Echocardiographic Validation of Gated SPECT Ventricular Function Measurements

Kenneth Nichols, David Lefkowitz, Tracy Faber, Russell Folks, David Cooke, Ernest V. Garcia, Siu-Sun Yao, E. Gordon DePuey, and Alan Rozanski

Division of Cardiology, Department of Medicine, and Division of Nuclear Medicine, Department of Radiology, St. Luke’s-Roosevelt Hospital and Columbia University College of Physicians and Surgeons, New York, New York; and Department of Radiology, Emory University, Atlanta, Georgia

Left ventricular (LV) volumes are valuable prognostic indicators in the management of coronary artery disease and traditionally have been obtained by x-ray contrast angiography or echocardiography. There are now several scintigraphic methods to compute volumes that are based on different LV modeling assumptions. Both the reasons that calculations from different nuclear techniques can disagree with one another and the relationship of these values to the more conventional echocardiographic measurements must be investigated thoroughly for calculations to be interpretable for individual patients. Methods: Echocardiographic volumes were determined in 33 retrospective subjects with coronary artery disease (mean age, 61 ± 12 y; 42% men; 70% with abnormal perfusion and 58% with abnormal segmental wall motion) using the modified Simpson’s rule technique applied to digitized apical 4-chamber and apical 2-chamber views of 4 averaged heartbeats. These volumes were compared with those from 3 gated SPECT methods based on Simpson’s rule LV modeling similar to standard echocardiographic algorithms (SPECT EF from St. Luke’s-Roosevelt Hospital) (method 1), Gaussian myocardial count profile curve fitting (QGS from Cedars-Sinai Medical Center) (method 2), and an endocardial model based on perfusion sampling and count-based thickening (Cardiac Toolbox from Emory University) (method 3). Results: By ANOVA, there were no significant differences among ejection fractions (EFs), but there were for volumes. Paired t test analysis showed volumes from methods 2 and 3 to be significantly larger than echocardiographic volumes and larger than those of method 1. Linear regression analysis comparing gated SPECT and echocardiographic volumes showed a nearly identical strong correlation (r = 0.92; P < 0.000001) for all 3 methods. Excellent correlation also was found among gated SPECT volumes from the 3 methods (r = 0.94). Bland-Altman analysis and t tests showed that method 1 volumes (70 ± 61 mL) were the same as for echocardiography (77 ± 55 mL), but volumes were overestimated by method 2 (105 ± 74 mL) and method 3 (127 ± 92 mL), particularly for larger volumes. Pearson coefficients for EFs compared with echocardiography were r = 0.82, 0.75, and 0.72 for methods 1–3, respectively. EFs correlated strongly among the 3 gated SPECT methods (r = 0.86–0.92). The Fisher z test showed no differences among these methods for any of the volume or EF linear correlation analyses. Conclusion: All gated SPECT parameters correlated well with echocardiographic val-

For prognosis of patient outcome after myocardial infarction, ejection fraction (EF) (1), ventricular volume (2), and regional wall motion (3) have been shown to be powerful indicators. Recent studies have verified that left ventricular (LV) volumes constitute an independent marker of cardiac pathology (4,5). For some time, echocardiography has been the most widely used method for assessing regional wall motion (6) and, when angiography is not available, also is the most common means for obtaining accurate ventricular volumes (7).

In recent years, gated scintigraphy has been proposed as an alternative means for obtaining LVEF and volumes. Numerous publications have established agreement between gated SPECT EFs and those of other methods (8–10). However, EF accuracy does not prove volume accuracy because systematic volume errors tend to cancel (11). Evidence has been mounting that gated SPECT and angiographic volumes correlate well (12–14). Validation with echocardiography has not yet been as extensive, and the preponderance of these reports has appeared only as abstracts (15–18). Yet, in cases in which gated SPECT is performed without additional imaging evaluations, it is important to be able to relate calculations to values that would have been obtained had other imaging, such as echocardiography, been performed because of the history and wide experience clinicians have with echocardiography. Also, because perfusion scintigrams are discontinuous if the myocardium is scarred or ischemic and because hypoperfusion frequently is associated with regional wall motion abnormalities, it is important to determine if gated SPECT calculations are reliable under these circumstances. Because several different gated SPECT methods are available, based
on different underlying assumptions, it also is necessary to
determine the degree to which these agree with one another
and are likely to reproduce echocardiographic test results.
Therefore, this investigation undertook to establish relation-
ships between scintigraphic and echocardiographic vol-
umes, to ascertain whether these findings apply equally to
different gated SPECT methods, and to interpret the results
in the context of those found for angiography.

