With e.soft™, the ability to transfer images and patient data seamlessly from any modality is at your fingertips. It’s that simple.

Your preferences in acquisition, processing and viewing can all be automated, making work fast and easy. It’s that powerful.

Jointly developed by Siemens and Toshiba, e.soft™ is the ultimate nuclear medicine system.

Correction: e.soft is a joint development between Siemens and Toshiba.
Visit our web site at www.siemens-esoft.com
The keenest eye in functional imaging.
A remarkable merging of modalities.

Localization of disease has long remained an elusive diagnostic factor — until now.

The Millennium VG Hawkeye not only detects the presence of disease, it utilizes Functional Anatomic Mapping to identify its location.

Never before has there been such a superb blending of imaging function and form. By merging the functional imaging of PET and SPECT with the anatomical landmarks of CT, Hawkeye provides you with powerful diagnostic information.

Simply put, Hawkeye has the potential to change the way you manage patients.

What's more, this GE exclusive is available as an upgrade to existing VG systems, giving you an attractive, cost-effective route to an extraordinary new technology.

Hawkeye is the ultimate version of GE's Millennium VG Series. Based on a premium all-digital, variable-geometry, dual-detector nuclear platform already enhanced with breakthrough technologies, our three Millennium VG systems give you total clinical flexibility today and tomorrow.

Millennium VG Hawkeye. Form and function in a single device — with a keen eye on your future.

GE Medical Systems
We bring good things to life.

©2000 General Electric Company
gemedicalsystems.com

Circle Reader Service No. 62
NeoTect, a noninvasive nuclear imaging agent, characterizes pulmonary masses as being rich in somatostatin receptors.\(^1,2\)

- Many malignant pulmonary masses and some inflammatory processes overexpress somatostatin receptors (SSTRs)\(^1\)
- For use in patients who are known to have or are highly suspect for malignancy and have pulmonary lesions on CT and/or chest x-ray.\(^1\)

The clinical benefit of NeoTect as a population-based screening tool has not been studied. NeoTect is not an alternative to CT or biopsy.\(^1\)

NeoTect, like other small peptides, may induce hypersensitivity reactions or anaphylactic reactions. Adequate treatment provisions, including epinephrine, should be available for immediate use.\(^1\)

Please see brief summary of prescribing information on following page.
Brief Summary of Prescribing Information

DESCRIPTION
NeoTect™ (Kit for the Preparation of Technetium Tc 99m Depreotide Injection) is intended for use in the preparation of Technetium Tc 99m Depreotide, a diagnostic radiopharmaceutical to be used by intravenous injection. Each vial contains a sterile, non-pyrogenic, lyophilized mixture of 99m Tc Depreotide, 5 mg of sodium gluconate diphosphate dihydrate, 50 mg of stannous chloride dihydrate (with a minimum stannous tin content of 15 mg), 100 mg edetate disodium diphosphate, and sufficient sodium hydroxide for adjustment to pH 7.4 prior to lyophilization. The lyophilized powder is sealed under a nitrogen atmosphere with a rubber closure. The product contains no antimicrobial preservative.

INDICATIONS AND USAGE
NeoTect™ is a scintigraphic imaging agent that identifies somatostatin receptor-bearing pulmonary masses in patients presenting with pulmonary lesions on computed tomography and/or chest x-ray examination.

CONTRAINDICATIONS
None known.

WARNINGS
None.

PRECAUTIONS

General
Therapy with somatostatin analogues can produce severe hypoglycemia in patients with insulinomas. Since Depreotide binds to somatostatin receptors, caution should be exercised when administering this drug to patients with insulinomas.

NeoTect™, as other small peptides, may induce hypersensitivity reactions or anaphylactic reactions. Adequate treatment provisions, including epinephrine, should be available for immediate use. In preliminary studies of 18 subjects, NeoTect™ did not produce increases in IgG or IgM production 3 weeks following injection. Other immune parameters such as eosinophils, other immunoglobulins, complement, lymphocytes, or eosinophils were not studied.

Technetium Tc 99m Depreotide Injection, like other radioactive drugs, must be handled with care and appropriate safety measures should be used to minimize radiation exposure to clinical personnel. Care should also be taken to minimize radiation exposure to the patient consistent with proper patient management.

Radiochemicals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radiochemicals, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radiochemicals.

Urinary excretion of radioactivity occurs primarily during the first 4 hours after injection. Studies have not been done to determine the amount of radioactivity that might be eliminated in the feces. (See Clinical Pharmacology Section.) Special precautions should be taken with incontinent patients to minimize the risk of radioactive contamination of clothing, bed linen, and the patient's environment.

Information For Patients
To minimize radiation absorbed dose to the bladder, adequate hydration should be encouraged to permit frequent voiding during the first few hours after injection of NeoTect™. This may be achieved by having patients drink at least an 8 oz. glass of water prior to drug administration. To help protect themselves and others in their environment, patients should take the following precautions for 12 hours after injection: whenever possible a toilet should be used and should be flushed several times after each use and patients should wash their hands thoroughly after each voiding or fecal elimination. If blood, urine or feces soil the clothing, the clothing should be washed separately.

Laboratory Tests
There was a low incidence (1% or less) of transient and clinically insignificant changes in alanine aminotransferase (ALT), white blood cell count, and eosinophil count following administration of Technetium Tc 99m Depreotide Injection.

Drug Interactions
Drug interactions were noted in clinical studies in which Technetium Tc 99m Depreotide Injection was administered to patients receiving concomitant medication.

Carcinogenesis, Mutagenesis, Impairment of Fertility
Studies have not been conducted to evaluate carcinogenic potential or effects on fertility. The results of the following genotoxicity studies with decayed Technetium Tc 99m Depreotide Injection or with depreotide were negative: Salmonella/E. coli reverse mutation assay, in vitro mouse lymphoma assay with and without metabolic activation, and in vivo mouse micronucleus assay.

Pregnancy
Pregnancy Category C.
Animal reproduction studies have not been conducted with decayed Technetium Tc 99m Depreotide Injection. Injection of Technetium Tc 99m Depreotide Injection can cause fetal harm when administered to a pregnant woman or can affect reproductive capacity. Technetium Tc 99m Depreotide Injection should be given to a pregnant woman only if clearly needed. Studies in pregnant women have not been conducted.

Nursing Mothers
Studies have not been conducted with depreotide to determine its excretion in human milk. Technetium Tc 99m Perchelate is excreted in human milk. It is not known whether Technetium Tc 99m Depreotide Injection is excreted in human milk. Caution should be used when Technetium Tc 99m Depreotide Injection is administered to a nursing woman. Wherever possible, infant formula should be substituted for breast milk until the technetium has been eliminated.

Pediatric Use
Safety and effectiveness of Depreotide in pediatric patients below the age of 18 years have not been established.

ADVERSE REACTIONS
Adverse events were evaluated in clinical studies of 947 adults who received 15.0 to 20.5 mCi Technetium Tc 99m labeled to approximately 50 mg of depreotide. Of these adults, 58% were men and 42% were women. The mean age was 59.0 years (18-96 years).

Deaths did not occur during the clinical study period. After Technetium Tc 99m Depreotide Injection, serious adverse events were not reported. At least one adverse event occurred in 29647 (4.5%) patients after Technetium Tc 99m Depreotide Injection. Headache was the most commonly reported adverse event (1% of patients). Table 8 lists adverse events reported in 0.5% or more of patients who received Technetium Tc 99m Depreotide Injection.

Other adverse events which occurred in 0.5% of patients following administration of NeoTect™ included: arthrosis, back pain, chest pain, diarrhea, fatigue, gait abnormality, glossitis, hemoptysis, hypoesthesia, injection, leg cramps, lymphoedema, malaise, pharyngitis, somnolence, taste perversion.

DOSAGE AND ADMINISTRATION
For imaging, NeoTect™ is administered as a peripheral intravenous injection at a single dose of 15 to 20 mCi containing approximately 50 mg of Technetium Tc 99m radioencoded peptide.

Patients should drink at least an 8 oz. glass of water before drug administration.

The contents of the Kit for the Preparation of Technetium Tc 99m Depreotide Injection are intended only for use in the preparation of Technetium Tc 99m Depreotide Injection and are not to be administered directly to the patient. Only one patient dose should be drawn from each reconstituted vial. (See Instructions for the Preparation Section.)

The potential need for dose adjustment has not been studied in patients with renal insufficiency, or in pediatric or geriatric patients, or in patients on therapeutic somatostatin analogues.

IMAGING
Planar and SPECT images of the chest should be obtained between 2-4 hours after NeoTect™ administration. SPECT images of the chest are required for optimal image interpretation.

RADIATION DOSIMETRY
Based on human data, the absorbed radiation dose to an average human adult (70 kg) from an intravenous injection of the agent are listed in Table 9. The values are listed in descending order of radiation dose and mCi/McBq and assume urinary bladder emptying at 4 hours.

