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A parametric image of myocardial perfusion (mL/min/g) is a quan-
titative image generated by fitting a tracer kinetic model to dy-
namic 13N-ammonia PET data on a pixel-by-pixel basis. There are
several methods for such parameter estimation problems, includ-
ing weighted nonlinear regression (WNLR) and a fast linearizing
method known as Patlak analysis. Previous work showed that
sigmoidal networks can be used for parameter estimation of
mono- and biexponential models. The method used in this study is
a hybrid of WNLR and sigmoidal networks called nonlinear regres-
sion estimation (NRE). The purpose of the study is to compare NRE
with WNLR and Patlak analysis for parametric imaging of perfusion
in the canine heart by 13N-ammonia PET. Methods: A simulation
study measured the statistical performance of NRE, WNLR, and
Patlak analysis for a probabilistic model of time–activity curves.
Four canine subjects were injected with 740 MBq 13N-ammonia
and scanned dynamically. Images were reconstructed with filtered
backprojection and resliced into short-axis cuts. Parametric im-
ages of a single midventricular plane per subject were generated
by NRE, WNLR, and Patlak analysis. Small regions of interest
(ROIs) were drawn on each parametric image (8 ROIs per subject
for a total of 32). Results: For the simulation study, the median
absolute value of the relative error for a perfusion value of 1.0
mL/min/g was 16.6% for NRE, 17.9% for WNLR, 19.5% for Patlak
analysis, and 14.5% for an optimal WNLR method (computable by
simulation only). All methods are unbiased conditioned on a wide
range of perfusion values. For the canine studies, the least squares
line fits comparing NRE (y) and Patlak analysis (z) with WNLR (x) for
all 32 ROIs were y 5 1.02x 2 0.028 and z 5 0.90x 1 0.019,
respectively. Both NRE and Patlak analysis generate 128 3 128
parametric images in seconds. Conclusion: The statistical perfor-
mance of NRE is competitive with WNLR and superior to Patlak
analysis for parametric imaging of myocardial perfusion. NRE is a
fast nonlinear alternative to Patlak analysis and other fast lineariz-
ing methods for parametric imaging. NRE should be applicable to
many other tracers and tracer kinetic models.
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Estimation of the parameters of tracer kinetic models is
increasingly important in clinical and research PET studies.
In parametric imaging, a tracer kinetic model is fit to time–
activity curve data on a pixel-by-pixel basis. The result is a
quantitative image of the parameters of a physiologic or
biochemical model. An important application of parametric
imaging is myocardial perfusion imaging.13N-ammonia
PET is widely used for the estimation of myocardial perfu-
sion (1,2). Parke-Davis has sponsored a multicenter, 300-
patient trial in which a compartmental model is being fit to
dynamic13N-ammonia data in the resting and stressed heart.

Numerical methods for parametric imaging differ in sta-
tistical performance, computational cost, and generality.
Weighted nonlinear regression (WNLR) approaches are the
most general. Although the basic WNLR approach offers
good statistical performance, it derives from approxima-
tions that introduce error (3). Many refined WNLR ap-
proaches have also been studied (4–7). However, WNLR
methods are iterative and time-consuming to compute.

Patlak analysis is a type of fast linearizing method. These
methods differ considerably, but all use integration and
linear regression to speed solution (8–11). Linearizing ap-
proaches are accurate and fast for a variety of problems
(1,2,12,13), but they still have drawbacks. Though some
linearizing methods handle all linear compartmental models
(11), none handles nonlinear tracer kinetic models (except
for linearizing perturbation experiments). Also, linearizing
methods often do not estimate the microparameters directly
but require model-specific nonlinear algebra to recover
them from the macroparameters. For these reasons, it would
be desirable to have a fast, nonlinear method that learns
parametric imaging of the microparameters from simulated
data.

Previous work from this group (14,15) and others (16,17)
showed that sigmoidal networks can be used for estimation
of the parameters of compartmental models. Sigmoidal net-
works are a type of nonlinear function estimator. Function
estimators are empirical tools from statistics, connection-
ism, and fuzzy systems that learn nonlinear input-output
mappings from data (18,19). They have been used success-
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fully for most major engineering problems including con-
trol, prediction, filtering, pattern recognition, and system
identification. Whereas WNLR methods for parametric im-
aging approximate the maximum likelihood (ML) estimate,
function estimation methods approximate conditional ex-
pectation. Here, the approaches are combined to approxi-
mate the ML estimate orders of magnitude faster than is
otherwise possible. This hybrid method is called nonlinear
regression estimation (NRE) because it uses a function
estimator trained on optimal WNLR estimates.

