Salivary and Lacrimal Gland Dysfunction (Sicca Syndrome) After Radioiodine Therapy

Roser Solans, Josep-Angel Bosch, Pere Galofré, Francesc Porta, José Roselló, Albert Selva-O’Callagan, and Miquel Vilardell

Departments of Internal Medicine, Nuclear Medicine, and Preventive Medicine and Epidemiology, Vall d’Hebron General Teaching Hospital, Barcelona, Spain

Salivary gland dysfunction has been described in patients undergoing radioiodine therapy but associated lacrimal gland dysfunction (sicca syndrome) has never been reported. We conducted a prospective cohort study with follow-up for up to 3 y in a tertiary care university center to determine the prevalence of sicca syndrome in patients after high-dose radioiodine treatment. **Methods:** From January 1990 to December 1995, all patients undergoing radioiodine therapy (n = 79) with a standard dose of 925 MBq to 18.5 GBq (25–500 mCi) were interviewed using a standardized questionnaire to determine subjective ocular and oral dryness and were examined for objective lacrimal and salivary gland dysfunction. **Results:** After radioiodine treatment, 32.9% of the patients reported xerostomia and 25.3% reported xerophthalmia in the first year of follow-up. Xerostomia persisted to the second year of follow-up in 20.3% of cases and was still present >3 y after the last dose of radioiodine in 15.2% of cases. Xerophthalmia persisted to the second year of follow-up in 17.7% of cases and was still present in the third year of follow-up in 13.9% of cases. Severe xerostomia occurred in 4 patients. Reduced salivary and lacrimal gland function was documented in 14 (17.7%) of the 79 cases, respectively, in the first year of follow-up. Objective xerostomia persisted in 13.9% of cases to the second year of follow-up and was still present in all patients >3 y after the last radioiodine application. Keratoconjunctivitis sicca persisted in 11 patients (13.9%) to the second year of follow-up but was only present in 6 patients (7.6%) >3 y after the last radioiodine application. Additionally, 28/79 patients (35.4%) who had a normal salivary gland scintigraphy previously showed reduced salivary gland function in the third year of follow-up. No significant dependence on cumulative treatment was found for objective xerostomia or xerophthalmia, but doses >11.1 GBq (300 mCi) were related to stage 3 dysfunction on salivary gland scintigraphy. **Conclusion:** Salivary and lacrimal gland dysfunction (sicca syndrome) is relatively frequent after radioiodine therapy. In most cases this is a transient side effect, but in some patients it may persist for a long period or appear late.

Key Words: salivary glands; lacrimal glands; xerophthalmia; xerostomia; radioiodine therapy; thyroid cancer

The use of radioiodine therapy (Na¹³¹I) for the ablation of residual thyroid after surgery has become established in the management of differentiated thyroid cancer (1). Serious acute complications are extremely rare during treatment but adverse reactions after treatment have been reported (2–4). Thus, a significant number of patients complaining of symptoms such as dryness of mouth, pain in the parotid region, altered taste, and difficulty in swallowing have been described (2–6). These side effects have been related to radiation damage to the salivary glands; iodine is greatly concentrated in the thyroid gland by a carrier-mediated mechanism, but similar Na¹³¹I uptake is found in other organs, including the salivary glands (7). As a consequence and despite the standard protection regimen using ascorbic acid as a sialogogue, a loss of salivary gland parenchymal function has been documented in several studies, even with low doses of radioiodine (3–6). In contrast, although iodine is also concentrated at the choroid plexus (7), reduced lacrimal gland function (one of the diagnostic criteria in autoimmune exocrinopathy or Sjögren’s syndrome) has never been mentioned as a side effect after treatment. Only one case of salivary and lacrimal gland involvement after radioiodine therapy has been described (2), and concurrent reduced lacrimal and salivary gland function (sicca syndrome) has not been investigated in these patients.

This study was undertaken to investigate the prevalence of subjective and objective salivary and lacrimal gland dysfunction in patients treated with therapeutic doses of radioiodine.

MATERIALS AND METHODS

Seventy-nine patients (11 men, 68 women; mean age, 46.4 y; age range, 22–80 y) who had received various cumulative activities of radioiodine for different thyroid neoplasms or hyperthyroidism, from January 1990 to December 1995, were evaluated prospectively. Sixty-five patients had papillary carcinoma, 11 had follicular carcinoma, and 2 had Basedow’s disease. All subjects underwent objective clinical testing to check for gland dysfunction before radioiodine treatment was started. Self-reported symptoms were recorded by means of a detailed questionnaire covering the

Received Jun. 26, 2000; revision accepted Dec. 4, 2000.