MATERIALS AND METHODS

Patient Population

Data for 33 patients (mean age, 61 ± 12 y; 44% men) studied
from 1992 to 1998 were analyzed retrospectively on the basis of
patients having had both echocardiographic and 99mTc sestamibi
gated myocardial perfusion evaluations. Echocardiographic studies
were performed at rest to evaluate LV function, congestive heart
failure, stroke, endocarditis, valvular disease, and measurement of
myocardial wall thickness for assessment of LV hypertrophy.
Scintigraphic studies were performed to assess myocardial perfu-
sion and function. All correlative studies were performed within 1
mo of each other, with a median time difference of 3 d. No patient
experienced any significant cardiac event between studies nor was
there any change in medical or surgical therapy.

Echocardiographic Measurements

Ventricular calculations were performed using 2-dimensional
echocardiography (Sonos 1500; Hewlett Packard Co., Andover,
MA; and 128XP; Acuson Corp., Mountain View, CA). Four heart
cycles were averaged and digitized, with mean R–R interval
sampling of 17 frames per heartbeat. Calibrations were performed
separately for each patient data acquisition. Data analysis (Dextra
2000; Dextra Color Systems Inc., Long Beach, CA) was performed
by an experienced cardiologist who chose the highest quality data
from among 2-chamber and 4-chamber views, equivalent to
SPECT vertical long-axis (VLA) and horizontal long-axis (HRA)
views. The cardiologist selected the cardiac frames correspond-
ing to end-diastole (ED) and end-systole (ES). A modified Simp-
son’s rule (also known as the method of disks (19)) technique was
used to compute volumes and EFs from orthogonally (70°–90°)
paired apical 2-chamber or 4-chamber views.

Gated Scintigraphy

99mTc sestamibi injections were performed during peak exercise
following a Bruce treadmill protocol or intravenous pharmacologic
coronary vasodilatation with dipyridamole (0.142 mg/kg/min
infused over 4 min) using 1.11 GBq for a 1-d protocol or 814 MBq
for a separate-day protocol (20). Tomograms (64 × 64) with a pixel
size of 6.4 mm were acquired with high-resolution collimation for
20 s per projection at 64 projections over 180° with a dual-detector
camera (Optima; General Electric Medical Systems, Milwaukee,
WI) so that acquisitions were performed in 12 min. Tomograms of
stress perfusion distribution were acquired with patients at rest, 30
min after stress, at 8 frames per R–R interval. An R–R beat window
was used such that data were collected if incoming R waves fell
between 50% and 150% of the mean preacquisition heart rate. All
patient data were screened for arrhythmic artifacts (11).

Standard clinical data-processing parameters were used (21):
Butterworth (cutoff, 0.40; power, 10.0) prefilters for gated tomo-
grams, followed by quantitative ramp x-filtering, interslice spatial
averaging, and time-filtering among gated frames. Images were
reoriented into VLA, HLA, and short-axis (SA) sections using
manual choices by an observer of anterior, inferior, septal, and
lateral limits and approximate LV symmetry axes. Commercially
available software (21) was used to produce cinematic midventricu-
lar VLA and HLA and all SA images at all levels from apex to base.

Gated SPECT Analytic Methods

Three gated SPECT methods were used for computation of LV
volumes and EFs. Method 1 (SPECTEF) was developed at St.
Luke’s-Roosevelt Hospital in New York, NY. Input data were
paired midventricular VLA and HLA gated tomograms (8,10) and,
in that sense, were the closest to echocardiographic LV modeling
(19) of the 3 scintigraphic methods. Originally, this method was
developed on the basis of endocardial borders drawn by cardio-
giats at a 35% count contrast threshold while viewing VLA and
HLA mid-LV ED and ES scintigrams, for which locations of
perceived borders then were corrected for the gamma camera’s
measured line-spread function (8). Drawings were performed on
frames individually normalized to themselves to provide the most
consistent myocardial shape impression to observers and to mini-
mize potential arrhythmia artifacts (11). Subsequently, the rules
used to define endocardial borders were encoded for automatic
processing (10). The valve plane was defined at basal points where
myocardial counts dropped below 25% of maximum myocardial
counts.