The goal of this study is to compare the statistical per-
formance and computational cost of NRE with WNLR and
with Patlak analysis for parametric imaging of myocardial
perfusion by13N-ammonia PET. A simulation study esti-
mated the performance of all 3 methods for ischemic, rest-
ing, and hyperemic myocardium. Parametric images of 4
canine subjects with resting and ischemic myocardium were
computed by NRE, WNLR, and Patlak analysis. The results
of this study show that NRE is an accurate, very fast method
for perfusion imaging and has the potential to be an accu-
rate, very fast, nonlinear method for parametric imaging
with many tracers and tracer kinetic models.

MATERIALS AND METHODS

Simulation of Time–Activity Data
This section describes simulation of time–activity curve data

used for training NRE and testing all estimators. A 2-compartment
model for the tracer kinetics of13N-ammonia (20,21) was used.
The distribution of tracer is described by a continuous-time, linear
time-invariant (LTI) system:

q̇ 5 Aq 1 Bc, Eq. 1

y 5 Cq 1 Dc,

A 5 F 2~K1 1 F!/Vf kr

K1/Vf 2kr
G,

B 5 F F
0 G,

C 5 @1 1#,

D 5 @f#,

c ; @Cp~t!#,

q ; F Qf~t!
Qs~t! G,

K1 5 FSexpS0.5F 1 1.25

F D 2 1D, Eq. 2

where the state variables are Qf(t), the free activity in a relatively
fast compartment (Bq/g), and Qs(t), the metabolically trapped
activity in a relatively slow compartment (Bq/g). The input to the
model is Cp(t), the activity in the perfusing coronary vasculature
(Bq/mL), which was assumed to be equal to the left ventricular
blood activity. The parameters of the model areF, the myocardial
perfusion (mL/min/g);f, the spillover from blood to tissue (which
is unitless);Vf, the (actual) volume of distribution; andkr, the

return rate constant. In practice, the volume of distribution and
return rate constant are fixed to known values (Vf 5 0.8 mL/g and
kr 5 0 for these experiments).

The model of the input function is a modified version of the
model of Thompson et al. (22). The modification is an asymptotic
recirculation term that yields the model

Cp~t! 5 CmaxSexp~1!

ab
~t 2 t0!Da

expS2~t 2 t0!

b D
1 C0~1 2 exp~2~t 2 t0!/t!!, Eq. 3

where Cp(t) is the activity in the vasculature (Bq/mL);a (unitless),
b (s), and Cmax (Bq/mL) are parameters of the original Thompson
model; C0 (Bq/mL) andt (s) are parameters of the modified model;
and t0 (s) is the appearance time. The model is 0 before time t0. In
practice, the appearance time is fixed to a known value (5 s). Also,
the time constantt is automatically scaled so that the recirculation
term reaches a maximum when the original model falls off to 5%
of its peak. Therefore, there are only 4 independent input function
parameters:a, b, Cmax, and C0.

Sampling errors were modeled as follows. The input function
samples are temporal averages of the input function model:

c# 5
1

ti11 2 tt E
ti

ti11

Cp~t!dt, Eq. 4

wherem# denotes a sequence of model output fori 5 1..m 2 1,
wherem is the number of time intervals. The effect of integration
is significant for the input function model because we use left
ventricular PET data rather than arterial sampling data. The blood
time–activity curve is sparsely sampled in the typical PET proto-
col, but this is largely unavoidable. By contrast, the tissue time–
activity curve is usually well sampled and piecewise linear over
the observation intervals. In this case, ideal samples are equivalent
to temporal averages, and the midpoint approximation applies

y# 5 y~~ti11 1 ti!/2!, Eq. 5

wherey# denotes a sequence of model output over the observation
intervals and y(.) denotes Equation 2 evaluated at 1 time point.

There are several sources of random error in reconstructed PET
time–activity curves. We assumed that noise is additive, indepen-
dent, and gaussian with zero mean and with variance directly
proportional to signal (1,3,7). Several noise models have been
proposed for time–activity curve data. Other noise models are SD
proportional to variance (also called constant coefficient of varia-
tion) (4,23) and noise equivalent counts (24).

