
products, as procedures for nonuniform attenuation compen
sation become more commonplace (1â€”3).The lineage of the
most widely used iterative reconstruction algorithms can be
traced back to the maximum-likelihood expectation maximi
zation (MLEM) algorithm (4,5). This algorithm has a strong
theoretic basis and has been widely studied, so that its noise
and convergence properties are well known (6â€”12).Unfortu
nately, in the past, reaching a usable solution with the
algorithm required too many iterations to be practical for use
in a clinical product.

Ordered-subset algorithms, which are related to but much
faster than MLEM, have quickly become the dominant
iterative reconstruction procedures in both PET and SPECT
in recent years. These algorithms include the ordered-subset
EM (OSEM) algorithm (13) and the rescaled block-iterative
EM (RBIEM) algorithm (14). The OSEM algorithm has
been chosen both for its impressive speed, usually requiring
fewer than 5 iterations to reach a usable solution, and for its
relative simplicity of implementation.

Unfortunately, these algorithms are widely misunder
stood. Because of their close relationship in form with

MLEM, it is frequently assumed that they seek the maximum
likelihood solution and are simply faster versions of MLEM.
No general proof has been found that this is the case. In fact,
there is currently no general proof that these algorithms will
converge to any particular solution at all. They are poorly
named, because they are not actually EM algorithms and do
not maximize any function. Although the general experience
with OSEM has been very good and it appears to closely
emulate the results of MLEM, to date the only way to prove
that these algorithms are accurate and effective is through
careful empiric study.

In previous simulation studies of201Tl myocardial SPECT
using the 3-dimensional mathematical cardiac torso (MCAT)
phantom (15), we found that both OSEM and RBIEM gave
image estimates that were very close to those from MLEM
in the region of the heart. However, in the case of a
medium-sized male phantom with data acquired over a 180Â°

arc, OSEM reconstructions overestimated intensity in a liver
region of interest (ROI) by 4%â€”6%compared with MLEM.
We speculated that the error in the liver may be an

We studiedthe bias and variancecharacteristicsof the ordered
subset expectation maximization (OSEM) and resealed block
iterative EM (RBIEM)iterative reconstructionalgorithmsin myo
cardialSPECTunderextreme,but realistic,conditions.Methods:
Weusedthe2-dimensionalmathematiccardiactorsophantomto
simulate2 patientanatomies:a large male witha raiseddia
phragmand a female with large breast size, approximating
extreme cases of attenuationconditionsfound in the clinic. For
each anatomy,realistic201Tiprojectiondatawere simulatedfor a
180Â°acquisition arc. Three cases of truncation for a 90Â°-
configureddualdetectorsystemweresimulated:notruncation,
moderatetruncation,and extremetruncation.For each case, an
ensemble of 250 noise simulations was generated, and each
noisy dataset was reconstructedwith the OSEM and RBIEM
algorithms.The reconstructionsmodeledonly the effectsof
nonuniformattenuationand useda rangeof subsetconfigura
tions.Overtheensemble,wecomputedmeansandvariancesof
activity in 8 regionsof interest(ROIs)in the heartas a functionof
iteration.Results:Underconditionsofnotruncationandmoder
ate truncation, the results from OSEM and RBIEM were very
close to those from maximum-likelihoodEM (MLEM); in all
cases, the difference in AOl means was <2.5%. For extreme
truncation,theerrorsincreasedto as muchas 11%withOSEM,
but these were no greater than the errors for MLEM under the
same conditions.The OSEM algorithmwith 2 views per subset
wasfoundto resultinmuchhighervarianceof ROlestimatesfor
the samebiasas comparedwith RBIEMor OSEMwith4 or more
views per subset. Conclusion: The OSEM and RBIEM algo
rithmsare at leastas robustto highlyattenuatingpatientsand
truncation as MLEMalgorithm and can be adequate substitutes
for MLEM,evenin extremecases.Clinicalusersshouldapplythe
smallestnumberof subsetsthat can be accommodatedby
allowableprocessingtimetoreduceimagenoiseandvariancein
quantitativeestimates.
Key Words: iterative reconstruction;attenuationcompensation;
myocardialSPECT
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attenuation effect and could result in quantitative errors in
the heart in highly attenuating patients. Also, we observed
that OSEM appeared to be sensitive to errors in the model of
the projection process, hypothesizing that truncation of
emission data might create inaccuracies.