Curve fitting of count profiles across myocardial walls for
detection of midmyocardial points formed the basis of method 2
(QGS) from Cedars-Sinai Medical Center in Los Angeles, CA (9).
This is the most widely distributed gated SPECT technique and
uses the full set of SA gated tomograms to enable a fully 3-
dimensional handling of data. Motivating this approach is the
assumption that the greatest counts correspond to myocardial
centers. Clusters of neighboring 3-dimensional points likely com-
prising myocardial segments were fit to a 3-dimensional ellipsoid.
Count profiles were sampled in directions normal to the ellipsoid
and were fit to Gaussian functions. For counts below 50% of
maximum, missing wall segments were interpolated. The valve
plane was defined by criteria similar to those used by method 1.
Epicardial and endocardial surfaces were offset from midmyocar-
dial points by incorporating intraframe count differences and
systolic count increases, with the constraint of constant myocardial
mass (22).

Method 3 (Cardiac Toolbox), originated at Emory University in
Atlanta, GA, also identified midmyocardial locations with the
highest regional counts. Like method 2, this technique analyzed the
full set of all gated SA tomographic slices. This approach located
points corresponding to LV-shaped objects imbedded within time-
varying 3-dimensional input count distributions (23). Offsets to the
endocardium from detected midmyocardial points at ED were
defined to be half the myocardial thickness, assumed to be
uniformly 1 cm, on the basis of MRI studies (24). To estimate the
endocardial offsets at ES, the percentage of regional myocardial
thickening was computed from polar perfusion maps formed for all
sets of SA frames for each of the 8 R–R intervals. Fourier fits of the
8 time-varying counts at each polar map pixel location were
performed to compute systolic count changes. The percentage of
myocardial thickening was equated with these observed systolic
count changes, attributed to partial-volume effects (25). The valve
plane was modeled as 2 intersecting planes toward the base of the
heart.

All scintigrams and echocardiograms were acquired at St.
Luke’s-Roosevelt Hospital. Gated SPECT computations using

ECHOCARDIOGRAPHIC VALIDATION OF GATED SPECT • Nichols et al. 1309
method 1 were performed without knowledge of echocardiographic results and vice versa. Original tomographic data were sent to Emory University, where methods 2 and 3 were applied without knowledge of values from method 1 or echocardiography.

Statistical Analysis

All numeric results are reported as mean values ± 1 SD. Differences among EF results are reported in absolute EF units, not as percentages of EFs. ANOVA was performed to test for differences of values among the 3 methods, for which values of P were considered statistically significant if <0.05/3 (i.e., for <0.016, to account for 3 degrees of freedom). For those analyses for which ANOVA values of P were significant, paired t tests were used to compute whether 2-tailed probabilities indicated statistical significance between pairs of test results, at the level of P < 0.05. Linear regression analysis was used to compare calculations of LV volumes and EFs between modalities. Regression analysis also was performed in conjunction with Bland-Altman analyses of differences versus averages of paired values to search for trends and systematic errors (26,27). A value of P generated in association with regression analysis was the probability of no association, at a level of significance of P < 0.05. The statistical significance of pairs of different regression results was assessed by the Fisher z test.

RESULTS

Of the 33 patients, 70% exhibited abnormal perfusion and 58% were judged to have segmental wall motion abnormalities on the basis of visual echocardiographic readings. The mean echocardiographic ED volume (EDV) was 98 ± 52 mL over a wide range (38–372 mL). The mean echocardiographic ESV volume (ESV) was 56 ± 55 mL (range, 13–233 mL), and the mean overall echocardiographic volumes (EDV aggregated with ESV) were 77 ± 55 mL. The mean echocardiographic EF was 52% ± 17% (range, 14%–73%).