Table 1 presents the ranges of 8 parameters used for simulation:
4 parameters of the blood time–activity curve signal model, 2
parameters of the tissue time–activity curve signal model, 1 pa-
rameter of the blood time–activity curve noise model, and 1 of the
tissue time–activity curve noise model. The probability density for
perfusion is an exponentially decaying density between the limit
values. All other parameters have uniform density. The parameter
ranges of the blood time–activity curve model were estimated from
a set of 14 canine blood time–activity curves taken from studies at
University of California, Los Angeles; none of these blood time–
activity curves was from the 4 canine study subjects. A typical
constrained regression strategy was used to fit the 14 blood time–
activity curves.

To simulate time–activity curves, 8 parameter values were
drawn from a standard linear congruential pseudorandom num-
ber generator with a period much larger than the sample size.
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Using these parameters, 100 ideal samples of the blood time–
activity curve model were computed, 1 sample per second over
the range 1–100 s. These were used as input to a discrete time
system, the state transition matrix (STM) solution of a contin-
uous-time LTI system with first-order hold (FOH) input. An
FOH input is a theoretical function that reconstructs discrete
samples of the input function. The STM solution is exact in the
case that the input function is actually FOH. In practice, the
STM solution is nearly exact if the discrete input samples are
fast, noiseless, and ideal. That is the case in this study. Other
general solutions to LTI systems (time-domain and frequency-
domain) have similar restrictions. The output of the STM so-
lution was 100 ideal samples of the 2-compartment model. The
sampling scheme for experimental PET data is a set of 10 time
intervals of 10 s each between 0 and 100 s. To convert simulated
data tothis sampling scheme, the input samples were integrated
with a trapezoid rule whereas the output samples were handled
with the midpoint approximation. Gaussian noise with zero
mean and variance proportional to signal was added to both the
output and integrated input signals. Simulated time–activity
curves with negative values caused by the noise model were
discarded, because these time–activity curves do not model the
negative values that sometimes occur in reconstructed time–
activity curves. (Conditioning on positivity of the time–activity
curves introducesonly a very small bias.) Figure 1 is an example of
a simulated pair of blood and tissue time–activity curves.

Weighted Nonlinear Regression
The most common approach to parametric imaging is likelihood

inference. For independent gaussian errors, the ML estimate is a
minimum of the log-likelihood or weighted residual sum of squares:

p̂~ŷ! 5 arg min
p

iŷ 2 y#~p; Cp~t!!i2,

iŷ 2 y#~p; Cp~t!!i2 ; O
i51

m Sŷi 2 y# i~p; Cp~t!!

si
D2

,

p 5 @F f#, Eq. 6

where ŷi are the elements ofŷ, which is the PET tissue time–
activity curve; y# i(p) are elements ofy#(p), which is the model
output;p denotes the vector of parameters;si is the SD ofŷi and
i i is a weighted 2-norm. WNLR is the process of computing
Equation 6 by an iterative method for optimization or nonlinear
equations.

For Equation 6 to define the ML estimate, thesi values and
Cp(t) must be known. But in practice, these are replaced with
estimates. Because of the proportional variance noise model, theŷi

values are an estimate of thesi values up to a constant that does
not affect WNLR. To reconstruct Cp(t), it was assumed that PET
blood time–activity curves are fast, noiseless, ideal samples (3).
The blood time–activity curves were linearly interpolated and then
used as input to the STM solution with FOH. This implies the
midpoint approximation, which does not strictly hold. The error
introduced into WNLR by estimates for thesi values and Cp(t) is
significant, but the method is still a good one. This is the standard
WNLR method for parametric imaging. More advanced methods
are considered in the Discussion.

WNLR for parametric imaging may be ill posed: The solution
may not be unique (multiple local optima) or may not exist
(nonconvergence or instability). Only the latter problem was ex-
perienced during this study, though the former may also arise in
parameter estimation (14). Nonconvergence necessitates that prior
knowledge be used. During this study, parameter ranges were
constrained with simple bounds. In likelihood inference, these are
deterministic constraints on the ML estimate. In Bayesian infer-
ence, they are uniform priors. Because the same bounds were used
for estimation as for Monte Carlo simulation of the forward model
(Table 1), WNLR approximates the maximum a posteriori proba-
bility estimate. For all WNLR, perfusion and spillover were esti-

FIGURE 1. Example of 1 simulated pair of blood and tissue
time–activity curves. Curve that spikes is blood time–activity
curve. Smooth line is continuous activity; ƒ 5 integrated activ-
ity; ‚ 5 noisy activity (final time–activity curve). Curve that does
not spike is tissue time–activity curve. Smooth line is continuous
activity; E 5 integrated activity; 3 5 noisy activity (final time–
activity curve). For simulation: perfusion 5 1.0; spillover 5 0.0;
blood time–activity curve noise level 5 2%; tissue time–activity
curve noise level 5 20%; all other parameters are drawn at
random from Table 1. Note high noise level in tissue time–
activity curve and sampling error at 5 s for blood time–activity
curve 5 ƒ.