In this study, we seek to evaluate the performance of
OSEM and RBIEM under extreme but realistic conditions of
attenuation and truncation to determine if they truly are able
to give results similar to MLEM, but faster. Also, we
examine the effects of changing subset configurations on
convergence and accuracy of ROl estimation in myocardial
perfusion SPECT.

MATERIALS AND METHODS

Algorithms
The OSEM reconstruction algorithm (13) can be written as:

old
new_@@@@._'V _____

xi â€”@@ j@, c@,@ cjkxk

jEsn k

where x represents the estimated intensity at pixel i, pj represents
the measured events in projection bin j, and c@represents the
relative contribution of pixel i to the measurement in projection bin
j. The c elements may model nonuniformattenuation,detector
response (16,17), or scatter (18,19). The old and new superscripts
indicate the previous and new iterated estimates, respectively. The
backprojection (summation over bins) is done for a subset S,,of the
projection bins, usually those corresponding to a particular set of
views. After an iterated update is performed for 1 subset, another
update is performed using another subset of the measured projec
tion data, and so on, until all the projection data have been used.
Then the process repeats again starting with the first subset. In this
article, we refer to a single update from a particular subset as a
subiteration, and the set of updates using all the projection data
once as an iteration.

The RBIEM algorithm (14) can be written:

x@ x@ +

old :@@ xi p@ jES@
ti@ :@: cj@@ Id 1 ; t,, =max1 @â€”, Eq. 2

2@c@1jE5@ @1cJkxk 2i cj1
j k j

where the parameter tn 1Sdetermined for each subset by maximiz
ing over all pixels the ratio of subset weighting factors to total
weightingfactorsas shown.Note thatbothOSEM andRBIEM
reduce to MLEM when a single subset is chosen.

Phantoms
The 3-dimensional MCAT phantom (20) was used as the basis

for the phantoms used in this work. It is a geometric representation
of a simulated patient's anatomy using ellipsoids, cylinders, and
other objects. By manipulating the geometric objects, it is possible
to simulate patients of different body types. From a defined
anatomy, we generate both emission distributions and attenuation

distributions for simulation of SPECT data. This gives realistic
patientlike SPECT data but with the advantage of having the true
activity distribution known for use in quantitative comparisons.

1\woof the most highly attenuating anatomies from the MCAT
population were used, as shown in Figure 1 (21). These include a
large male with a raised liver and a female with large breast size.
These phantom anatomies were based on actual patient scans (21);
therefore, although extreme, they are not out of the realm of
possibility. For purposes of simulation, both phantoms were
generated on a 128 X 128 voxel grid with cubic voxels of side
length 3.125 mm.

Simulation
Parallel projection data from each of the 2 phantoms was

simulated to model a typical 20111acquisition in our clinic.
Projections were computed using a rotation-based projection
subroutine that realistically models the effects of attenuation,
collimatorâ€”detectorresponse (low-energy general-purpose collima
tor), and scatter (18). The simulation modeled data acquisition for
64 views over the 180Â°arc from 45Â°right anterior oblique to 45Â°
left posterior oblique at a radius of rotation of 23 cm. With the
90Â°-configureddual-detector system, this models a 90Â°rotation of
the gantry. Each projection consisted of 128 X 128 square
projection bins of side length 3.125 mm. After the projections were
computed, the bins were collapsed to 6.25 mm to simulate the
effects of sampling.