Table 9: Estimated Absorbed Radiation Dose

<table>
<thead>
<tr>
<th>Organ</th>
<th>Dose (mCi)</th>
<th>McBq/McBq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidneys</td>
<td>0.33</td>
<td>0.090</td>
</tr>
<tr>
<td>Spine</td>
<td>0.15</td>
<td>0.032</td>
</tr>
<tr>
<td>Testes</td>
<td>0.11</td>
<td>0.021</td>
</tr>
<tr>
<td>Throat Gland</td>
<td>0.08</td>
<td>0.016</td>
</tr>
<tr>
<td>Rearrow</td>
<td>0.07</td>
<td>0.016</td>
</tr>
<tr>
<td>Liver</td>
<td>0.07</td>
<td>0.021</td>
</tr>
<tr>
<td>Heart Wall</td>
<td>0.05</td>
<td>0.014</td>
</tr>
<tr>
<td>Bone Surface</td>
<td>0.05</td>
<td>0.015</td>
</tr>
<tr>
<td>Lungs</td>
<td>0.05</td>
<td>0.014</td>
</tr>
<tr>
<td>Adrenal glands</td>
<td>0.04</td>
<td>0.012</td>
</tr>
<tr>
<td>Pancreas</td>
<td>0.03</td>
<td>0.010</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>0.03</td>
<td>0.008</td>
</tr>
<tr>
<td>Uterus</td>
<td>0.03</td>
<td>0.006</td>
</tr>
<tr>
<td>Small intestine</td>
<td>0.02</td>
<td>0.004</td>
</tr>
<tr>
<td>Upper Large Intestine</td>
<td>0.02</td>
<td>0.005</td>
</tr>
<tr>
<td>Lower Large Intestine</td>
<td>0.014</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Dose calculations were performed using the standard MIRD method (MIRD Pamphlet No. 1 rev., Soc. Nucl. Med., 1976). Effective dose equivalent was calculated in accordance with ICRP 53 (Ann. ICRP 18, 1-4, 1988) and gave a value of 0.023 mcSv/McBq (0.104 rem/mCi).

HOW SUPPLIED
Each kit is comprised of one vial containing a sterile, non-pyrogenic, freeze-dried mixture of Depreotide, stannous chloride dihydrate, sodium gluconate diphosphate dihydrate and edetate disodium dihydrate. Kits are available as individual vials or as packs of five.

NDC 64370-511-10 - single vial
NDC 64370-511-05 - five vial pack

STORAGE
Store the kit at -10°C (c ≤ 14°F). Store the reconstituted injection solution at 20-25°C (68-77°F) using appropriate radiation shielding. Use within 5 hours of reconstitution. The kit should be protected from light.

Rx Only
Distributed by:
Diatex, Inc.
9 Delta Drive
Londonerly, New Hampshire 03053
Revised August 1999

REFERENCES

NeoTect™ is a trademark of Diatec, Inc. EXPANDING YOUR VISION

Circle Reader Service No. 9
Circle Reader Service No. 135

berlex
nycomed
amsterdam
we've got your solutions
we're here to help
Decisive information keeps you on course

Guiding you to optimal intervention for neuroendocrine tumors

- Somatostatin receptor scintigraphy with OctreoScan detects and localizes primary tumors and metastatic spread often missed by conventional imaging (sensitivity varies 61%-100%, depending on tumor type).

- Whole-body scanning can more definitively confirm the extent of disease.

- You are better able to
 - stage the patient
 - determine diagnostic work-up
 - avoid unnecessary procedures
 - select optimal treatment
 - assess surgical candidates
 - evaluate response to treatment

- Transient adverse effects including dizziness, fever, flush, headache, hypotension, changes in liver enzymes, joint pain, nausea, sweating, and weakness were observed in less than 1% of 538 patients during clinical trials.

- Please see the prescribing information for special considerations regarding patients receiving total parenteral nutrition or concurrent octreotide acetate therapy and patients with insulinoma or impaired renal function.

The accepted standard for GEP* tumors
An emerging choice for small cell lung cancer

*Gastroentero-pancreatic neuroendocrine tumors
BRIEF SUMMARY OF PRESCRIBING INFORMATION

DESCRIPTION

OctreoScan® is a kit for the preparation of indium-111 pentetreotide, a diagnostic radiopharmaceutical. It is a kit consisting of two components:
1. A 10-ml OctreoScan Reaction Vial which contains a lyophilized mixture of 10 μg pentetreotide.

Indium-111 pentetreotide is prepared by combining the two kit components.

INDICATIONS AND USAGE

Indium-111 pentetreotide is an agent for the scintigraphic localization of primary and metastatic neuroendocrine tumors bearing somatostatin receptors.

CONTRAINDICATIONS

None known.

WARNINGS

DO NOT ADMINISTER IN TOTAL PARENTERAL NUTRITION (TPN) ADJUVANT OR INJECT INTO TPN INTRAVENOUS ADMINISTRATION LINES. IN THESE SOLUTIONS, A COMPLEX GLUCOSYL OCTREOTIDE CONJUGATE MAY FORM.

The sensitivity of scintigraphy with indium-111 pentetreotide may be reduced in patients concurrently receiving therapeutic doses of octreotide acetate. Consideration should be given to temporarily suspending octreotide acetate therapy before the administration of indium-111 pentetreotide and to monitoring the patient for any signs of withdrawal.

PRECAUTIONS

General

1. Therapy with octreotide acetate can produce severe hypoglycemia in patients with insulinomas. Since pentetreotide is an analog of octreotide, an intravenous line is recommended in any patient suspected of having an insulinoma. An intravenous solution containing glucose should be administered just before and during administration of indium-111 pentetreotide.

2. The contents of the two vials supplied with the kit are intended only for use in the preparation of indium-111 pentetreotide and are NOT to be administered separately to the patient.

3. Since indium-111 pentetreotide is administered primarily by renal excretion, use in patients with impaired renal function should be carefully considered.

4. To help reduce the radiation dose to the thyroid, kidneys, bladder, and other target organs, patients should be well hydrated before and after administration of indium-111 pentetreotide. They should increase fluid intake and void urine frequently for one day after administration of the drug. In addition, it is recommended that patients be given a mild laxative (e.g., bisacodyl or lactulose) before and after administration of indium-111 pentetreotide (see Dosage and Administration section).

5. Indium-111 pentetreotide should be tested for labeling yield of radiopharmaceutical prior to administration. The product must be used within six hours of preparation.

6. Components of the kit are sterile and nonpyrogenic. To maintain sterility, it is essential that directions are followed carefully. Aseptic technique must be used during the preparation and administration of indium-111 pentetreotide.

7. Octreotide acetate and the natural somatostatin hormone may be associated with cholelithiasis, possibly by altering fat absorption and possibly by decreasing motility of the gallbladder. A single dose of indium-111 pentetreotide does not expected cause cholelithiasis.

8. As with any other radiopharmaceutical, appropriate shielding should be used to avoid unnecessary radiation exposure to the patient, occupational workers, and other persons.

9. Radiopharmaceuticals should be used only by physicians who are qualified by specific training in the safe use and handling of radiopharmaceuticals.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Studies have not been performed with indium-111 pentetreotide to evaluate carcinogenic potential or effects on fertility. Pentetreotide was evaluated for mutagenic potential in an in vitro mouse lymphoma forward mutation assay and an in vivo mouse micronucleus assay; evidence of mutagenicity was not found.

Pregnancy Category C

Animal reproduction studies have not been conducted with indium-111 pentetreotide. It is not known whether indium-111 pentetreotide can cause fetal harm when administered to a pregnant woman or can affect reproduction capacity. Therefore, indium-111 pentetreotide should not be administered to a pregnant woman unless the potential benefit justifies the potential risk to the fetus.

Nursing Mothers

It is not known whether the drug is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when indium-111 pentetreotide is administered to a nursing woman.

Pediatric Use

Safety and effectiveness in children have not been established.

ADVERSE REACTIONS

The following adverse effects were observed in clinical trials at a frequency of less than 1% of patients: dizziness, fever, flush, headache, flushing, changes in liver enzymes, pain, nausea, sweating, and weakness. These adverse effects were transient. Also in clinical trials, there was one reported case of bradycardia and one case of decreased hemocrit and hemoglobin.

Pentetreotide is derived from octreotide which is used as a therapeutic agent to control symptoms from certain tumors. The usual dose for indium-111 pentetreotide is approximately 5 to 20 times less than for octreotide and is subtherapeutic. The following adverse reactions have been associated with octreotide in 3% to 10% of patients: nausea, injection site pain, diarrhea, abdominal pain/discomfort, loose stools, and vomiting. Hypertension and hyper- and hypoglycemia have also been reported with the use of octreotide.

DOSEAGE AND ADMINISTRATION

Before administration, a patient should be well hydrated. After administration, the patient must be encouraged to drink fluids liberally. Elimination of extra fluid volumes will help reduce the radiation dose by flushing out unbound, labeled pentetreotide by glomerular filtration. It is also recommended that a mild laxative (e.g., bisacodyl or lactulose) be given to the patient starting the evening before the radioactive drug is administered, and continuing for 48 hours. Ample fluid intake is necessary during this period as a support both to renal elimination and the bowel-cleansing process. In a patient with an insulinoma, bowel-cleansing should be undertaken only after consultation with an endocrinologist.

The recommended intravenous dose for plasma imaging is 111 MBq (3.0 mCi) of indium-111 pentetreotide prepared from an OctreoScan kit. The recommended intravenous dose for SPECT imaging is 222 MBq (6.0 mCi) of indium-111 pentetreotide.

The dose should be confirmed by a suitably calibrated radioactivity in-tube chamber immediately before administration.

As with all intravenously administered products, OctreoScan should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit. Preparations containing particulate matter or discoloration should not be administered. They should be disposed of in a safe manner, in compliance with applicable regulations.

Aseptic techniques and effective shielding should be employed in withdrawing doses for administration to patients. Waterproof gloves should be worn during the administration procedure.

Do not administer OctreoScan in TPN solutions or through the same intravenous line.