For correspondence or reprints contact: Roser Solans, MD, PhD, Servei de Medicina Interna. 3r planta, Hospital General Universitari Vall d’Hebron, Passeig Vall d’Hebron 119, 08035 Barcelona, Spain.
symptoms of dry mouth (dryness, dental deterioration, gingivitis, infections, parotitis, lack of taste, and difficulty in swallowing dry foods) and dry eyes (dryness, photosensitivity, sticking, burning, heaviness, redness, and infection of the eyes). A detailed drug history was also obtained to assess for drugs that can cause sicca symptoms (8). No patient with sicca syndrome was detected before the radioiodine therapy. A follow-up of 3 y with yearly controls was conducted to study the intermediate and long-term effects of radioiodine therapy on the salivary and lacrimal glands. The study was approved by the research and ethics committee of our hospital. A written informed consent was obtained from all subjects before study startment.

Lacrimal gland function was measured by Schirmer’s test, rose Bengal dye and tear break-up time, performed yearly during the follow-up. For Schirmer’s test, wetting of 5 mm or less, measured over 5 min under basal conditions with the eyes lightly closed, was considered abnormal (9,10). Rose bengal dye (1%) was instilled into the conjunctival sac to find evidence of punctate or filamentary keratitis (9–11). Tear break-up time using a slit lamp was performed to measure the stability of the tear film (9–11). Objective lacrimal gland dysfunction was diagnosed when two of the three tests were abnormal (9–11).

Salivary gland function was estimated by sequential salivary gland scintigraphy using 370 MBq (10 mCi) 99mTc-pertechnetate. Fasting patients were studied in the supine position, using a single-head gamma camera (SP4P; Elscint, Haifa, Israel). The field of view included the head and the cervical area. Acquisition was dynamic (word, 128 x 128, 1 frame per minute for 60 min). Depending on the salivary gland uptake and excretion, patients were classified into one of four different patterns (Fig. 1): stage 1, normal uptake and excretion; stage 2, mild to moderate dysfunction; stage 3, moderate to severe dysfunction; and stage 4, severe dysfunction.

FIGURE 1. Salivary gland scintigraphy stages depend on salivary gland uptake and excretion: stage 1, normal uptake and excretion; stage 2, mild to moderate dysfunction; stage 3, moderate to severe dysfunction; and stage 4, severe dysfunction.

RESULTS

Subjective symptoms of dry mouth and dry eyes and objective salivary and lacrimal gland dysfunction were common in our series (Table 1). Xerostomia was recorded in 32.9% of patients during the first year of follow-up and xerophthalmia in 25.3%; both percentages were statistically significant as compared to basal conditions (P < 0.001). In the second year of follow-up, xerostomia persisted in 20.3% of patients and xerophthalmia in 17.7% (P = 0.002 and P = 0.03, respectively, as related to the first year of follow-up). In the third year of follow-up, xerostomia persisted in 15.2% of patients and xerophthalmia in 13.9%. In addition, 2 patients reported de novo xerostomia and 1 patient reported de novo xerophthalmia. All patients who reported xerophthalmia also reported xerostomia.

Objective xerostomia (abnormal salivary gland scintigraphy) was documented in 50.6% of patients in the first year of follow-up (P < 0.001 vs. basal), and was moderate to severe in 16 patients.

Objective xerophthalmia (abnormal Schirmer’s test plus abnormal rose Bengal dye, abnormal tear break-up time, or both) was documented in 17.7% of patients in the first year
showed no statistical differences (dry eyes (6/20, 30%) and those without (8/59, 13.56%)) gland involvement in patients with subjective complaints of objective xerostomia. In the third year of follow-up also had abnormal results (Table 1). All patients with objective xerophthalmia in the third year of follow-up.