TABLE 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method 1</th>
<th>Method 2</th>
<th>Method 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>0.92</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>Slope</td>
<td>1.01 ± 0.05</td>
<td>1.22 ± 0.07</td>
<td>1.40 ± 0.07</td>
</tr>
<tr>
<td>Intercept (mL)</td>
<td>−7.2 ± 5.0</td>
<td>11.1 ± 6.3</td>
<td>12.4 ± 7.0</td>
</tr>
<tr>
<td>Mean (mL)</td>
<td>70 ± 61</td>
<td>105 ± 74</td>
<td>127 ± 92</td>
</tr>
<tr>
<td>SEE (mL)</td>
<td>23.9</td>
<td>30.0</td>
<td>36.9</td>
</tr>
<tr>
<td>Paired t test P</td>
<td>0.18</td>
<td>10^{-6}</td>
<td>10^{-6}</td>
</tr>
</tbody>
</table>

For method 1, observers judged it necessary to manually alter automated endocardial borders to match their visual perception of endocardium 15% of the time, consistent with previous reports (10). Method 2 required manual alterations of endocardial borders 9% of the time, also consistent with previous reports (28), and method 3 required alterations in 6% of patients. The most common circumstance for which alterations were required for the 3 methods occurred for studies showing hypoperfused myocardium adjacent to unusually intense hepatobiliary counts, as reported (10).

By ANOVA, differences among LV volumes (Tables 1–3) were significant (P < 0.002), but differences among EFs (Table 4) were not (P > 0.07). ANOVA results were essentially the same with or without inclusion of echocardiographic values as a variable. For individual paired r test analyses, method 1 volumes were not different from those of echocardiography (P = 0.18), but those of methods 2 and 3 were significantly (P < 0.000001) larger than echocardiographic volumes (Tables 1–3). Method 3 volumes were significantly larger than those of method 2, and both methods 2 and 3 produced volumes significantly larger than those of method 1.

There was excellent and nearly identical correlation of aggregate LV volumes (EDV aggregated with ESV) for all 3 methods with echocardiographic values (Table 1 and Fig. 1). Pearson correlation coefficients for each method individually versus echocardiography were 0.90 for EDV and 0.94 for ESV. More revealing were Bland-Altman volume graphs (Table 5 and Fig. 2), which showed slopes of 0.10, 0.30, and 0.52 for methods 1–3, respectively. A slope of 0.0 constitutes an ideal result for Bland-Altman graphs. Correlation for method 1 was marginal at P = 0.05, and correlations for methods 2 and 3 were definitely statistically significant, also contradicting the ideal result of P > 0.05 for Bland-Altman graphs. Thus, methods 2 and 3 overestimated echocardiographic LV volumes, whereas method 1 underestimated.

TABLE 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method 1</th>
<th>Method 2</th>
<th>Method 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>Slope</td>
<td>0.96 ± 0.08</td>
<td>1.13 ± 0.10</td>
<td>1.38 ± 0.07</td>
</tr>
<tr>
<td>Intercept (mL)</td>
<td>−2.4 ± 9.5</td>
<td>18.4 ± 11.3</td>
<td>30.4 ± 13.5</td>
</tr>
<tr>
<td>Mean (mL)</td>
<td>91 ± 63</td>
<td>128 ± 75</td>
<td>165 ± 91</td>
</tr>
<tr>
<td>SEE (mL)</td>
<td>28.0</td>
<td>33.5</td>
<td>40.0</td>
</tr>
<tr>
<td>Paired t test P</td>
<td>0.09</td>
<td>10^{-6}</td>
<td>10^{-10}</td>
</tr>
</tbody>
</table>

TABLE 3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method 1</th>
<th>Method 2</th>
<th>Method 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>Slope</td>
<td>1.15 ± 0.08</td>
<td>1.44 ± 0.10</td>
<td>1.66 ± 0.13</td>
</tr>
<tr>
<td>Intercept (mL)</td>
<td>−13.9 ± 5.4</td>
<td>0.7 ± 7.2</td>
<td>−2.6 ± 9.3</td>
</tr>
<tr>
<td>SEE (mL)</td>
<td>18.6</td>
<td>24.8</td>
<td>32.1</td>
</tr>
<tr>
<td>Mean (mL)</td>
<td>50 ± 52</td>
<td>81 ± 65</td>
<td>90 ± 77</td>
</tr>
<tr>
<td>Paired t test P</td>
<td>0.06</td>
<td>10^{-5}</td>
<td>10^{-5}</td>
</tr>
</tbody>
</table>