Radiation Dosimetry

The estimated radiation dose to the average adult (70 kg) from intravenous administration of 111 MBq (3 mCi) and 222 MBq (6 mCi) are presented below. These estimates were calculated by Oak Ridge Associated Universities using the data published by Kennng, et al.**

Estimated Absorbed Radiation Doses after Intravenous Administration of Indium-111 Pentetreotide to a 70 kg patient

<table>
<thead>
<tr>
<th>Component</th>
<th>PLANAR</th>
<th>SPECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidneys</td>
<td>54.16</td>
<td>108.3</td>
</tr>
<tr>
<td>Liver</td>
<td>12.15</td>
<td>24.51</td>
</tr>
<tr>
<td>Spleen</td>
<td>73.86</td>
<td>147.73</td>
</tr>
<tr>
<td>Urinary</td>
<td>6.34</td>
<td>12.67</td>
</tr>
<tr>
<td>Ovaries</td>
<td>4.89</td>
<td>9.79</td>
</tr>
<tr>
<td>Testes</td>
<td>2.90</td>
<td>5.90</td>
</tr>
<tr>
<td>Red Marrow</td>
<td>3.46</td>
<td>6.91</td>
</tr>
<tr>
<td>Urinary Bladder Wall</td>
<td>30.42</td>
<td>60.48</td>
</tr>
<tr>
<td>GI Tract</td>
<td>5.67</td>
<td>11.34</td>
</tr>
<tr>
<td>Stomach Wall</td>
<td>4.78</td>
<td>9.56</td>
</tr>
<tr>
<td>Small Intestine</td>
<td>5.80</td>
<td>11.59</td>
</tr>
<tr>
<td>Upper Large Intestine</td>
<td>7.73</td>
<td>15.46</td>
</tr>
<tr>
<td>Lower Large Intestine</td>
<td>7.55</td>
<td>15.11</td>
</tr>
<tr>
<td>Adrenals</td>
<td>7.43</td>
<td>14.86</td>
</tr>
<tr>
<td>Thyroid</td>
<td></td>
<td>1.49</td>
</tr>
</tbody>
</table>

Effective Dose*/Equivalent

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13.03</td>
<td>26.06</td>
</tr>
</tbody>
</table>

1. Values listed include a correction for a maximum of 0.1% indium-111/methylene at calibration.

HOW SUPPLIED

The OctreoScan kit, NDC 0019-9050-40, is supplied with the following components:
1. A 10-ml OctreoScan Reaction Vial which contains a lyophilized mixture of:
 1 (10 μg pentetreotide [N-2-(2-dimethylaminoethyl)aminomethylene]-N,N,N',N'-tetraacetie acid-α,α,α,α-tetrafluoro-D-
 phenylalanine-L-lysine-L-lysine-L-tyrosine-L-lysine-L-lysine (also known as octreotide [DTPA]),
 2) 2.0 mg gentamicin [2,5-dihydroxybenzoic acid],
 3) 4.3 mg chlorothiazide, anhydrous,
 4) 0.37 mg ceftriaxone, anhydrous, and
 5) 10.0 mg metoclopramide.

Before lyophilization, sodium hydroxide or hydrochloric acid may have been added for pH adjustment. The vial contents are sterile and nongenotoxic. No bacteriostatic preservative is present.

2. A 10-ml, vial of Indium-111 Chloride Sterile Solution, which contains 1.1 ml of 111 MBq (3.0 mCi/mL) indium-111 chloride at 0.02 N HCl at time of calibration. The vial also contains folic acid in a concentration of 3.5 μg/mL (folic acid, 1.2 μg/mL). The vial contents are sterile and nongenotoxic. No bacteriostatic preservative is present.

In addition, the kit also contains the following items: (1) a 25 G x 5/8” needle (B-D, Monoject) to transfer Indium-111 Chloride Sterile Solution to the OctreoScan Reaction Vial, (2) a pressure sensitive label, and (3) a package insert.
Increase patient throughput—with rapid hepatic clearing, highly efficient MYOVIEW

Give your nuclear department “rapid clearance” capability with MYOVIEW. MYOVIEW clears quickly from the blood, liver, and lungs1-3 for quality target-to-background ratios and timely imaging (as soon as 15 minutes or up to 4 hours post-injection). The clearance properties of MYOVIEW allow for highly flexible camera scheduling and enhanced patient management. Any way you look at it, you’re cleared for efficiency with MYOVIEW.

In studying patients with known or suspected coronary artery disease, care should be taken to ensure continuous cardiac monitoring and the availability of emergency cardiac treatment.

References:

MYOVIEW. The image of efficiency.
Kit for the Preparation of Technetium Tc99m Tetrofosmin for Injection
Diagnostic Radiopharmaceutical for Intravenous use only

Rx ONLY

Please consult full prescribing information before using. A summary follows:

DESCRIPTION

The Medi-Physics Myoview kit is supplied as a pack of five vials for use in the preparation of a technetium Tc99m tetrofosmin intravenous injection to be used for the scintigraphic delineation of regions of reversible myocardial ischemia in the presence or absence of infarcted myocardium. Each vial contains a predispensed, sterile, non-pyrogenic, lyophilized mixture of 0.23 mg tetrofosmin [6,9-bis[2-ethoxycarbonyl]-3,12-dioxo-6,9-
dihydrophenazine], 30 mg stannous chloride dihydrate (minimum stannous tin 5.0 µg; maximum total stannous and stannic tin 15.8 µg.), 0.32 mg disodium salicylate and 1.0 mg sodium D-gluconate, and 1.8 mg sodium hydrogen carbonate. The lyophilized powder is sealed under a nitrogen atmosphere with a rubber closure. The product contains no antimicrobial preservative.

CLINICAL PHARMACOLOGY

General

When technetium Tc99m pertechnetate is added to tetrofosmin in the presence of stannous reductant, a lipophilic, cationic technetium Tc99m complex is formed, Tc99m tetrofosmin. This complex is the active ingredient in the reconstituted drug product, on whose biodistribution and pharmacokinetic properties the indications for use depend.

Clinical Trials

A total of 252 patients with ischemic heart disease or atypical chest pain who had a reason for exercise stress imaging were studied in two open-label, multi-center, clinical trials of Tc99m tetrofosmin (study A and study B). Of these 252 patients there were 212 (83%) males and 40 (17%) females with a mean age of 60.5 years (range 33.7 to 82.4 years). At peak exercise, maximum heart rate achieved and peak systolic blood pressure were comparable after Myoview and thallium-201 exercise studies.

All patients had a rest and stress planar imaging with Myoview and thallium-201; 191 (76%) patients also had SPECT imaging. The Myoview and thallium-201 imaging were separated by a mean of 5.1 days (1-14 days before or 2-14 days after Myoview). For Myoview imaging, each patient received 185-296 MBq (5.8-8.2 mCi) Tc99m tetrofosmin at peak exercise and 555-888 MBq (15-24 mCi) Tc99m tetrofosmin at rest approximately 4 hours later. For thallium-201 imaging, patients received thallium-201 55.5-74 MBq (1.5-2.0 mCi) at peak exercise.

The images were evaluated for the quality of the image (excellent, good or poor) and the diagnostic (with scores of 0 = normal, 1 = ischemia, 2 = infarct, 3 = mixed infarct and ischemia). The primary outcome variable was the percentage of correct diagnoses in comparison to the final clinical diagnosis. All planar images were blindly read, SPECT images were evaluated by the unblinded investigator. A subset of 181/252 (71%) patients had coronary angiography comparisons to the planar images of Myoview or thallium-201.

INDICATIONS AND USAGE

Myoview is indicated for scintigraphic imaging of the myocardium following separate administrations under exercise and resting conditions. It is useful in the delineation of regions of reversible myocardial ischemia in the presence or absence of infarcted myocardium.

CONTRAINDICATIONS

None known.

WARNINGS

In studying patients with known or suspected coronary artery disease, care should be taken to ensure continuous cardiac monitoring and the availability of emergency cardiac treatment.

PRECAUTIONS

General

To minimize radiation dose to the bladder, the patient should be encouraged to void when the examination is completed and as often thereafter as possible. Adequate hydration should be encouraged to permit frequent voiding.

The contents of the Myoview vial are intended only for use in the preparation of technetium Tc99m tetrofosmin injection and are NOT to be administered directly to the patient. As with all injectable drug products, allergic reactions and anaphylaxis may occur.

Sometimes Tc99m labeled myocardial imaging agents may produce planar and SPECT images with different imaging information. Technetium Tc99m tetrofosmin injection, like other radioactive drugs, must be handled with care and appropriate safety measures should be used to minimize radiation exposure to personal personnel. Care should also be taken to minimize radiation exposure to the patient consistent with proper patient management.

Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides.

Drug Interactions: Drug interactions were not noted and were not studied in clinical studies in which Myoview was administered to patients receiving concomitant medication. Drugs such as beta blockers, calcium blockers and nitrates may influence myocardial function and blood flow. The effects of such drugs on imaging results are not known.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Studies have not been conducted to evaluate carcinogenic potential or effects on fertility. Tetrofosmin salicylate was not mutagenic in vitro in the Ames test, mouse lymphoma, or human lymphocyte tests, nor was it clastogenic in vivo in the mouse micronucleus test.

Pregnancy Category C

Animal reproduction studies have not been conducted with Myoview. It is not known whether Myoview can cause fetal harm when administered to a pregnant woman or can affect reproductive capacity. Therefore, Myoview should not be administered to a pregnant woman unless the potential benefit justifies the potential risk to the fetus.