TABLE 1
Ranges of Probability Densities for 8 Parameters Used

in Monte Carlo Simulation of Blood and
Tissue Time–Activity Curves

Model
No. of

parameters Parameter
Range of density
for parameters

13N-ammonia model 2 F 0.1–5.0 (mL/min/g)
f 0.0–1.0

Input function 4 a 2.0–9.0
b 2.0–9.0 (s)

Cmax 1.0–5.0 (Bq/mL)
C0 0.1–0.8 (Bq/mL)

Proportional variance,
gaussian noise
models 2 ji 0–2 (%)

jo 5–20 (%)

ji 5 constant for blood time–activity curve noise model; jo 5
constant for tissue time–activity curve noise model. For example, blood
time–activity curve noise has variance of ji multiplied by the signal.
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mated using a Levenberg-Marquardt method with simple bounds
through active sets (25).

Nonlinear Regression Estimation
Methods for function estimation or statistical learning have

arisen in the fields of nonparametric statistics, neural networks,
and fuzzy systems. Sigmoidal networks, nonparametric kernel
estimators, and support vector machines are closely related meth-
ods that use a univariate nonlinear transformation (usually to a
higher dimension) followed by linear regression on the basis
functions (26–31). In the deterministic case, such methods approx-
imate nonlinear functions. In the probabilistic case, they estimate
functions from noisy data. In theory, if a function approximator
with a set of input random variables is brought into mean-squared
correspondence with an output random variable, then it approxi-
mates conditional expectation (18)

p̂~ŷ! 5 E~puŷ!. Eq. 7

Conditional expectation is the mean-squared optimal estimator
(32). Fuzzy systems also approximate conditional expectation
(19).

In this study, sigmoidal networks were used:

o~i! 5 O
j51

s

w0
~j!g~wj z i 1 bj!, Eq. 8

where i is the input, w and b are parameters, g(.) is a univariate
sigmoidal function, ands is the number of basis functions. The
superscript denotes the elements of a vector, and the subscript
denotes the elements of an ordered set. Sigmoidal networks are
shown graphically in Figure 2. Sigmoidal networks are often called
feedforward artificial neural networks.

To approximate Equation 7 for parametric imaging of perfusion,
a sigmoidal network would be trained with simulated time–activity
curve data for inputs and known perfusion values for outputs using
a mean squared error criterion. But instead of using the known
perfusion values as network outputs, an optimal WNLR estimate
was precalculated as follows. Whereas real-world data analysis
requires estimates for Cp(t) and thesi values, simulation allows
WNLR with the known values for Cp(t) and thesi values. This is
very close to an optimal estimate. The only difficulty in learning
the optimal WNLR estimate is that it is conditioned on the known
si values and Cp(t) in addition to the observed data. But the
sigmoidal network compensates by approximating conditional ex-
pectation to yield

p̂~ŷ, ĉ! 5 E~min
p

iŷ 2 y#~p; Cp~t!!i2us!, Eq. 9

where ĉ is the observed blood time–activity curve. The use of a
function estimator to learn an optimal WNLR estimate is NRE, a
fully nonlinear method for parameter estimation.

To compute the optimal WNLR estimate to be used for sigmoi-
dal network training, an important modification to Equations 1 and
2 was used. The logarithm of perfusion (log-perfusion) was con-
sidered, rather than perfusion directly. To simulate time–activity
curves, a uniform density was used over log-perfusion; this is an
exponentially decaying density for perfusion (Table 1). Instead of
estimating perfusion directly, log-perfusion and its variance were
estimated with optimal WNLR.