To simulate truncation, we modeled 3 different camera sizes for
a 90Â°-configureddual-detector system. The camera sizes modeled
were 43 cm or greater, referred to as no truncation; 36 cm, referred
to as moderate truncation; and 30 cm, referred to as extreme
truncation. The extreme truncation case cut off a significant portion
of the right lung and liver, but the heart was not truncated in any
view. Note that truncation was applied only to the emission data
sets; the transmission maps were assumed to be complete in all 3
cases.

Poisson noise was simulated to approximate the typical count
level for a patient dose of 74 MBq (2 mCi) 20111,based on patient
scans from our clinic. The resulting projection data had total count

levels of 65,000â€”72,000counts per 6.25-mm slice through the left
ventricle. Poisson noise was simulated using the noise-free projec
tion values as mean values. For each anatomyâ€”truncationcombina
tion, the Poisson-noise simulation process was repeated 250 times,
each with a different random number seed. Thus, an ensemble of
250 independent noisy data sets was generated for each case. A
singlenoisydatasetisreferredtoasanoiserealization.

Reconstruction
Each noise realization for each case was reconstructed using

OS-EM with 2 and 4 views per subset and using RBIEM with 2
views per subset, saving each iteration up to 20. For comparison,
we reconstructed the full set of noise realizations using MLEM for
the cases of no truncation and extreme truncation, saving every 10
iterations up to 200. To study the effects of changing the number of
views per subset, we reconstructed the full set of noise realizations
for the case of no truncation using OSEM and RBIEM at 2, 4, 8,
and 16 views per subset. In all cases, subsets were configured to
obtain the maximum angular difference between successive subsets.

Reconstructions modeled only the effects of nonuniform attenu
ation. The attenuation maps used in the reconstruction were
collapsed from the original phantoms to a voxel size of 6.25 mm,
and then convolved with a gaussian blur of full width at half
maximum of approximately 1 cm to simulate imperfect resolution
of the transmission measurement. No noise was applied to the
attenuation maps so as not to introduce additional noise variations
beyond those in the emission data simulations.

Eq.l
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FIGURE 1. Exampletransaxialslicesof
male (A) and female (B) 3-dimensional
MCATphantomsused.Toprow, @Â°i1emis
sion distribution; bottom row, correspond
ingattenuationmaps.

truncation, the results of our study apply directly to only the
method we have chosen.

Analysis
From the full set of reconstructions from the 250 noise

realizations, we computed the mean of each pixel, referred to as a
mean image. The mean images were generated at each iteration.
For quantitative evaluation, 8 ROIs were defined at anterior, lateral,
inferior, and septal locations, each in both the basal and apical
sections of the left ventricle. The ROIs averaged 6.0 cm3 in volume,

ranging from 4.5 to 7.3 cm3. For each noise realization at each
iteration of the algorithms, the total reconstructed image intensity
in each ROt was computed. Means and variances of these ROl
estimates were computed as a function of iteration. Covariances
between the ROl estimates were also computed, but these showed
that the totals in the different ROIs varied independently of one
another and were of no particular interest.

RESULTS

Figure 2A presents the progression of mean images for
the case of the male phantom with no truncation. The mean

Truncation may be modeled in different ways in these reconstruc
tion algorithms. In the simplest approach, the truncated bins may
simply be considered to be â€œmeasuredas 0.â€•The second approach
has the truncated bins modeled as having no error, i.e., the ratio of
measured and estimated projection data in Equations I and 2 is set
to 1. Finally, the truly correct way to model them is to set the
appropriate terms in the projection matrix, the c@terms, to 0. We
reconstructed the full set of noise realizations for the male extreme
truncation case for OSEM and RBIEM at 2 views per subset using
each of these 3 methods of modeling truncation. Although the first
method, treating the truncated bins to be measured as 0, resulted in
higher noise levels, the last 2 methods performed almost identically
by quantitative measures in the heart. Because we observed the
third method to give significant artifacts in the truncated region,
the second method, modeling the truncated bins as having no error,
was chosen for the experiments presented here.