Nursing Mothers

Technetium Tc99m pertechnetate can be excreted in human milk. Therefore, formula should be substituted for breast milk until the technetium has cleared from the body of the nursing woman.

Myoview™

Pediatric Use

Safety and effectiveness in pediatric patients have not been established.

ADVERSE REACTIONS

Adverse events were evaluated in clinical trials of 764 adults (511 men and 253 women) with a mean age of 58.7 years (range 29-94 years). The subjects received a mean dose of 7.67 mCi on the first injection and 22.4 mCi on the second injection of Myoview™. Deaths did not occur during the clinical study period of 2 days. Six cardiac deaths occurred 3 days to 6 months after injection and were thought to be related to the underlying disease or cardiac surgery. After Myoview injection, serious episodes of angina occurred in 3 patients. Overall cardiac adverse events occurred in 5/764 (less than 1%) of patients after Myoview injection.

The following events were noted in less than 1% of patients:

Cardiovascular: angina, hypertension, Torsades de Pointes

Gastrointestinal: vomiting, abdominal discomfort

Hypersensitivity: cutaneous allergy, hypotension, dyspnea

Special Senses: metallic taste, burning of the mouth, smelling something

There was a low incidence (less than 4%) of a transient and clinically insignificant rise in white blood cell counts following administration of the agent.

DOSE AND ADMINISTRATION

For exercise and rest imaging, Myoview is administered in two doses:

The first dose of 5-8 mCi (185-296 MBq) is given at peak exercise.

The second dose of 15-24 mCi (555-888 MBq) is given approximately 4 hours later, at rest.

Imaging may begin 15 minutes following administration of the agent.

Dose adjustment has not been established in renal or liver impaired, pediatric or geriatric patients.

RADIATION DOSEIMETRY

Based on human data, the absorbed radiation doses to an average human adult (70 kg) from intravenous injections of the agent under exercise and resting conditions are listed in the following table. The values are listed in descending order as rad/mCi and μGy/mBq and assume urinary bladder emptying at 3.5 hours.

Estimated Absorbed Radiation Dose (Technetium Tc99m Tetrofosmin Injection)

<table>
<thead>
<tr>
<th>Target organ</th>
<th>Exercise</th>
<th>Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gland bladder wall</td>
<td>0.123</td>
<td>0.180</td>
</tr>
<tr>
<td>Upper large intestine</td>
<td>0.075</td>
<td>0.113</td>
</tr>
<tr>
<td>Breast wall</td>
<td>0.056</td>
<td>0.071</td>
</tr>
<tr>
<td>Lower large intestine</td>
<td>0.057</td>
<td>0.082</td>
</tr>
<tr>
<td>Small intestine</td>
<td>0.045</td>
<td>0.063</td>
</tr>
<tr>
<td>Kidney</td>
<td>0.039</td>
<td>0.045</td>
</tr>
<tr>
<td>Salivary glands</td>
<td>0.030</td>
<td>0.043</td>
</tr>
<tr>
<td>Ovaries</td>
<td>0.029</td>
<td>0.035</td>
</tr>
<tr>
<td>Urine</td>
<td>0.027</td>
<td>0.031</td>
</tr>
<tr>
<td>Bone surface</td>
<td>0.023</td>
<td>0.021</td>
</tr>
<tr>
<td>Pancreas</td>
<td>0.019</td>
<td>0.018</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.017</td>
<td>0.017</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.016</td>
<td>0.022</td>
</tr>
<tr>
<td>Adrenals</td>
<td>0.016</td>
<td>0.021</td>
</tr>
<tr>
<td>Heart wall</td>
<td>0.015</td>
<td>0.015</td>
</tr>
<tr>
<td>Heart muscle</td>
<td>0.015</td>
<td>0.015</td>
</tr>
<tr>
<td>Red marrow</td>
<td>0.015</td>
<td>0.015</td>
</tr>
<tr>
<td>Skin</td>
<td>0.015</td>
<td>0.014</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.013</td>
<td>0.012</td>
</tr>
<tr>
<td>Testes</td>
<td>0.013</td>
<td>0.011</td>
</tr>
<tr>
<td>Liver</td>
<td>0.012</td>
<td>0.015</td>
</tr>
<tr>
<td>Thymus</td>
<td>0.012</td>
<td>0.009</td>
</tr>
<tr>
<td>Brain</td>
<td>0.010</td>
<td>0.008</td>
</tr>
<tr>
<td>Lung</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>Skin</td>
<td>0.008</td>
<td>0.007</td>
</tr>
<tr>
<td>Breast</td>
<td>0.008</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Dose calculations were performed using the standard MIRD method (MIRD Pamphlet No.1 (rev) Society of Nuclear Medicine, 1979). Effective dose equivalents (EDE) were calculated in accordance with ICRP 53 (Ann. ICRP 18 (1-4), 1986) and gave values of 8.61 x 10^4 mSV/mBq and 1.12 x 10^2 mSV/mBq after exercise and rest, respectively.

Manufactured by:

Nycoderm Amersham plc
Amersham United Kingdom

Patent No. 3,054,302(i)

Distributed by:

Medi-Physics, Inc.,
Arlington Heights, IL 60004
1-800-633-4123 (Toll Free)

Circle Reader Service No. 135

Revised December 1998

Myoview is a trademark of Nycoderm Amersham plc.
Picking the perfect PET

Sometimes it's that special twinkle in their eye, but often it's knowing where to look. Biodex Medical Systems, the world leader in Nuclear Medicine Accessories, can make it easy.

Biodex Medical Systems, Inc. • Brookhaven Technology Center • 20 Ramway Road • Box 702 • Shirley • New York • 11967-0702 • 631-924-9000 • Fax 631-924-9620

Circle Reader Service No. 12
Introducing the all new Power PC SCINTRON V computer for GE and SIEMENS Gamma Cameras

Re-manufactured Nuclear Medicine Gamma Camera and new SPECT Computer System for the budget-conscious facility. With choice of Siemens or General Electric SPECT gantry, (37, 75 or 61 PMT's). The new Power PC Scintron V computer is a sophisticated, high-speed Acquisition / Processing workstation, all in one package.

CAMERA

✓ Just like NEW
✓ New Crystal with 3 years warranty!
✓ Laser Imager Interface
✓ Optional Whole-Body

Complete systems Detector and Gantry are fully re-manufactured. MiE America Inc. is ISO 9002 certified. Crystal replacement on Siemens BODYSCAN, DIACAM as well as ORBITER and GE 400 ACT! Service Contracts are available. Leasing starts as low as $1400.00 / month. The Reimbursement is the same. The Image Quality is the same. Why Pay More?

SCINTRON V upgrade for your existing SIEMENS eliminates your DOT, ICON, Scintiview or Micro Delta.

SCINTRON V upgrade for your existing General Electric eliminates your STAR computer or STARCAM components.

MiE’s Upgrades eliminate most of OEM electronics, and brings your system up to a state-of-the-art, digitally controlled camera with high speed processing computer, at very reasonable cost.

LET US BUILD ONE FOR YOU!
Need to Assess the Ability of Your Nuclear Medicine Staff and Equipment?

Then look no further than the SNM Proficiency Testing Program

Using phantoms—three-dimensional simulators of various anatomical regions—you can identify whether your cameras are providing quality output and measure the proficiency of your nuclear medicine staff. By sending your results to SNM, you’ll also be able to compare your individual results with those of other participants. VOICE credits available.

The Lung Perfusion Study is designed to detect the location, extent and significance of simulated perfusion abnormalities. The Quantitative Cardiac Phantom will test a participant’s ability to acquire and process SPECT rest/stress myocardial perfusion.

Each study costs $625 for SNM members or $695 for nonmembers, plus $35 for shipping and handling. Save $70 when you order both. For information or to order, call (703) 708-9000 x1321.
CONTROL THE PROCEDURE
Precisely.

During SPECT imaging with pharmacologic stress, you don’t want any surprises from your vasodilator.

Adenoscan—clockwork precision.

Its rapid action and ultra-short half-life (<10 sec.) mean that you’re in control of your procedure. In general, Adenoscan’s effects are well tolerated and spontaneously resolve after infusion.

It’s predictable. It’s reliable.

Adenoscan gives you pharmacologic stress precisely the way you want it.

Control with confidence

Intravenous Adenoscan® (adenosine injection) is indicated as an adjunct to thallium-201 myocardial perfusion scintigraphy in patients unable to exercise adequately.

Side effects that were seen most often included flushing (44%), chest discomfort (40%), and dyspnea (28%). Side effects are seldom serious, usually resolve quickly when infusion is terminated, and generally do not interfere with test results.

Despite the short half-life of adenosine, 10.6% of the side effects occurred not with the infusion of Adenoscan but several hours after the infusion terminated. Also, 8.4% of the side effects that began coincident with the infusion persisted for up to 24 hours after the infusion was complete. In many cases, it is not possible to know whether these late adverse events are the result of Adenoscan infusion.

Please see the brief summary of prescribing information on the following page.
BRIEF SUMMARY

adenosine injection

For Intravenous Infusion Only

DESCRIPTION

Adenosine is an endogenous nucleoside occurring in all cells of the body. It is chemically 9-adenine-9-β-D-ribofuranoside-β-D-hydrate. Adenosine is a white crystalline powder. It is soluble in water and practically insoluble in alcohol. Solubility increases by warming and lowering the pH of the solution.

Each Adenoscan vial contains a sterile, non-pyrogenic solution of adenosine 3 mg/mL and sodium chloride 9 mg/mL in Water for Injection, q.s. The pH of the solution is between 4.5 and 7.5.