In addition, 3 patients with unaltered salivary gland scintigraphy results and 11 of the 14 patients with objective xerostomia persisted with abnormal salivary gland dysfunction during the follow-up (Table 2). In contrast, only 9 of the 48 patients (18.7%) who had received 925 MBq to 3.7 GBq (25–100 mCi) Na131I developed stage 3 salivary gland dysfunction during the follow-up. Moreover, 9 of 10 patients who showed stage 3 salivary gland dysfunction on scintigraphy in the third year of follow-up had received 11.1–18.5 GBq (300–500 mCi) of radioiodine, and the last one had received 7.4 GBq (200 mCi). Similarly, a dependence on cumulative dose of radioiodine was significant for subjective xerophthalmia with a linear trend to cumulative activity (P = 0.002). In contrast, we found no association between objective xerophthalmia and cumulative activity (P = 0.29).

Antinuclear antibodies were detected in 6 patients before radioiodine therapy. ANA titers ranged from 1/80 to 1/320 in a speckled pattern in 4 patients and a homogeneous pattern in the last 2. In all cases, ANA became negative during the follow-up. ANA were also detected in the first year of follow-up in 9 patients with initial negative test, titers ranging between 1/80 (4 patients) and 1/320 (2 patients), in a speckled pattern in 5 cases and in a homogeneous pattern in the remaining 4. In 4 cases ANA became negative during the second year of follow-up and in 3 cases during the third year. Thus, only 2 patients with thyroid neoplasms showed positive ANA (with titers above 1/160 in a speckled pattern) in the third year of follow-up. Antibodies to Ro or La, commonly associated with Sjögren’s syndrome, were not detected in any patient. Rheumatoid factor was detected in 3 patients in the first year of follow-up (titers above 1/256) and remained positive at the same titers to the third year of follow-up in all cases.

The most commonly reported oral complaint was “dry mouth every day” and the most common ocular symptom was “burning heaviness.” Dyseusia was reported by 26 patients and in most cases appeared initially and disappeared in 2–4 wk. However, in 6 patients dysgeusia persisted for several months. In addition, 4 patients developed tender oral aphthae. Odynophagia occurred in 5 patients after the first dose of Na131I and lasted for 3–5 d before normalization. Sialoadenitis, which resolved with NSAIDs, was observed in 16 patients. The parotid gland was affected more often (10 patients) than the submandibular gland (6 patients). Bilateral parotitis was more frequent (8/10) than unilateral parotitis (2/10). Relapsing parotitis was observed in only 2 cases. We found a coincidence of dry mouth and sialoadenitis after treatment in only 6 cases.

There was a positive correlation between cumulative activity and degree of salivary gland dysfunction (r = 0.84, P < 0.049), although no linear trend was found. Thus, 12 of the 31 (38.7%) patients who had received 7.4–18.5 GBq (200–500 mCi) Na131I developed stage 3 salivary gland dysfunction during the follow-up (Table 2). In contrast, only 9 of the 48 patients (18.7%) who had received 925 MBq to 3.7 GBq (25–100 mCi) Na131I developed stage 3 salivary gland dysfunction during the follow-up. Moreover, 9 of 10 patients who showed stage 3 salivary gland dysfunction on scintigraphy in the third year of follow-up had received 11.1–18.5 GBq (300–500 mCi) of radioiodine, and the last one had received 7.4 GBq (200 mCi). Similarly, a dependence on cumulative dose of radioiodine was significant for subjective xerophthalmia with a linear trend to cumulative activity (P = 0.002). In contrast, we found no association between objective xerophthalmia and cumulative activity (P = 0.29).

Antinuclear antibodies were detected in 6 patients before radioiodine therapy. ANA titers ranged from 1/80 to 1/320 in a speckled pattern in 4 patients and a homogeneous pattern in the last 2. In all cases, ANA became negative during the follow-up. ANA were also detected in the first year of follow-up in 9 patients with initial negative test, titers ranging between 1/80 (4 patients) and 1/320 (2 patients), in a speckled pattern in 5 cases and in a homogeneous pattern in the remaining 4. In 4 cases ANA became negative during the second year of follow-up and in 3 cases during the third year. Thus, only 2 patients with thyroid neoplasms showed positive ANA (with titers above 1/160 in a speckled pattern) in the third year of follow-up. Antibodies to Ro or La, commonly associated with Sjögren’s syndrome, were not detected in any patient. Rheumatoid factor was detected in 3 patients in the first year of follow-up (titers above 1/256) and remained positive at the same titers to the third year of follow-up in all cases.