It is important to note that there is no standard approach for
modeling such truncation in clinical systems; it is purely a matter of
how the reconstruction software is written. Thus, different manufac
turers may use different approaches, and it is unlikely that the
approach chosen will be apparent to the user. Although we believe
it is reasonable to extrapolate to the other methods of modeling
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FIGURE 2. Singletransaxialslice from
mean images of male phantom shown at
iterations2, 5, 10, and20. (A) Reconstruc
tion algorithms for case of no truncation:
OSEM at 2 views per subset (OSEM 2),
OSEM at 4 views per subset (OSEM 4), and
RBIEMat 2 viewsper subset(RBIEM2).
(B) Three cases of truncation: no trunca
tion,moderatetruncation,andextremetrun
cationfor OSEM4.

mod truncation

102 5

1@@ g@@ &

ext truncation

images appear to converge relatively quickly and remain
unchanged after approximately 5 iterations. This supports
previous evidence that, despite lacking a mathematic proof
of convergence, the OSEM and RBIEM algorithms do
converge in the mean (15). Figure 2B compares the mean
images for the male phantom with OSEM at 4 views per
subset as the truncation is varied. The extreme truncation
case suffers from significant artifacts in the region of the
truncated hot liver. The truncation of the liver is important,
because it appears to affect quantitative accuracy in the basal
region of the left ventricle.

Figure 3 presents a legend for the series of figures that
follows. Figures 4 and 5 present the percent bias of the mean
of each ROl relative to the mean for MLEM at 200 itera
tions with no truncation. They are therefore a measure FIGURE3. Legendfor8 regionsasdisplayedinFigures4 and5.
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Female, No Truncation

OS-EM2 OS-EM4 RBI-EM2

FIGURE 4. Percentagebiasof each re
gion for 3 reconstructionmethods on data
without truncation. Bias is computed rela
tive to mean of MLEM algorithm at 200
iterations.Datashownare takenat 5 itera
tions of OSEM with 2 (OSEM 2) and 4
(OSEM 4) views per subsetand RBIEM
with2 (RBIEM2) viewspersubset.Biases
shown were statistically significant at
95% confidence; those left blank were not
significant.

of how closely the algorithms match the quantitative results
of MLEM. Numbers shown in black represent a statistically
significant difference from the MLEM estimate at 95%
confidence. Those regions left blank had no significant
difference with respect to MLEM. Significant differences
were generally found for biases >1.1%, although this varied
with each specific case.

Figure 4 compares the bias data for the different algo
nthms on the female phantom with no truncation, fixed at 5
iterations as a representative number of iterations. These
data were computed relative to the MLEM results at 200
iterations, so they indicate the closeness of the algorithms in
question to MLEM, on average. The percentage bias was
computed as the difference between the ROI means for the 2
algorithms divided by the ROI mean for MLEM. Errors in
the male phantom (not shown) were all <2.1%. Errors were
somewhat higher for the female phantom, especially for
RBIEM. We note, however, that the basolateral region on the
female phantom was the slowest region to converge for all
algorithms. Further iterations reduced the 5% error for
RBIEM to within 2%. For OSEM with 4 views per subset,
errors remain within 2.2% of the mean. From these data, we
can conclude that, although OSEM and RBIEM do not
duplicate the results of MLEM in the mean, they come very
close, even on highly attenuating patients.

Figure 5 presents percentage bias data comparing results
for the different levels of truncation on the male phantom for
5 iterations of OSEM with 4 views per subset. The OSEM 4

results are representative of the other algorithms, whose

results are not shown. On the male phantom, we find
relatively little change in going from no truncation to
moderate truncation. However, significant errors result for
the extreme truncation case, as high as 11% for the
apicoseptal region; the effect is much smaller for the female
phantom (not shown). Errors in the septal regions increase
with increasing truncation but are never >3.5%. We at
tribute this difference in the 2 phantoms to the fact that the
male phantom has a high liver that extends into the same
slices as the heart, whereas the female phantom does not
(Fig. 1). The activity levels simulated in the 2 livers are the
same, and they suffer the same truncation, but the fact that a
high-activity organ is truncated in the same slices as the
heart appears to introduce significant errors in the heart

itself. Variance data (not shown) for the various levels of
truncation indicated that ROI variance was unaffected by
truncation, even in the extreme case.