INDICATIONS AND USAGE

Intravenous Adenosine is indicated as an adjunct to thallium-201 myocardial perfusion scintigraphy in patients unable to exercise adequately.

(See WARNINGS.)

CONTRAINDICATIONS

Intravenous Adenoscan should not be administered to individuals with:

1. Second- or third-degree AV block (except in patients with a functioning artificial pacemaker).
2. Severe bradycardia, such as sick sinus syndrome or symptomatic bradycardia (except in patients with a functioning artificial pacemaker).
3. Known or suspected bronchoconstrictive or bronchospastic lung disease (e.g., asthma).
4. Known hypersensitivity to adenosine.

WARNINGS

FATAL CARDIAC ARREST, LIFE THREATENING VENTRICULAR ARRYTHMIAS, AND MYOCARDIAL INFARCTION

Fetal cardiac arrest, severe bradycardia, or sustained myocardial infarction have been reported coincident with Adenoscan infusion. Patients with unstable angina may be at greater risk. Appropriate resuscitative measures should be available.

Bistramidal and Adenoscan Mortal Block

Adenosine exerts a direct depressant effect on the SA and AV nodes and has the potential to cause first, second- or third-degree AV block, or sinus bradycardia. Approximately 50% of patients develop AV block with Adenoscan, including first degree (0.2%), second degree (0.2%) and third degree (0.2%) heart block. All episodes of AV block have been asymptomatic, transient, and did not require intervention. Adenosine can cause sinus bradycardia. Adenosine should be used with caution in patients with pre-existing first-degree AV block or bundle branch block and should be avoided in patients with high-grade AV block or sinus node dysfunction (except in patients with a functioning artificial pacemaker). Adenoscan should be discontinued in any patient who develops persistent or symptomatic high-grade AV block. Sinus pause has been rarely observed with Adenoscan infusion.

Hypotension

Adenosine is a potent peripheral vasodilator and can cause significant hypotension. Patients with an intact baroreceptor reflex mechanism are able to maintain blood pressure and tissue perfusion in response to Adenoscan by increasing heart rate and cardiac output. However, Adenosine should be used with caution in patients with autonomic dysregulation, elderly, with heart disease, pericardial or pericardial effusion, stenotic cardiac artery disease with cerebrovascular insufficiency, or uncontrolled hypothyroidism, due to the risk of hypotensive complications in these patients. Adenoscan should be discontinued in any patient who develops persistent or symptomatic hypotension.

Hypersensitivity

Increases in systolic and diastolic pressures have been observed (as great as 140 mm Hg systolic in one case) concomitant with Adenoscan infusion, most commonly within several minutes, but in some cases, spontaneously lasting for several hours.

Bronchoconstrictive

Adenosine is a respiratory stimulant (probably through activation of cardiac body chemoreceptors) and intravenous administration in man has been shown to increase minute ventilation (Ve) and reduce arterial PCO2, causing respiratory alkalosis. Approximately 20% of patients experience bronchoconstriction of the upper respiratory tract (e.g., for an airway to become more deeply with Adenoscan). These respiratory complaints are transient and only rarely require intervention.

Adenosine administered by inhalation has been reported to cause bronchoconstriction in asthmatic patients, presumably due to mast cell degranulation and histamine release. These effects have not been observed in normal subjects. Adenosine has been administered to a limited number of patients with asthma and mild to moderate exacerbation of their symptoms has been noted. Respiratory compromise has occurred during adenosine infusion in patients with obstructive pulmonary disease. Adenosine should be used with caution in patients with obstructive lung disease not receiving bronchodilators. Adenosine can be administered (e.g., albuterol) and should be avoided in patients with bronchoconstriction or bronchoospasm (e.g., asthma). Adenosine should be discontinued in any patient who develops severe respiratory difficulties.

PRECAUTIONS

Drug Interactions

Intravenous Adenoscan has been given with other cardioactive drugs (such as beta adrenergic blocking agents, cardiac glycosides, and calcium channel blockers) without apparent adverse interactions, but its effectiveness with these agents has not been systematically evaluated. Because of the potential for additive or synergistic depressant effects on the SA and AV nodes, however, Adenoscan should be used with caution in patients on these agents. The well known effects of Adenosine are inhibited by adenosine receptor antagonists, such as caffeine and theophylline. The safety and efficacy of Adenosine in the presence of these agents has not been systematically evaluated.

The possibility that Adenosine may be protected by nucleotide transport inhibitors, such as dipyridamole, the safety and efficacy of Adenosine in the presence of dipyridamole has not been systematically evaluated. Whenever possible, drugs that might inhibit or augment the effects of adenosine should be withheld for at least five half-lives prior to the use of Adenoscan.

Carbohydrates, Lipids, Nonsteroidal Antiinflammatory Drugs

Studies in animals have not been performed to evaluate the carcinogenic potential of Adenoscan. Adenosine was negative for genotoxic potential in the Salmonella (Ames) Test and the Mammalian Micronucleus Assay. Adenosine, however, the other nucleosides at minimal concentrations present for several doubling times of cells in culture, is known to produce a variety of cytotoxic effects in various cell lines. In rats and mice, adenosine administered intraperitoneally once a day for five days at 50, 100, and 150 mg/kg (10-30 times and 5-15 times human dosage on a mg/Mg basis) caused decreased apermatogenesis and increased numbers of abnormal sperm. A reflection of the ability of adenosine to produce chromosomal damage.

Pregnancy Category C

Animal reproduction studies have not been conducted with adenosine; nor have studies been performed in pregnant women. Because it is not known whether Adenoscan can cause fetal harm when administered to pregnant women, Adenoscan should not be used during pregnancy only if clearly needed.

Pediatric Use

The safety and effectiveness of Adenoscan in patients less than 18 years of age have not been established.

ADVERSE REACTIONS

The following reactions with an incidence of at least 1% were reported with intravenous Adenoscan among 1471 patients enrolled in controlled and uncontrolled U.S. clinical trials. Despite the short half-life of infusion of Adenoscan of about 40 seconds and several hours after the infusion terminated. Also, 8.4% of the side effects that began coincident with the infusion persisted for up to 24 hours after the infusion was complete. In many cases, it is not possible to know whether these late adverse events are the result of Adenoscan administration.

Flushing

44% Gastrointestinal discomfort 13% Second-degree AV block 3%
Chills

40% Lightheadedness/dizziness 13% Paroxysms 2%
Dyspnea or urge to breathe deeply

29% Upper extremity discomfort 4% Hypotension 2%
Headache

19% ST segment depression 3% Nervousness 2%
Throat, chest or jaw discomfort

15% First-degree AV block 1%
Adverse experiences of any severity reported in less than 1% of patients include:

Blood as a Welterfall: back discomfort; lower extremity discomfort; weakness.

Cardiovascular System: nonlethal ventricular arrhythmias; third-degree AV block; bradycardia; palpitation; anemia; edema; anxiety; panic; sweating; T-wave changes; hypertension (systolic blood pressure > 200 mm Hg).

Central Nervous System: dizziness; emotional instability; tremors.

Genital/Urinary System: vaginal pressure; urgency.

Respiratory System: cough.

Special Senses: blurred vision; dry mouth; ear discomfort; metallic taste; nasal congestion; scotomas; tongue discomfort.

OVERDOSAGE

The half-life of adenosine is less than 10 seconds and side effects of Adenoscan when given in usual daily doses are minimal when the infusion is discontinued, although delayed or persistent effects have been observed. Methylxanthines, such as caffeine and theophylline, are competitive antagonists of adenosine. Theophylline has been used to effectively antagonize the effects of Adenosine in patients with U.S. clinical trials, theophylline (50-125 mg slow intravenous injection) was needed to abort Adenoscan side effects in less than 2% of patients.

DOSEAGE AND ADMINISTRATION

For intravenous infusion only.

Adenoscan should be given as a continuous peripheral intravenous infusion.

The recommended intravenous dose for adults is 1.4 mg/kg/hr infused for at least five half-lives (dose of 0.04 mg/kg).

The desired dose of thallium-201 should be injected at the midpoint of the Adenoscan infusion (i.e., after the first three minutes of Adenoscan). Thallium-201 is physically compatible with Adenoscan and may be injected directly into the Adenoscan infusion.

The infusion should be given with an adequate flow to the venous access as possible to prevent an anaphylactic reaction in the course of Adenoscan (the contents of the IV tubing being administered). There are no data on the safety or efficacy of alternative Adenoscan infusion protocols.

The dosage of Adenoscan administered by the intravenous route has not been established.

Notes: Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration.

Rx only

Fujisawa Healthcare, Inc.
Deerfield, IL 60015

47001/Revised: April 2000

Circle Reader Service No. 50
Reimbursement for Nuclear Medicine Procedures Seminar

September 8, 2000
Hampton Inn & Suites
Warwick, RI

Need to get up-to-speed FAST on APC codes and CPT codes for nuclear medicine?

Get all you need to understand the major procedural aspects of nuclear medicine services, including proper code selection, claim submission and documentation in this one-day workshop. Discover how to use the current CPT and ICD-9-CM manuals. Find out how to cost a procedure. Get tips for working with your hospital billing department to assure nuclear medicine procedures are correctly covered by third party payers. Evaluate your coding and billing practices in light of the new APC codes and reimbursement for radiopharmaceuticals. And so much more.

For additional information, call (703) 708-9000 x1255.

Society of Nuclear Medicine
This internationally respected journal, of more than 40 years standing, publishes peer-reviewed original papers and case reports in diagnostic radiology and radiation oncology.