To train a sigmoidal network for NRE, a training set of 20,000
pairs of blood time–activity curves and tissue time–activity curves
was simulated. The optimal WNLR estimate of log-perfusion was

computed for each pair. Ten samples of the blood time–activity
curve and 10 samples of the tissue time–activity curve were the
inputs to a sigmoidal network, and the optimal WNLR estimate of
log-perfusion was the output. The network used a logistic transfer
function and a linear output function (linear regression on the basis
functions). To estimate network weights, a simple cross-validation
strategy was used, in which 3 sets of samples were simulated:
training, validation, and test samples. The latter 2 samples each
consisted of 25% of the number of training samples (18). Using a
conjugate gradient method, the weighted mean squared error
(WMSE) was optimized between the network and the log-perfu-
sion training data; the log-perfusion variance estimates were the
weights. Convergence was defined as a decrease in the training set
and an increase in the validation set for 20 consecutive iterations
(additional convergence criteria were defined but did not result in
termination). After convergence, the WMSE of the test set was
computed as a final check against overfitting. The number of basis
functions was chosen pragmatically. The initial estimate was 20
basis functions, the number of inputs (18). The number was
sequentially increased by 4, monitoring the WMSE of the test set.

Canine and Simulation Studies
For the simulation study, 2,000 pairs of blood and tissue time–

activity curves were simulated for each of 7 perfusion values: 0.25,
0.50, 0.75, 1.00, 2.00, 3.00, 4.00 (mL/min/g). The other parameters
were as in Table 1. Perfusion for each of the 7 sets of 2,000
samples was estimated by WNLR, NRE, Patlak analysis, and
optimal WNLR. For Patlak analysis, the Patlak transform was used

FIGURE 2. Graphical representation of sigmoidal networks.
Here, r is dimensionality of input, s is number of basis functions,
and each node represents dot product of input and local
weights, followed by a sigmoidal transfer function. Output node
has linear transfer function (linear regression on basis functions).
Sigmoidal network for perfusion imaging has 20 inputs (10
samples each of blood and tissue time–activity curve), 52 basis
functions, and 1 output (perfusion). Use of single output is
explained in Discussion.
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followed by unweighted linear regression; leading zeros and 1
early data point were removed, as is necessary for the method.

In the canine studies,13N-ammonia (740 MBq) was adminis-
tered to anesthetized animals with 1 ligated vessel. The protocol
for handling the subjects has been described (33). The PET data
were reconstructed with filtered backprojection and resliced to
achieve short-axis cuts. For each subject, the blood time–activity
curve was obtained from an ROI in the left ventricular chamber
and averaged over several planes. A parametric image was gener-
ated for a single midventricular short-axis cut per subject. After
calculating parametric images, 8 small circular ROIs (29 pixels)
were drawn for each subject, and the spatial average perfusion for
each ROI was computed to yield a total of 32 ROI measurements
of perfusion. No partial-volume correction was applied, because
this correction can be applied to any parametric imaging method
without modification. No metabolite correction or decay correction
is needed for data to 100 s (34).

The numerical code is in Matlab 5.3 (The Mathworks Inc.,
Natick, MA). The platform is a 233-MHz Pentium II system with
128 MB of memory.

RESULTS
Simulation study

Table 2 presents the results of the simulation study con-
ditioned on a wide range of perfusion values and marginal

over all other parameters in the model. All methods are
unbiased (byt tests) for all entries in Table 2. The median
absolute value of the relative error is a nonparametric mea-
sure of total error due to both bias and variance. The ideal
WNLR estimator provides a benchmark for performance.
The bias and spread of the WNLR and Patlak estimators are
similar to those of other reports (1,2).

Canine Studies
Figure 3 compares parametric imaging by NRE, WNLR,

and Patlak analysis in 1 canine subject. Visually, the NRE
perfusion images are quite similar to the WNLR images for
all 4 subjects. Figure 4 compares WNLR with NRE and
Patlak analysis for 32 ROIs (8 ROIs per subject). The slope
between Patlak analysis and WNLR is similar to that pre-
viously reported (2).