TABLE 4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method 1</th>
<th>Method 2</th>
<th>Method 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>0.82</td>
<td>0.75</td>
<td>0.72</td>
</tr>
<tr>
<td>Slope</td>
<td>0.91 ± 0.11</td>
<td>0.72 ± 0.11</td>
<td>0.62 ± 0.12</td>
</tr>
<tr>
<td>Intercept (%)</td>
<td>9.9 ± 5.5</td>
<td>10.2 ± 5.5</td>
<td>21.3 ± 5.8</td>
</tr>
<tr>
<td>Mean (%)</td>
<td>51 ± 16</td>
<td>43 ± 15</td>
<td>51 ± 16</td>
</tr>
<tr>
<td>SEE (%)</td>
<td>9.9</td>
<td>10.1</td>
<td>11.0</td>
</tr>
<tr>
<td>Paired t test P</td>
<td>0.002</td>
<td>0.20</td>
<td>0.006</td>
</tr>
</tbody>
</table>
TABLE 5
Bland-Altman Linear Regression Results of Differences Versus Means for Gated SPECT and Echocardiographic LV Aggregate Volumes

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method 1</th>
<th>Method 2</th>
<th>Method 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>0.24</td>
<td>0.56</td>
<td>0.80</td>
</tr>
<tr>
<td>Slope (mL)</td>
<td>(0.10 \pm 0.05)</td>
<td>(0.30 \pm 0.05)</td>
<td>(0.52 \pm 0.05)</td>
</tr>
<tr>
<td>Intercept (mL)</td>
<td>(-13.5 \pm 5.7)</td>
<td>(1.0 \pm 5.7)</td>
<td>(-1.8 \pm 6.01)</td>
</tr>
<tr>
<td>Regression (P)</td>
<td>(0.05)</td>
<td>(10^{-6})</td>
<td>(10^{-6})</td>
</tr>
<tr>
<td>Mean difference (mL)</td>
<td>(-6.1 \pm 23.7)</td>
<td>(28.2 \pm 32.2)</td>
<td>(50.9 \pm 46.7)</td>
</tr>
</tbody>
</table>

FIGURE 1. Gated SPECT LV EDV and ESV are plotted versus values computed by echocardiography for methods 1 (A), 2 (B), and 3 (C). Least-squares fits (solid lines) and lines of identity (dashed lines) are shown.

FIGURE 2. Bland-Altman graphs of differences versus means of gated SPECT and echocardiographic LV EDV and ESV are plotted for methods 1 (A), 2 (B), and 3 (C).

The parameters were obtained for EDV and ESV values analyzed separately (Tables 2 and 3). Methods 1–3 correlated significantly with echocardiographic EF values, with correlation coefficients of 0.82, 0.75, and 0.72, respectively (Table 4 and Fig. 3). Bland-Altman graphs for methods 1–3 versus echocardiographic EFs yielded slopes closer to 0.0 (0.01, −0.05, and 0.13, respectively), and linear regression \(P \) was not significant for all 3 methods (Table 6 and Fig. 4). Linear correlation coefficients of EFs between methods were 0.89, 0.92, and 0.86 for methods 1 versus 2, 2 versus 3, and 1
The reason for this is that counts from opposite myocardial walls contribute to each other, particularly at ES, thereby distorting count profiles and causing local maxima to be misregistered toward the LV cavity center (30,31). Correction methods for this phenomenon have been proposed only recently (29). Therefore, the more relevant concern is why the 3 methods studied here diverged as LV cavity volume size increased. Part of the reason is the way in which endocardial points are offset from midmyocardial locations. Using a fixed 35% threshold and individually normalized paired VLA and HLA views, method 1 was most analogous to echocardiographic processing, which accounts for its values agreeing most closely with echocardiography. Methods 2 and 3 relied more heavily on systolic count changes to compute endocardial offsets, and some phantom and clinical studies have suggested that gated SPECT underestimates true thickening (32,33). Furthermore, method 2 adjusted ED offsets partly based on regional myocardial counts and so would have smaller endocardial offsets and larger LV cavity volumes for hypoperfused data (34). The volumes of method 3 were even larger than those of method 2 because, of the 3 methods, method 3 relied the most heavily on thickening, so that underestimation of true thickening would have the greatest overall effect in overestimating endocardial dimensions, particularly at ES. This is consistent with the observation of relatively larger slopes for ESV than for EDV regressions versus echocardiography, the largest being for method 3 (Tables 1–3). In turn, this resulted in method 3 having the smallest of the slopes for correlation of gated SPECT versus echocardiographic EF (Table 4).