The Journal attracts submissions from around the world, a reflection of its international appeal, reputation, and continued encouragement of original data, ideas and interpretation. Australasian Radiology is the official Journal of The Royal Australian and New Zealand College of Radiologists.

Abstracting and Indexing

For a FREE sample copy and Author Instructions visit: www.blackwell-science.com/ara
Do you have older nuclear medicine systems that aren't DICOM compliant?
DELTAmanager® can interface to all nuclear medicine systems, old and new, then send the data out via DICOMlink™ to your PACS network for display, print or archive.

If your nuclear medicine systems aren't talking to your PACS network, then you should be talking to MedImage.

Call for Papers
The Journal of Nuclear Medicine (JNM)

Members and nonmembers are invited to submit papers for publication in the JNM. Papers reporting results from clinical and research investigations of all specialties are welcome. Brief communications detailing preliminary research results in an abridged paper are especially desired. JNM is indexed in Index Medicus and on MEDLINE.

Information for authors is available at: www.snm.org/pdf/infoauth_999.pdf

Please forward submissions to:
Martin P. Sandler, MD
The Journal of Nuclear Medicine
Society of Nuclear Medicine
1850 Samuel Morse Drive
Reston, VA 20190-5316

SOCIETY OF NUCLEAR MEDICINE
Nuclear Medicine Week gives you the opportunity to educate potential patients, referring physicians and your community about the history, value and safety of nuclear medicine. We have posters, balloons, buttons and much more to help you decorate your office, lunchroom and department to promote your specialty. Hand out this year's themes' pens, pencils and pads of paper to referring physicians, nurses and administrators in your hospital and/or institutions. If you are a nuclear medicine industry partner use these items to thank your valued customers.

Keep the celebration alive all year long! Promoting nuclear medicine does not need to be limited to Nuclear Medicine Week. Take advantage of every opportunity throughout the year to increase the understanding and utilization of nuclear medicine.

Spotlight your facility and demonstrate your enthusiasm, devotion and pride in your PROFESSION.
ORDERING INFORMATION (Note: All orders must be accompanied with this order form.)

Pre-payment via check, VISA or Mastercard required for all orders.

Fax: 913-362-7401 Call Toll Free: 800-829-7062

Mall: MidPoint National
Attn: Society of Nuclear Medicine
P.O. Box 411037, Kansas City, MO 64141-1037

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QUANTITY</th>
<th>PRICE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pens (Purple)</td>
<td>_____ packs</td>
<td>$8.00/pack (6 pens)</td>
<td></td>
</tr>
<tr>
<td>Pens (Red)</td>
<td>_____ packs</td>
<td>$8.00/pack (6 pens)</td>
<td></td>
</tr>
<tr>
<td>Pencils</td>
<td>_____ packs</td>
<td>$6.00/pack (12 pencils)</td>
<td></td>
</tr>
<tr>
<td>Balloons (Purple)</td>
<td></td>
<td>.50¢/per balloon</td>
<td></td>
</tr>
<tr>
<td>Balloons (Red)</td>
<td></td>
<td>.50¢/per balloon</td>
<td></td>
</tr>
<tr>
<td>Pads of Paper</td>
<td>_____ packs</td>
<td>$8.00/pack (3 pads)</td>
<td></td>
</tr>
<tr>
<td>Buttons</td>
<td></td>
<td>$1.50/per button</td>
<td></td>
</tr>
<tr>
<td>Posters</td>
<td></td>
<td>$5.00/poster</td>
<td></td>
</tr>
</tbody>
</table>

SUBTOTAL:

Shipping: (allow 2-4 weeks for delivery)

For domestic shipping:
- $10 or less add $4.00
- $10.01-$20.01 add $6.00
- $20.01-$30.01 add $8.00
- $30.00 or more add $12.00

For international shipping:
- $25 for any international order

For Express delivery:
- $25 (allow 3-5 days for domestic delivery and 2-4 weeks for international delivery)

TOTAL:

PAYMENT INFORMATION:

☐ Check (payable to the Society of Nuclear Medicine) ☐ Credit Card ☐ VISA ☐ Mastercard
Credit Card No.: ___________________________ Exp. Date: ___________________________
Card Holder's Name: ___________________________
Card Holder's Signature: ___________________________

SHIPPING INFORMATION: EXPRESS ORDERS CANNOT BE SHIPPED TO A P.O. BOX.

Name: _____________________________________ Phone: ___________________________
Institution: _________________________________ Address: _________________________________
Address: _________________________________ State: __________________ Zip: ___________________
JUNE 23-27, 2001

THE 48TH ANNUAL MEETING
TORONTO, ONTARIO, CANADA

The world’s premier nuclear medicine meeting and exhibits.

Annual Meeting: June 23-27, 2001
Exhibits: June 24-27, 2001

SOCIETY OF NUCLEAR MEDICINE
Paul C. Aebersold Award

Applications are invited for the 2001 Paul C. Aebersold Award for outstanding achievement in basic science applied to Nuclear Medicine. This award commemorates the contributions of Dr. Paul Clarence Aebersold to the applications of nuclear physics to Nuclear Medicine and radiation biology, as well as his contributions to the Society of Nuclear Medicine (SNM). Dr. Aebersold contributed greatly to the emergence of Nuclear Medicine as a discipline by his energetic leadership in the provision of cyclotron-generated and reactor-produced radionuclides, and by his numerous publications and lectures. In giving this award, the Society thus symbolically signifies its appreciation of the warm and vital person who became the Society's first Honorary Member.

Nominations should be supported by the nominee’s curriculum vitae and at least two letters supporting the nomination. These letters should briefly describe the contributions in basic science for which the nominee is proposed. The nominee does not need to be a SNM member.

Nominations deadline: December 31, 2000. Please submit nominations and supporting documents to William J. MacIntyre, Ph.D., c/o Society of Nuclear Medicine, 1850 Samuel Morse Drive, Reston, Virginia 20190-5316.
Positions Wanted

Physician, ABNM, ABIM, and CBNC certified needed. NW USA. Heston@aol.com.

Nuclear Medicine

Ochsner Clinic in New Orleans seeks a Board Certified Section Head for Nuclear Medicine to join our sixteen physician Department of Radiology. This section does approximately 550-600 exams per month. The candidate must also be qualified to teach in our freestanding residency program. Candidates should have completed an accredited training program. Fellowship training in PET is desirable. Ochsner is a physician owned and directed multi-specialty group practice, which includes more than 400 physicians in 27 locations across Southeast Louisiana. We offer an excellent salary, fringe benefit package and paid vacation. Interested physicians should send CV and contact: Edward I. Bluth, M.D., Chairman Department of Radiology, Ochsner Clinic, 1514 Jefferson Highway, New Orleans, LA 70121. Information: (504) 842-3470 or e-mail: ebluth@ochsner.org.

Nuclear Medicine Physician

The University of California, Davis, Department of Radiology has a full-time faculty position available for a board certified radiologist with fellowship training and board certification in Nuclear Medicine. Appointment will be at the Assistant, Associate or Full Professor level. Candidates must be eligible for licensure in California, have an academic and clinical background in Nuclear Medicine, and be able to provide coverage in cross sectional imaging. This position will be "open until filled," but applications will not be accepted after January 31, 2001. Please send a curriculum vitae to: James A. Brunberg, MD, Chair, Department of Radiology, University of California, Davis, 4800 Y Street, ACC Building, Suite 3100, Sacramento, CA 95817. The University of California, Davis, is an affirmative action/equal opportunity employer.

Nuclear Medicine Radiologist

Multi-hospital, subspecialized, progressive private practice radiology group in south Denver with new clinical PET facility, seeks Board-certified, Nuclear Medicine fellowship trained radiologist with additional skills in body imaging. Prefer recent fellowship or junior faculty. Partnership track. Send CV attention: Matthew J. Fleishman, MD, RIA, 3900 S. Wadsworth Blvd., #250, Lakewood, CO 80235. Fax: (303) 788-6546.

Nuclear Medicine Technologist

Memorial Medical Center, a flagship of Memorial Health System in Springfield, Ill., is currently seeking a full-time technologist. Must be licensed in Illinois and ARRT or NMTCB. We perform the most basic exams to advance applications including antibody scans, coincidence detection and cardiac imaging. If you enjoy variety, focus on quality, and want to work with a group of team oriented technologists who are patient focused then this is the team for YOU! We have a comprehensive benefits package and salary is commensurate with experience. Inquiries contact Dawn Kinner, Human Resource Generalist, (217) 757-7729, 701 N. 1st St., Springfield, IL 62781. Website: www.memorialmedical.com. E-mail: kinner.dawn@mhsl.com. Fax: (217)788-5539.

Nuclear Medicine Technologist

The Veterans Affairs Medical Center--Atlanta VAMC, seeks an energetic Nuclear Medicine Technologist to join a talented team of professionals focused on providing quality care to the nation's veterans. The VAMC has a state-of-the-art department that performs both clinical and research procedures using five gamma cameras (4 SPECT systems and a coincidence system). Qualified candidates must be graduates of AMA-approved schools of Nuclear Medicine and be CNMT and/or ARRT Nuclear Medicine certified. They must have SPECT experience and strong computer skills. Preference will be given to candidates with at least three years of experience in a progressive nuclear medicine department. Contact Sandi Grant, Chief Technologist, CNMT, at (404) 321-6111, ext. 6156.