TABLE 1

<table>
<thead>
<tr>
<th></th>
<th>First year n (%)</th>
<th>Second year n (%)</th>
<th>Third year n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjective xerostomia</td>
<td>26 (32.9%)</td>
<td>16 (20.3%)</td>
<td>12 (15.2%)</td>
</tr>
<tr>
<td>New cases*</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Objective xerostomia</td>
<td>40 (50.6%)</td>
<td>11 (13.9%)</td>
<td>11 (13.9%)</td>
</tr>
<tr>
<td>Stage 2</td>
<td>24</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Stage 3</td>
<td>16</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Stage 4</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>New cases*</td>
<td>3 (3.8%)</td>
<td>28 (35.4%)</td>
<td>—</td>
</tr>
<tr>
<td>Stage 2</td>
<td>3</td>
<td>23</td>
<td>—</td>
</tr>
<tr>
<td>Stage 3</td>
<td>—</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>Stage 4</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Objective xerophthalmia</td>
<td>20 (25.3%)</td>
<td>14 (17.7%)</td>
<td>11 (13.9%)</td>
</tr>
<tr>
<td>New cases*</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Schirmer test</td>
<td>14</td>
<td>11</td>
<td>6 (7.6%)</td>
</tr>
<tr>
<td>Rose Bengal dye</td>
<td>8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Tear break-up time</td>
<td>10</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>New cases*</td>
<td>2 (2.5%)</td>
<td>2 (2.5%)</td>
<td>—</td>
</tr>
<tr>
<td>Shimmer test</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Rose Bengal dye</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Tear break-up time</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

*New cases: cases detected during the second or third year of follow-up.

Salivary gland scintigraphy dysfunction stages: 1, normal uptake and excretion; 2, mild dysfunction; 3, moderate dysfunction; and 4, severe dysfunction.

of follow-up (P < 0.001 vs. basal). All patients with objective xerophthalmia also had objective xerostomia. In the second year of follow-up, 11 of the 40 patients with objective xerostomia persisted with abnormal salivary gland scintigraphy results and 11 of the 14 patients with objective xerophthalmia persisted with abnormal ocular test results. In addition, 3 patients with unaltered salivary gland scintigraphy in the first year showed abnormal uptake and secretion of isotope in the second year.

In the third year of follow-up, all patients with objective xerostomia and 6 of the 11 patients with objective xerophthalmia persisted with abnormal oral or ocular test results, respectively. Additionally, 28 patients with normal salivary gland scintigraphy and 2 patients with normal ocular tests showed abnormal results (Table 1). All patients with objective xerophthalmia in the third year of follow-up also had objective xerostomia.

A comparison between the percentage of objective ocular gland involvement in patients with subjective complaints of dry eyes (6/20, 30%) and those without (8/59, 13.56%) showed no statistical differences (χ2 = 2.77, P = 0.096). In contrast, a statistically significant difference in the percentage of objective salivary gland involvement was found between patients with subjective complaints of dry mouth (22/26, 84.62%) and those without (19/53, 35.85%) (χ2 = 16.62, P < 0.0001). The association between oral symp-
DISCUSSION

In our series, subjective symptoms consistent with ocular and oral dryness and objective lacrimal and salivary gland dysfunction were both relatively common. A high percentage of patients reported sicca symptoms in the first year of follow-up that disappeared in the course of the second or third year of follow-up in most cases. Nevertheless, a small percentage of patients remained symptomatic for 3 y after the last dose of radioiodine. Furthermore, many patients showed objective salivary and lacrimal gland dysfunction in the first year of follow-up that persisted in some cases to the end of follow-up, and many patients developed objective lacrimal or salivary gland dysfunction during the second or third year of follow-up.

Sialoadenitis was documented in 22.8% of patients, a percentage similar to that reported in the literature (15–17). The parotid gland was affected more often than the submandibular gland, and bilateral parotitis was more frequent than unilateral, as shown by other authors (5,15). Relapsing parotitis was observed in only two cases. A coincidence of dry mouth and post-therapeutic sialoadenitis was observed in only six cases. Thus, the majority of cases of reduced salivary gland function did not arise from clinically evident siaaloadenitis, as reported by Alexander et al. (3).