WNLR required about 2 h to process a 1283 128
parametric image (between 5,000 and 7,000 time–activity
curves are processed after thresholding the sum activity
image). Patlak analysis required 15 s and NRE required 3 s.
Initially, sigmoidal network training for NRE required
about 4 h and terminated in 400 iterations with a WMSE of
0.012 for a final value of 52 basis functions. Simulation of

TABLE 2
Perfusion Estimates for Simulation Study

Perfusion† (mL/min/g)

Perfusion estimate* (mL/min/g)

WNLR NRE
Patlak

analysis Ideal WNLR

0.250 0.245 6 0.165 0.293 6 0.135 0.282 6 0.139 0.269 6 0.116
MAVRE (%) 33.3 24.0 31.7 25.4

0.500 0.465 6 0.199 0.532 6 0.176 0.532 6 0.215 0.512 6 0.158
MAVRE (%) 22.2 19.0 24.3 17.7

0.750 0.712 6 0.264 0.781 6 0.219 0.793 6 0.302 0.761 6 0.212
MAVRE (%) 19.2 16.5 21.1 15.8

1.000 0.962 6 0.338 1.036 6 0.274 1.047 6 0.356 1.021 6 0.261
MAVRE (%) 17.9 16.6 19.5 14.5

2.000 1.922 6 0.477 2.005 6 0.407 2.073 6 0.546 2.008 6 0.385
MAVRE (%) 13.6 12.0 14.8 10.9

3.000 2.890 6 0.581 2.994 6 0.552 3.073 6 0.685 2.997 6 0.482
MAVRE (%) 11.1 11.6 13.6 9.7

4.000 3.897 6 0.624 4.014 6 0.661 4.057 6 0.696 3.993 6 0.523
MAVRE (%) 9.7 10.1 11.5 8.3

* Mean 6 SD.
† n 5 2,000 for each group.
MAVRE 5 median absolute value of relative error.

FIGURE 3. Parametric images of myo-
cardial perfusion by NRE (A), WNLR (B),
and Patlak analysis (C). Pseudocolored
scale bar shows units of mL/min/g. Isch-
emic region at upper right is caused by
vessel ligation.
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time–activity curves for training and calculation of optimal
WNLR estimates required 8 h for 20,000 time–activity
curves. The 12-h training process need only be done once,
after which NRE generates parametric images in 3 s.

DISCUSSION

The simulation studies and canine studies show that the
statistical performance of NRE is competitive with WNLR.
NRE is accurate and stable because it combines the optimal
WNLR method with the ability of the sigmoidal network to
approximate conditional expectation. Many other refined
WNLR methods exist, including those that use input func-
tion models (4,5,35), wavelet domain filters (36), and mul-
tivariate statistics (e.g., principal components (37), factor
analysis (38), and independent components (39)). Feng et
al. (6) validated a double modeling approach; O’Sullivan
and Saha (7) used ridge regression. Like these methods,
NRE achieves good statistical performance and can be
combined with any refined method. However, NRE is the
only nonlinear method that also speeds evaluation by orders
of magnitude.

For fast parametric imaging, linearizing methods are usu-
ally used. The simulation and canine studies show that the
statistical performance of NRE is superior to Patlak analy-
sis, a well-validated linearizing method for perfusion imag-
ing with 13N-ammonia (2). Feng’s generalized linear least
squares (GLLS) (11) is an accurate and fast linearizing
method that is well validated for perfusion imaging (1).
Other linearizing methods include weighted integration (9)
and linear least squares (10). Linearizing methods compare
favorably with WNLR for parametric imaging of cerebral
metabolic rate of glucose (12) and cerebral blood flow (13).
Thus, the statistical performance of linearizing methods can
be quite good. The results of this study suggest that the
performance of NRE may be competitive with any method.

The NRE approach has advantages over traditional
WNLR. Because the optimal WNLR estimate is very stable,
multiple parameters can be estimated accurately under noisy
conditions. Also, the use of a sigmoidal network to approx-
imate optimal WNLR speeds parametric imaging by orders
of magnitude (once the sigmoidal network is trained). In
principle, NRE is more complex than a typical sigmoidal
network approach, but it has several advantages that actu-
ally make training simpler. Recall that in conventional sig-
moidal network training, the known parameter values are
used for training rather than the optimal WNLR values. The
known parameter values can be viewed as noisy point
estimates, but the NRE training data exhibit the statistical
properties of optimal WNLR. Therefore, NRE with even the
simple training procedure used in this study produces im-
ages that are very similar to WNLR images. The training
approach is robust to the stopping criteria, the number of
iterations, the initial conditions, and even the number of
basis functions. Although the traditional approach can likely
be used for parametric imaging as well, successful training
would require a more sophisticated strategy including opti-
mization of several measures of bias and spread with respect
to the stopping criteria, the initial conditions, and the num-
ber of basis functions. When using a simple training
scheme, we found that sigmoidal networks trained with the
conventional approach yield biases as high as 52% for low
perfusion values (though for high perfusion values the bi-
ases are competitive with NRE performance) and seem to
exhibit more trend in the bias at low perfusion values than
NRE. Most importantly, images generated by sigmoidal
networks trained with a simple version of the conventional
approach are not as visually similar to WNLR images as are
the NRE images. Another advantage of NRE over a tradi-
tional learning approach is that it allows multiple model
parameters to be estimated by multiple networks having 1
output each. This is an easier problem than estimating
multiple model parameters with 1 network having multiple
outputs, as is necessary for Equation 7. Determining
whether a sigmoidal network trained using the conventional
approach can achieve the performance of NRE is an inter-
esting direction for future work.