Academic Nuclear Radiologist

Tufts University School of Medicine and New England Medical Center, a full-service hospital with a radiology residency, seeks second ACR certified eligible nuclear radiologist (full-time position). With six gamma cameras (three multibed SPECT), this interesting practice opportunity includes nuclear cardiology, pediatrics, coincidence imaging, and radionuclide therapy. Duties include some general radiology. Will consider ABNM-certified/eligible nuclear medicine physician (part-time). Position available September 1, 2000. Please send CV to: Daniel H. O'Leary, MD, Chairman, Department of Radiology, New England Medical Center, Box 380, 750 Washington Street, Boston, MA 02111. Phone: (617) 636-8050. Fax: (617) 636-0041. E-mail: dolary@lifespan.org.

Nuc Med Techs

The Fidelis Group Consultants currently has jobs for Nuc Med Techs in 28 States! If you want to make a change, we will contact hospitals for you! (877) 329-1119. www.fideliusweb.com

Chief, Section of Nuclear Medicine

The Department of Diagnostic Radiology, Yale University School of Medicine seeks applicants at the Associate Professor level or higher for the position of Chief, Section of Nuclear Medicine, and depending on qualifications, Director of PET and/or Radiochemistry Laboratories. The qualified applicant must have demonstrated excellence in research, teaching, and program administration. Please send curriculum vitae to: Dr. Bruce L. McClenahan, Chair, Department of Diagnostic Radiology, Yale University School of Medicine, P.O. Box 208042, New Haven, CT 06520-8042. Yale University is an equal opportunity/affirmative action employer. Applications for women and minority group members are encouraged.

Nuclear Medicine–Clinical Fellow in PET Imaging

The Division of Nuclear Medicine of the Mount Sinai Medical Center is offering a fellowship in PET imaging, featuring oncological and cardiac applications, starting July 1, 2001. Candidates must have completed a nuclear medicine residency, be board eligible in nuclear medicine and must be trained in cardiac stress testing and monitoring. Interested candidates should send inquiries and CVs to:

Josef Machac, MD
Director of Nuclear Medicine
Mount Sinai Medical Center
Box 1141
One Gustave L. Levy Place
New York, NY 10029
FACULTY POSITION

Diagnostic Imaging and/or Targeted Radiotherapy

Purdue University seeks an outstanding scientist to fill a faculty position at any rank in the Department of Medicinal Chemistry and Molecular Pharmacology. Applicants should have research interests and experience in innovative molecular approaches to diagnostic imaging and/or targeted radiotherapy. The successful candidate will be expected to establish and/or maintain a strong, extramurally funded, research program at the interface of medicine and chemistry or biology. A commitment to excellence in teaching at the undergraduate and graduate levels will also be required. The Department has a vigorous and growing research environment with first-rate instrumentation, and maintains an active and successful program in Nuclear Pharmacy. Opportunities exist to participate in numerous interdepartmental programs, such as the Purdue Cancer Center, the Purdue Neuroscience program, and cross-disciplinary biomedical imaging initiatives. Candidates must hold a PhD; junior-level candidates should have at least two years of postdoctoral experience. Minority and women scientists are especially encouraged to apply.

Applicants should submit a curriculum vitae, a detailed description of research plans, and three letters of reference to:

Imaging/Radiotherapy Faculty Search Committee
Department of Medicinal Chemistry and Molecular Pharmacology
Purdue University, School of Pharmacy
1333 Robert Heine Pharmacy Building
West Lafayette, Indiana 47907-1333

Review of the candidates will begin October 1, 2000 and continue until the position is filled.

Purdue University is an Equal Opportunity/Affirmative Action Employer
NUCLEAR MEDICINE PHYSICIAN

Doctors Medical Center is a 392-bed facility that offers a hospital-based nuclear medicine position. The Imaging Department offers three certified Nuclear Medicine Technologists. The hospital is located in the Central Valley of California. Seeking an ABNM Board Certified (or eligible) candidate for July 2001. PET experience preferred. 5000 studies per year. Expansion of the department is slated for this next year. Modesto is a tertiary referral center for a six-county region and offers a strong economy and excellent educational, recreational and cultural amenities. We are offering a competitive salary and benefits. For more information about Doctors Medical Center, visit our website at www.dmc-modesto.com.

If you would like to find out more about this opportunity, please contact Wanda Holderman in Business Development at Doctors Medical Center, Modesto, California at (209) 576-3790. Fax (209) 576-3680.

E-mail: wanda.holderman@tenethealth.com.

EOE. M/F/D/V.

Indiana University Department of Radiology

Nuclear Medicine Positions

Nuclear Medicine Faculty. Tenure or clinical track rank dependent on qualifications. Candidates must be board-certified in nuclear medicine and have fellowship training. Salary and academic rank will be commensurate with experience and qualifications. Minimum requirements include M.D. and eligibility for licensure in Indiana. Submit CV to Dr. Mervyn Cohen, Chairman, Dept of Radiology, Indiana University Hospital, #0663, 550 N University Blvd, Indianapolis, IN 46202-5253; fax (317)274-1849; mecohen@iupui.edu.

Clinical PET Director. Tenure or clinical track rank dependent on qualifications. Candidates must be board-certified in nuclear medicine and have fellowship training. Salary and academic rank will be commensurate with experience and qualifications. Minimum requirements include M.D. and eligibility for licensure in Indiana. Submit CV to Dr. Gary Hutchins, Director, PET Facility, Dept of Radiology, 541 Clinical Drive, CL 157, Indianapolis, IN 46202-5111; fax (317)274-8124; gdhutchi@iupui.edu.

Nuclear Medicine Fellowship. - Fellowship position for a board-certified or board-eligible radiologist starting July 1, 2001. This one-year position will be full-time in our ACGME-accredited nuclear medicine program. The clinical portion includes in-depth experience in full range of diagnostic and therapeutic procedures. A wide range of ongoing research projects under the mentorship of well-trained experienced physicians are available to the fellow. There are four hospitals in the program (including a free-standing Children's Hospital and a PET imaging center), all within walking distance of each other. Contact Aslam Siddiqui, MD, Dept of Radiology, Riley Hospital (1053L), Indianapolis, IN 46202-5200; FAX (317)274-2920; asiddiqui@iupui.edu.

For more information, visit http://www.indyrad.iupui.edu

Indiana University is an Equal Opportunity/Affirmative Action Employer M/F/D.
Nuclear Medicine Radiologist
Charlotte Radiology, a large (44 member) private, subspecialty based radiology practice is seeking a partnership track, ABR certified and fellowship trained radiologist to serve as Director of Nuclear Medicine. This is a full service nuclear department which includes PET scan and Cyclotron. Radiologic skills in cross sectional imaging desirable. The practice covers multiple hospitals in a large metropolitan area including a tertiary care hospital with a Level I trauma program. Total number of beds exceeds 1300. There are also eleven outpatient offices. Send resume to:

A. Van Moore, Jr., M.D.
c/o Diann McGuirt
Dept. N.M.
Charlotte Radiology, P.A.
P.O. Box 36937
Charlotte, NC 28236-6937

Nuclear Medicine Technologist – Salisbury, Maryland

Why vacation at the beach when you can live there? Peninsula Cardiology is a progressive, 13-physician practice located in Salisbury, Maryland on the beautiful Eastern Shore, only 30 minutes from Ocean City and within easy driving distance of several major metropolitan areas. We offer a competitive wage and benefit package and relocation assistance. We have an immediate opening for a Nuclear Medicine Technologist in the expanding Nuclear Department of our Cardiology Practice. No weekends or on-call work. The successful applicant must be certified, or be registry eligible for, an approved program in nuclear medicine. One-year experience in nuclear medicine preferred, but not required.

Please submit your resume with a cover letter to:

Peninsula Cardiology Associates, PA
Human Resources Department
400 Eastern Shore Drive
Salisbury, MD 21801
EOE
NUCLEAR MEDICINE TECHNOLOGIST

POSITIONS AVAILABLE

$6,000

SIGN-ON BONUS

$60,000 - $75,000...

...guaranteed first year compensation plus excellent benefits for qualified applicants. Paid vacation, sick & holidays. 401-K, Medical/Dental, full-time income guarantee. Day shift (with very little call and weekends), weekend only shift, & night shift available. Just 30 minutes from sunny California beaches, PMI is the largest mobile nuclear medicine provider in the state. Very friendly and professional work environment. Call 562-777-1010, or mail resume to PMI, Attn: HR, 12120 Mora Drive, STE 1, Santa Fe Springs, CA 90670, Fax: 562-777-1050.

ATTENTION!

ACADEMIC RADIOLOGISTS!

Long hours, case overload, threatened salary cuts, staff implosion, mythical "academic time," and deteriorating equipment — all for less than half of what your colleagues are earning in private practice? If these circumstances apply to you, or soon will, consider Body Imaging at The Roswell Park Cancer Institute, a state-of-the-art facility in Buffalo, New York.

No, we don't offer private practice salaries, but we do offer a most congenial working environment, a reasonable caseload, a highly competitive salary/benefits package (on the academic scale), truly protected academic time, pioneering research, superior equipment, a new hospital, and a pleasant, low-pressure department.

If you are approaching burn out in the frenetic environment of your current situation, call Zachary D. Grossman, MD, Chair, Department of Radiology, The Roswell Park Cancer Institute, (716) 845-8015 or E-mail zdg@roswellpark.org. We are the alternative to the academic pressure cooker and the private pressure cooker.

RPCI and the University of Buffalo are M/F/V Affirmative Action Employers.