Sialoadenitis and salivary gland dysfunction have been reported in patients undergoing low and high-dose radioiodine therapy (2–6) and related to the ability of major and minor salivary glands to concentrate iodine at a 50:1 ratio (7). Radioiodine has been shown to concentrate in the ductal cells of the salivary glands (7), which can receive 7–15 Gy. Moreover, radiation is thought to induce changes in saliva composition (increased amylase and activated kallikrein) and an obstructive process leading to reduced salivary flow (15–17). It seems that individual variations in salivary gland uptake of iodine, noted on Na131I uptake scans (6,13,17,18) may influence the rate of parotid gland complications. As a consequence and despite salivary gland stimulation during radioiodine treatment, a significant activity-related functional impairment of 10%–90% after application of 0.4–24 GBq of Na131I has been reported (18), and severe salivary gland parenchymal destruction has been documented among patients who received large doses of Na131I (2,3,5,6). A dependence of xerostomia on cumulative activity has been suggested (2,3,5,6). The present results confirm this trend. Thus, in our series, the incidence of severe xerostomia was greater with increasing doses of radioiodine whether administered as a single high dose or as multiple doses. Salivary gland damage was pronounced in patients receiving Na131I doses >11.1 GBq (300 mCi).

Sialoadenitis and xerostomia have been considered as transient side effects of radioiodine therapy, but long-term xerostomia has recently been described (3,19). Alexander et al. (3) reported that 42.9% of patients undergoing radioiodine therapy suffered from reduced salivary gland function >1 y after the last radioiodine application and, in some cases (4.4%), these complaints persisted up to 5 y. Our results also suggest that radiation of salivary glands may reduce salivary gland function for a lengthy time or indefinitely. In addition, these results confirm that salivary gland dysfunction does not necessarily follow immediately after application of Na131I but can be delayed.

In contrast to well-documented salivary gland dysfunction, the finding of ocular dryness after radioiodine treatment is novel. To our knowledge, reduced lacrimation has never been mentioned in iodine-induced salivary disorders. In addition, there are no studies on the prevalence of xerostomia and xerophthalmia (sicca syndrome) in patients treated with radioactive iodine, although iodine uptake also

<table>
<thead>
<tr>
<th>Na131I total dose</th>
<th>14.8–18.5 GBq (300–500 mCi)</th>
<th>11.1 GBq (300 mCi)</th>
<th>7.4 GBq (200 mCi)</th>
<th>3.7 GBq (100 mCi)</th>
<th>925 MBq–1.85 GBq (25–50 mCi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients (n [%])</td>
<td>5 (6.3%)</td>
<td>20 (25.3%)</td>
<td>6 (7.6%)</td>
<td>46 (58.2%)</td>
<td>2 (2.5%)</td>
</tr>
<tr>
<td>XS subjective</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>17</td>
<td>—</td>
</tr>
<tr>
<td>XS objective</td>
<td>5</td>
<td>19</td>
<td>6</td>
<td>38</td>
<td>—</td>
</tr>
<tr>
<td>Stage 2</td>
<td>2</td>
<td>13</td>
<td>3</td>
<td>29</td>
<td>—</td>
</tr>
<tr>
<td>Stage 3</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>9</td>
<td>—</td>
</tr>
<tr>
<td>Stage 4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>XF subjective</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>7</td>
<td>—</td>
</tr>
<tr>
<td>XF objective</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>9</td>
<td>—</td>
</tr>
<tr>
<td>Schirmer</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>9</td>
<td>—</td>
</tr>
<tr>
<td>Rose Bengal dye</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>Break-up time</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>—</td>
</tr>
</tbody>
</table>

XS = xerostomia; XF = xerophthalmia.
Salivary gland scintigraphy dysfunction stages: 1, normal uptake and excretion; 2, mild dysfunction; 3, moderate dysfunction; 4, severe dysfunction.

TABLE 2

Lacrimal and Salivary Gland Dysfunction After Radioiodine Therapy for Groups of Increasing Cumulative Activities
occurs in the choroid plexus (7). There is only one record of
a patient developing lacrimal and salivary gland dysfunction
after radiation (2), and non–dose dependent chronic and
recurrent conjunctivitis in 46 of 203 patients receiving ra-
dioiodine therapy has been recently reported by Alexander
et al. (3). Although less frequent than oral dryness in our
series, ocular dryness was relatively prevalent and in some
cases persisted up to 3 y. All patients with reduced lacrimal
gland function also showed reduced salivary gland function,
fulfilling the criteria for sicca syndrome. We believe that the
decrease in lacrimal gland secretion can be ascribed to a
direct effect of the radioiodine concentrated at the choroid
plexus (7,20).