Two techniques were used to optimize the statistical
performance of NRE. First, log-perfusion was estimated so
that perfusion could be estimated accurately over several
orders of magnitude. This property is necessary so that
ischemic, resting, and hyperemic myocardium may exist in
the same image. (The canine measurements are of ischemic
and resting myocardium because the low perfusion case is
harder.) Parameters such as spillover that are estimated over
approximately 1 order of magnitude can be estimated di-
rectly. Second, the NRE method uses the WMSE criterion
for sigmoidal network training; the weights are the variance
estimates provided by optimal WNLR. The WMSE crite-
rion is uncommon in sigmoidal network training because
weights are not usually available.

FIGURE 4. Scatter plot of NRE versus WNLR (E) and Patlak
analysis versus WNLR (3) for 32 ROIs taken from 4 canine
subjects. Least squares line fits are also shown.
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To date, no parametric imaging method is completely
general. WNLR methods are the most general because they
directly estimate the microparameters of all linear and non-
linear tracer kinetic models. However, they are too expen-
sive to compute and are ill posed for some problems.
Among fast linearizing methods, GLLS is quite general,
handling all linear compartmental models. For each new
model, however, this method still requires model-specific
nonlinear algebra to recover the microparameters. Also, it is
not applicable to nonlinear tracer kinetic models (except for
linearized perturbation experiments).

NRE has the potential to be a general nonlinear method
that learns parametric imaging of microparameters from
data generated by a user-supplied forward model. The
method handles high noise levels and a wide parameter
range. This study’s method handles a wide range of possible
blood time–activity curves, and any blood time–activity
curve model (with suitable parameter ranges) can be used.
New parameter ranges, new sampling schedules, and new
models of the blood time–activity curve, tissue time–activ-
ity curve, and noise can be accommodated by training new
networks.

To apply NRE to other problems, it must be decided how
to choose the number of basis functions and samples for any
new network. For function learning in general, the curse of
dimensionality can lead to optimization pathologies such as
ill posed problems and intolerable run times. By contrast,
this study’s learning problem is well sampled: The input
space is only 20-variate, thousands of samples can be gen-
erated, and the target function is relatively smooth. This
allows for adoption of a simple cross-validation approach to
learning that is typical of successful applications. No regu-
larization is needed, such as weight penalties or network
pruning (18), though this is crucial in more challenging
applications (40). Because most parametric imaging prob-
lems are of low dimensionality, the method used in this
study will likely be generally useful.

A related question is whether the optimal WNLR method
can be applied to all models to generate training data for
NRE. This model has only 2 parameters, and the risk of ill
posed WNLR problems increases with the number of pa-
rameters. However, simulation shows that ill posedness
most often is caused by noise in the tissue time–activity
curve variance estimate or in the blood time–activity curve
estimate. Because optimal WNLR avoids these problems, it
will likely be applicable to many models of interest.

CONCLUSION

The criteria for any parametric imaging methodology are
statistical performance, computational cost, and generality.
Although Patlak analysis and other linearizing methods can
be fast and accurate, they are not completely general and
may not match WNLR methods as closely as possible. This
study shows that NRE is statistically competitive with
WNLR and superior to Patlak analysis for parametric im-

aging of myocardial perfusion by13N-ammonia PET. NRE
computes accurate myocardial perfusion images in 3 s.

NRE achieves the statistical performance of other refined
WNLR methods by combining an optimal WNLR estimate
with the ability of the sigmoidal network to approximate
conditional expectation. NRE is a very fast method that
learns parametric imaging of the microparameters from a
forward model of data. Because the method is nonlinear, it
has the potential to handle all nonlinear and linear tracer
kinetic models.
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