Call for Papers

The Journal of Nuclear Medicine (JNM)

Members and nonmembers are invited to submit papers for publication in the JNM. Papers reporting results from clinical and research investigations of all specialties are welcome. Brief communications detailing preliminary research results in an abridged paper are especially desired. JNM is indexed in Index Medicus and on MEDLINE.

Information for authors is available at: www.snm.org/pdf/infoauth_999.pdf

Please forward submissions to:

Martin P. Sandler, MD
The Journal of Nuclear Medicine
Society of Nuclear Medicine
1850 Samuel Morse Drive
Reston, VA 20190-5316

SOCIETY OF NUCLEAR MEDICINE

NUCLEAR MEDICINE TECHNOLOGIST

Providence Yakima Medical Center in Central Washington is seeking a Nuclear Medicine Technologist to support a full range of services in an acute care hospital setting. Requires current registry from a Nuclear Medicine Technology Certification Board, Washington State Certified Radiologic Technologist or Washington State Registered X-Ray Technician and Washington State Health Care Assistant. At least one year experience preferred.

We offer a competitive salary, comprehensive benefits package and relocation assistance. For consideration please fax your resume (509) 577-4611 e-mail: jdaily@providence.org or mail to: Providence Central Washington Service Area, Human Resources, 110 South 9th Avenue, Yakima, Washington 98902. EOE.
CME Unlimited is proud to be the official recording and marketing company for the Society of Nuclear Medicine's 47th Annual Meeting, held June 3-7, 2000, in St. Louis, Missouri.

Audio and video cassette copies of sessions listed below are available via TELEPHONE, FAX, MAIL or ONLINE ORDER. All orders will be shipped within 10 business days.

To order immediately, have your credit card ready and call toll-free 1-800-766-5454 from 8:00 a.m. to 5:00 p.m. (PST), Monday - Friday, or visit the SNM Online Tape Store via www.CMEunlimited.org/snm. For mail or FAX orders, please mark your selections, complete the coupon on the opposite page, include full payment, and send this entire order form to CME Unlimited.

For your convenience, we accept MasterCard, Visa, and American Express as well as checks. Thank you.

SNM TAPE SPECIALS

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual Video (VHS) Tapes</td>
<td>$29.95</td>
</tr>
<tr>
<td>Individual Video (VHS) Tapes (non-member)</td>
<td>$49.95</td>
</tr>
<tr>
<td>Individual Video PAL / SCAM Tapes</td>
<td>$59.95</td>
</tr>
<tr>
<td>Individual Video PAL / SCAM Tapes (non-member)</td>
<td>$79.95</td>
</tr>
<tr>
<td>Any 8 Video (VHS) Tapes ($27.00/each) (member)</td>
<td>$216.00</td>
</tr>
<tr>
<td>Full Set of 16 Video (VHS) Tapes with Free Albums (member)</td>
<td>$368.00</td>
</tr>
<tr>
<td>Individual Audio Tapes</td>
<td>$11.00</td>
</tr>
<tr>
<td>Any 8 Audio Tapes ($10.50/each)</td>
<td>$84.00</td>
</tr>
<tr>
<td>Any 16 Audio Tapes with Free Album ($10.00/each)</td>
<td>$160.00</td>
</tr>
<tr>
<td>Any 32 Audio Tapes with Free Albums ($9.50/each)</td>
<td>$304.00</td>
</tr>
<tr>
<td>Full Set of 151 Audio Tapes with Free Albums</td>
<td>$1,050.00</td>
</tr>
</tbody>
</table>

CATEGORICAL SEMINARS

#15 (3 Tapes, $33) FEDERAL GRANT FUNDING FOR BIOMEDICAL IMAGING

#16 (4 Tapes, $44) EVALUATING PET SCANNERS FOR CLINICAL USE

#17 (4 Tapes, $44) THE ROLE OF NUCLEAR CARDIOLOGY IN 2000

#18 (2 Tapes, $22) 101 FDG PET / SPECT - FUNCTIONAL IMAGING AND CLINICAL ADVANCES

#19 (3 Tapes, $33) FDA REGULATORY FRAMEWORK FOR PET

#20 (4 Tapes, $44) CUTTING EDGE OF CLINICAL NUCLEAR MEDICINE

#21 (3 Tapes, $33) THE USE OF ALPHAV - EMISSION ISOTOPES IN PRE - CLINICAL AND CLINICAL TRIALS (Ronald D. Finn, PhD, Marco Chiolino, PhD, and Michael R. Zalatary, PhD were not recorded)

VIDEO CASSETTES AVAILABLE FOR CME OR VIDEO CREDIT!

CONTINUING EDUCATION COURSES

#22 (4 Tapes, $44) AT THE INTERFACE OF MOLECULAR BIOLOGY AND NUCLEAR MEDICINE

#23 (4 Tapes, $44) PEDIATRIC NUCLEAR MEDICINE: ADVANCES FOR THE NEW MILLENNIUM

#24 (3 Tapes, $33) 101 FDG PET/ SPECT - CLINICAL ADVANCES IN PET/ SPECT

CONTINUING EDUCATION COURSES

#25 WHOLE BODY PET FDG IN CANCER PATIENTS - READ WITH THE EXPERTS (R. Edward Coleman, MD was not recorded)

#26 RADIOMATERIAL EFFECTS OF IONIZING RADIATION (RE) CONTINUING EDUCATION RADIOMATERIALS

#27 SCINTIMAMMOGRAPHY— READ WITH THE EXPERTS

#28 V/Q AND HELICAL CT IN THE DIAGNOSIS OF PULMONARY EMBOLISM

#29 RADIOMATERIAL EFFECTS OF IONIZING RADIATION (RE) CONTINUING EDUCATION: RADIOMATERIALS

#30 MAKING MYOCARDIAL PERFUSION SPECT INTERPRETATIONS CLINICALLY RELEVANT — READ WITH THE EXPERTS

#31 ACUTE ABDOMINAL PAIN: DIAGNOSTIC DILEMMAS

#32 CALCULATION OF ABSORBED DOSE FROM INTERNAL DOSE TO RELEASING PATIENTS FROM THE HOSPITAL (Richard B. Sparks, PhD was not recorded)

#34 INTERPRETING VENTRICULAR FUNCTION STUDIES — READ WITH THE EXPERTS

#35 FEDERAL AGENCIES AND NUCLEAR MEDICINE

#36 PARATHYROID LOCALIZATION

#37 SPECT BRAIN IMAGING: PRACTICAL TECHNICAL ASPECTS

#38 MONOCONTRIBUTORS IN ONCOLOGY — READ WITH THE EXPERTS

#39 MYOCARDIAL PERFUSION IMAGING IN ACUTE CORONARY SYMPTOMES

#40 (2 Tapes, $22) COST-EFFECTIVENESS OF FDG PET IN ONCOLOGY

#41 SPECT BRAIN IMAGING: PRACTICAL ROUTINE CLINICAL APPLICATIONS

#42 COST-EFFECTIVE DIAGNOSIS OF CORONARY ARTERY DISEASE (Robert C. Hendel, MD was not recorded)

Continued on Opposite Side
As a specialist in nuclear medicine, you understand the value that partnering can bring to your patients. Combining your knowledge and experience with the right equipment, products, and supplies, you create a synergy of elements that offers the best chance for successful diagnosis and treatment.

Synergy for Better Patient Care
Berlex Imaging understands your drive to enhance diagnostic and therapeutic performance to deliver your patients the highest level of care. Sharing these same goals, Berlex Imaging has recently created an alliance to raise the level of excellence in nuclear medicine imaging and therapy. Each partner brings a variety of strengths to this alliance:

- **Berlex Imaging** introduced the first MRI intravenous contrast agent and is the undisputed market leader. Central to the philosophy at Berlex Imaging is personal involvement in the fields it serves, as evidenced by its outstanding record of continuing education and customer service programs.
- **Diatide** has pioneered innovative peptide engineering and technetium radiolabeling chemistry, producing “smart drug” technology to “find-fight-follow”™ disease.
- **CIS-US** is a leading supplier of traditional radiopharmaceuticals for the diagnosis and treatment of tumor pathologies and diseases of major organ systems.

Furthering Our Commitment to Nuclear Medicine
This new alliance, under the Berlex Imaging name, is committed to continued advancements in nuclear medicine diagnostics and therapies. Berlex Imaging is dedicated to bringing you “everything you need to see,” from radiology to nuclear medicine, and beyond.
Leadership in nuclear cardiology.....

It’s our Forte™

A complete offering in cardiology

Superior camera technology

- Vantage™ ExSPECT™ helps to increase diagnostic confidence with non-uniform attenuation correction, scatter correction, resolution recovery.
- CardioTrac™ roving zoom eliminates truncation artifacts by keeping the heart in the center field of view during acquisition.
- Rembrandt™ long bore collimators minimize dead space.

Complemented by the industry’s best software tools:

AutoSPECT Plus™
- AutoSPECT Plus™ Automated SPECT, Vantage™ & MCD™ Processing
- One Button Processing
- High Accuracy (93.7% Overall)

CardiaQ™
- Comprehensive Cardiac Quantitation
- Access to All Data Files in One Application
- User Configurable for MD Preferences

AutoQUANT™
- Automated Cardiac Quantitation for MD Interpretation
- Software Suite Provides Rapid MD Review
- Published Validation

Instill™
- Corrects all types of motion
- Intelligent motion detection algorithm
- Fully automated for all cardiac SPECT imaging

ADAC Laboratories
For More Information Call:
800-538-8531
www.adaclabs.com

Circle Reader Service No. 1