courses are mutually independent as well (11). They
are possibly correlated with each other because the convo-
lution process of tracer kinetics usually relates them. The
assumption of spatial independence could be weakened by
the partial-volume and spillover effects in the PET im-
ages—that is, spillover from the activity of a component
would contaminate the activities in neighboring compo-
nents. The slight blurring of the boundaries of the resulting
images shown in Figure 3 might be a reflection of this
effect, but the results are sufficient for us to identify the
main cardiac components and extract their time–activity
curves. Considering the very poor noise property and ana-
tomic definition in raw dynamic image of H215O PET, the

FIGURE 3. Cardiac regions separated
using ICA method. Short-axis views of in-
dependent component images of RV (A),
LV (B), and myocardium (C).

FIGURE 4. Plot of log-likelihood of PDF of observation during
training as function of repetition time: It increased rapidly and
reached a plateau after 5–10 repetitions.
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ICA gave us satisfactory results. ICA can also reduce ad-
ditional cost and remove possible erroneous factors, such as
the misalignment between scans that might arise with the
use of C15O PET images.

Factor analysis has been the most common approach used
to separate various components from the dynamic se-
quences used in nuclear medicine (5–10,19,20). Our group
and others have also applied factor analysis to myocardial
H2

15O PET images with the same purpose as this study and
showed its validity (5–8). We showed that the MBF ob-
tained by factor analysis was also well correlated (r 5 0.93)
with that obtained by the microsphere method when we
used the same data as those of this study (8). ICA and factor
analysis can be used to mutually compensate each other, and
their combination can be more suitable for some problems.
Preprocessing of dynamic data using factor analysis instead
of PCA and the apex finding by ICA, which is the critical
step in factor analysis, are possible combinations.

We have not yet addressed the MBF in the abnormal
range. Additional investigation using the animal model of
myocardial ischemia and infarction by coronary occlusion is
necessary to further validate our method. Clinical investi-
gation would, of course, be carried out on patients with
coronary artery disease. In the case of human study, because
more radiopharmaceutical is injected into humans than
dogs, slower injection of water is required to reduce the
dead time effect caused by the huge amount of radioactivity
in the LV region. This dead time undermines the peak
activity in the LV input function, so that the MBF using this
input function is underestimated. On the other hand, a
possible problem of slow injection of the bolus input is that
the shapes of time–activity curves of the LV input function
and myocardial activity will tend to resemble each other.
This would prevent ICA from separating them. There
should be some trade-off between the slower injection and
the dead time effect.

CONCLUSION

Using the source separation by ICA, we could blindly
separate cardiac components and noninvasively extract the
LV input function. The ICA-generated input functions had
the same shapes as those of the arterial samples, and the
estimated MBF with ICA showed a good correlation with
the result using microspheres. Because all processes were
automatically achieved with very short computation time,
this method will be clinically useful for quantification of the
rMBF using H2

15O dynamic PET.

APPENDIX

Extended Infomax ICA Algorithm
The information maximization approach provides a gen-

eral learning rule for the neural network for ICA (13,15,16).
The learning rule can be derived by maximizing the output
entropyH(y).

The joint entropy at the outputs is:

H~y! 5 H~y1, . . . , yN! 5 H~y1! 1 . . .

1 H~yN! 2 I (y1, . . ., yN), Eq. 7

whereH(yi) are the marginal entropies of the outputs and
I(y1, . . . , yN) is their mutual information. Because the mu-
tual information is the measurement of the dependency
between the random variables, the minimization of mutual
information results in the variables being as independent as
possible. Bell and Sejnowski (15) showed that maximizing
the joint entropyH(y) of the output of a neural processor
can approximately minimize the mutual information among
the output components (13).

FIGURE 5. LV input function by ICA (h) and by arterial blood
sampling (}): Their shapes were very similar except for noise-
less tail of ICA-generated one and short time lags in input
function by arterial sampling.

FIGURE 6. Correlation of MBFs obtained using ICA method
and microsphere technique (y 5 0.45 1 0.98x; r 5 0.95, P ,
0.000).
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The extended infomax learning algorithm proposed by
Lee et al. (16) to maximize the joint entropy provides a
simple learning rule for sources with a variety of distribu-
tions. The extended infomax learning rule can be summa-
rized as the following equation:

DW } @I 2 K 3 tanh~u! 3 uT 2 u 3 uT#W, Eq. 8

whereK is an N-dimensional diagonal matrix, of which the
diagonal elementki must be:

ki 5 sign~E$sech2~ui!%E$ui
2% 2 E$@tanh~ui!#ui%!. Eq. 9

The log-likelihood of the PDF of the observation de-
scribed as the following equation is a measurement of the
independency between the estimates:

L~u, W! 5 logudet~W!u 1 O
i51

N

log pi~ui!. Eq. 10
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