There was a weak association between the presence of
oral or ocular symptoms and their respective objective test
results. Thus, abnormal objective test results were more
frequent than subjective symptoms when the salivary glands
were evaluated, and the reverse was true when the lacrimal
glands were evaluated. Our findings are in keeping with the
data of Malpani et al. (5), who reported that nearly 70% of
their asymptomatic patients had demonstrable salivary dys-
function. Similarly, Alexander et al. (3) showed that only
45% of patients with dry mouth reported complaints of
sialoadenitis after treatment. The association between oral
symptoms and salivary gland scintigraphy changes was
stronger that between ocular symptoms and abnormal
Schirmer test. Subjects with oral symptoms showed the
strongest association with the objective testing results, as
has been described (21).

With regard to assessment of dry mouth or dry eyes,
although no single test for ocular or salivary gland function
is sufficiently precise to diagnose sicca syndrome, Schir-
mer’s test and salivary gland scintigraphy seems to perform
well (21). Schirmer’s test, which measures the volume of
tears produced in 5 min under basal conditions, has been
shown to have high sensitivity and specificity in the hospital
environment (21). Similarly, radioisotope scintigraphy is a
simple, noninvasive method for evaluating salivary gland
function that correlates well with sialographyc stages (22),
considered the gold standard in the diagnosis of Sjögren’s
syndrome. In addition, a good correlation has been found
between 99mTc-pertechnatate scintigraphic findings and vol-
ume of saliva measured after Wharton’s catheterization
(23,24) and between scintigraphic findings and the his-
topathologic grade in patients with Sjögren’s syndrome
(25).

Although ANAs were detected in some patients their
positivity was probably caused by the underlying neoplasm
(26). Thus, autoantibodies to Ro or La, commonly associ-
ated with Sjögren’s syndrome (10,27), were not detected in
our patients, suggesting that autoimmune disease was not
responsible for the glandular abnormalities. Finally, all pa-
ients were treated with t-thyroxine and none had hypo-
roidism that might influence salivary gland function.

In our opinion, the incidence of sicca syndrome after
radioiodine therapy advises regular prevention of salivary
and lacrimal gland damage and the development of effective
protection. Usually only increased fluid intake and lemon
juice consumption is recommended for prevention of sali-
vary gland damage. However, symptomatic improvement in
patients with radiation-induced xerostomia has been re-
ported after pilocarpine treatment (5–10 mg orally three
times a day) (28). Moreover, significant improvement in
symptoms of dry mouth and dry eyes after pilocarpine
treatment has been reported in patients with Sjögren’s syn-
drome (29). On this basis, clinical trials using pilocarpine
could be warranted in patients who undergo radioiodine
therapy to investigate the potential benefits of this drug in
preventing or reducing the adverse effects of radioiodine
therapy on salivary and lacrimal glands.

CONCLUSION

These results suggest that a significant percentage of
patients treated with radioactive iodine may develop concur-
current lacrimal and salivary gland dysfunction (sicca syn-
drome) in the following years. Although in the majority of
cases these side effects develop early and are transient, they
can persist up to three years or appear late. Furthermore,
glandular function may not return to normal.

In our opinion, the incidence of sicca syndrome after
radioiodine therapy advises regular prevention of salivary
and lacrimal gland damage and the development of effective
protection. Because the patients’ complaints do not neces-
arily reflect the severity of their salivary and lacrimal gland
disease, prolonged follow-up with performance of objective
tests should be indicated in patients undergoing this treat-
ment.

ACKNOWLEDGMENTS

The authors are indebted to Celine Cavalo for language
support. This work was funded by grant 93/0584 from the
Fondo de Investigaciones Sanitarias.

REFERENCES

1. Samaan NA, Schultz PN, Hickey RC et al. The results of various modalities of
treatment of well differentiated thyroid carcinomas: a retrospective review of
gland involvement in a patient who had undergone a thyroidectomy and was
3. Alexander C, Bader JB, Schaefer A, Finke C, Kirsch CM. Intermediate and
long-term side effects of high dose radioiodine therapy for thyroid carcinoma.
4. Lin WY, Shen Y, Wang SJ. Short term hazards of low-dose radioiodine ablation
5. Malpuni BL, Samuel AM, Ray S. Quantification of salivary gland function in
scintigraphy in the diagnosis of parenchymal damage after treatment with radio-
7. Cavalieri RR. Iodine metabolism and thyroid physiology: current concepts.
8. Srebnny LM, Schwartz SS. A reference guide to drugs and dry mouth. Ger-