We found that, for the male phantom with extreme
truncation, the MLEM errors were quite similar to those for
the OSEM case, with a maximum of 11% again in the
apicoseptal region. This confirms that, although consider
able quantitative errors are introduced in OSEM by truncat
ing the raised hot liver, these errors are no worse than those
for MLEM under the same conditions.

To look at the effect of the number of views per subset on
the variance of ROI estimates, Figure 6 plots bias versus
variance for the different subset configurations. Again, only
the basolateral region of the female phantom is presented,
because the trends for all regions were the same. The

FIGURE 5. Percentagebiasof each re
gionfor5 iterationsofOSEM, 4 viewsper
subset,with differentlevelsof truncation.
BiasiscomputedrelativetomeanofMLEM
algorithmat 200 iterationson data without
truncation. Biases shown were statistically
significant at 95% confidence; those left
blank were not significant.
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FIGURE6. PercentagebiaswithrespecttoMLEMat200 iterationsinbasolateralregionforfemalephantomasfunctionofvariance
in basolateral ROl estimate for various subset configurations. Numbers after OSEM and RBIEM indicate number of views per subset.
Eachmarkerrepresents1 iteration,with iterations1â€”20goingfrom leftto right.Solid line indicatesbias-variancecurvefor MLEMupto
200 iterations. Data are representative of relative bias-variance curves of various algorithm and subset configurations for all regions
onbothphantoms.

bias-variance curves for MLEM are also presented for
comparison. We find a general trend that decreasing the
number of views per subset moves the bias-variance curve to
the right, i.e., increasing variance for a given bias. For
example, for the same bias, OSEM at 2 views per subset
gives a higher variance of the ROI estimate than OSEM at 4
views per subset. At 8 and 16 views per subset, the bias-variance
curves for OSEM approach those for MLFJvI, which is, of
course, OSEM with 64 views per subset For RBIEM, the

bias-variance curves are to the left of those for OSEM with the
same number of views per subset; however, the RBIEM 2 curve
follows almost the identical track of OSEM 4. The same is true
comparing RBIEM 4 with OSEM 8, and so on. Thus, we can
achieve almost identical performance between OSEM and
RBlF@Mby varying the number of views per subset This result
expands on our previous paper (15), in which we compared

the 2 with the same number of views per subset. In that
article, we concluded that OSEM was faster and had higher
image noise, but we did not examine the effects of changing
the subset configurations.

Finally, in Figure 7, we summarize the magnitudes of the
various sources of error for the female phantom at likely
operating points for iteration number as we change the
number of views per subset. The iteration numbers were
chosen on the basis of the relative convergence rates of the
ROI means of the various algorithms. The errors shown
represent the bias with respect to MLEM at 200 iterations,
the bias with respect to the true phantom, and 1 SD of the
ROl estimate. The bias with respect to the true phantom was
computed by normalizing all values to the average of the 8
ROIs, so it represents a measure of relative and not absolute
quantitative accuracy. The values shown are the maximum
errors over the 8 regions for each case and may represent
errors in different regions.

The measures shown in Figure 7 represent 2 potential
sources of misdiagnosis, because they represent errors that
may be encountered in scoring segments of the left ventricle.
The bias with respect to the true phantom indicates the error
inherent in the system, including the data acquisition and
reconstruction processes, when no noise is present.

The SD indicates the magnitude of the statistical variation in
the intensity of individual ROIs or cardiac segments and
represents errors resulting simply from the random nature of
data acquisition.