None of these observations indicates which of the 3 methods ultimately produced values closest to true absolute ventricular volumes. All conventional volume methods contain their own LV modeling assumptions and limitations, a reflection of which is the fact that volumetric normal limits vary somewhat among methodologies. Some studies indicate that mean normal LV EDVs are smallest for echocardiography (35) and MRI (36) and largest for angiography (37) and cine CT (38). To date few publications have dealt with gated SPECT volumetric normal limits. Normal limits using method 1 (39) agree quite closely with those of method 2 (5,40), all of which are closest to echocardiographic normal limits (35). It is probably more meaningful to ask which gated SPECT method correlates most strongly with another

The Fisher z test, respectively. By the Fisher z test, there was no statistically significant difference among any correlations for either EF or volume comparisons.

DISCUSSION

That excellent LV volume correlation was obtained for all gated SPECT methods versus echocardiography is encouraging, considering that the patient population studied was largely abnormal. However, the consistent volume differences among the 3 gated SPECT methods require further analysis. It is likely that the volumes of all gated SPECT methods are inherently too small for the smallest hearts (29).

FIGURE 3. Gated SPECT LVEFs are plotted versus values computed by echocardiography for methods 1 (A), 2 (B), and 3 (C). Least-squares fits (solid lines) and lines of identity (dashed lines) are shown.

TABLE 6

Bland-Altman Linear Regression Results of Differences Versus Means for Gated SPECT and Echocardiographic LVEFs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method 1</th>
<th>Method 2</th>
<th>Method 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope (mmHg)</td>
<td>0.005</td>
<td>0.06</td>
<td>0.20</td>
</tr>
<tr>
<td>Intercept (%)</td>
<td>6.0 ± 7.3</td>
<td>−1.0 ± 6.3</td>
<td>−0.5 ± 5.6</td>
</tr>
<tr>
<td>Regression P</td>
<td>0.99</td>
<td>0.54</td>
<td>0.34</td>
</tr>
<tr>
<td>Mean difference (%)</td>
<td>5.8 ± 9.9</td>
<td>−5.0 ± 10.0</td>
<td>6.0 ± 11.7</td>
</tr>
</tbody>
</table>
patients who were primarily abnormal subjects. Insofar as 70% of patients exhibited abnormal perfusion, a more thorough study should be performed to verify that similarly strong correlation is found among healthy subjects. Also, the results of this study were specific to the particular use of filters and filtered backprojection methods used to preprocess data before computations by methods 1–3. It is possible that use of other filters or iterative reconstruction techniques (or both) would cause methods 1–3 to produce different calculations.

CONCLUSION
The method most resembling echocardiographic modeling provided mean values closest to those of echocardiography. However, all gated SPECT volumes exhibited equally strong correlation with echocardiographic values and among methods. Therefore, it is possible to predict one method’s results from the results of another for both volumes and EFs and to predict what values echocardiography would have obtained given the gated SPECT result.

ACKNOWLEDGMENTS
The authors thank Helene Salensky for extensive computer expertise in the processing of the gated SPECT data, Robyn Horowitz for the database analysis of echocardiographic patient information, and Allen Mogtader, MD, for valuable insights into the analysis of the echocardiograms. This study was supported in part by General Electric Medical Systems (Milwaukee, WI). Tracy Faber, Russell Folks, David Cooke, and Ernest V. Garcia receive royalties from the sale of CEqual, PerSPECTive, and the Emory University Cardiac Toolbox, related to the research described in this article. The terms of this arrangement have been reviewed and approved by Emory University in accordance with its conflict-of-interest practice. This work was presented in part at the annual scientific meeting of the American College of Cardiology in New Orleans, LA, on March 7–10, 1999.

REFERENCES

ECHOCARDIOGRAPHIC VALIDATION OF GATED SPECT • Nichols et al. 1313