In Figure 7, we first note that the biases with respect to
MLEM at 200 iterations are small compared with both the

FIGURE7. Maximumerrorsoverall8 regionsaspercentageof
mean for various algorithm and subset configurationsat likely
operatingpointsforiterationnumber.Datashownareforfemale
phantom;similartrendswere observedfor malephantom.Errors
shown are bias with respect to MLEM at 200 iterations (Bias
ML200),biaswith respectto true phantom(BiasTruth),and 1 SD
(Std Dev) of AOl estimate. Numbers after OSEM and RBIEM
indicatenumberofviewspersubset.
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biases with respect to the true phantom and the SDs. Thus,
even though they are statistically significant in many cases,
they are well below the inherent error with respect to the
truth and variations resulting from noise. The bias with
respect to the true phantom has the greatest magnitude of
error in all cases. We attribute this to errors resulting from
scatter and to the limited spatial resolution of the system. To
check the effect of scatter, we performed a similar study on
the female phantom using scatter compensation (22) and
found that the maximum errors with respect to the true
phantom were reduced by 4%, bringing them down to the
level of a single SD.

With the exception of OSEM 2, all iteration numbers
chosen exhibited similar errors with respect to truth and
similar SDs. In general, the performance of these iteration
numbers was close to that from MLEM at approximately
100 iterations. OSEM 2 exhibited a significantly higher SD
for approximately the same level of bias, consistent with the
bias-variance curves shown in Figure 6.

DISCUSSION

We find that the OSEM and RBIEM algorithms give
reconstructions that are very close on average, though not
identical, to those from the MLEM algorithm. This is true
even under the extreme conditions of attenuation and
truncation examined here. The algorithms clearly require far
fewer iterations to reach nearly the same estimate. This
observation is important, because it helps to justify the use
of OSEM and RBIEM, despite the fact that they lack proof
of convergence. When examining the ROI variances, how
ever, we find that the subset configuration can have a
significant effect on the image noise level and consequently
on the variation in regional quantitative estimates. That
variation can lead to errors in determining the relative
perfusion of a section of myocardium in borderline cases;
thus, to reduce it as much as possible is important.

As the number of views per subset is decreased, the
number of iterations to reach a certain level of bias is
decreased. There is a price to be paid for increased speed, in
that the image noise will increase for the same level of bias.
Thus, the use of OSEM with 2 views per subset should be
discouraged because of the prodigious increase in noise

(Figs. 6 and 7). OSEM with 4 views per subset and RBIEM
with 2 views per subset also exhibit slightly worse bias
variance tradeoffs than slower configurations with more
views per subset, but that must be considered in light of the
time required to reconstruct the data. In a clinical environ
ment, the reconstructed images will be as good as or better
than unreconstructed images if fewer subsets and more
iterations are used, but this will require additional process
ing time. The optimal choice will depend on the conditions
in a given clinic, including the speed of the reconstruction
computer and the desired time from patient measurement to
presentation ofthe images to the nuclear medicine physician.

The RBIEM algorithm was found to perform very simi
larly to OSEM when OSEM used twice the number of views

per subset as RBIEM. In the past, we have observed that
RBIEM exhibited lower noise than OSEM at the same
iteration number (15), but those comparisons were done for
the same subset configuration. In addition, we have specu
lated that, because RBIEM can be shown to converge to the
ML solution for consistent data (14), it may have better
convergence properties. From this work, however, we note
that OSEM can be made to perform similarly to RBIEM
simply by adjusting the subset configuration. Thus, there is

probably no advantage or disadvantage to using OSEM as
opposed to RBIEM. Because RBIEM is less well known, it
is likely that OSEM will remain the dominant iterative
reconstruction algorithm in the field.

Several items that may affect the application of OS
algorithms were not considered in this study and should be

examined. First, noiseless attenuation maps were used in all
cases. Attenuation maps obtained from clinical systems are
noisy, and the effects of noise in attenuation maps have not
been studied for ordered-subset reconstructions. Second, our
simulation assumes a stationary patient, but patient motion
can be a significant source of artifacts. This is especially
important with OS methods, because the timing of voluntary
patient motion and the method by which the subsets are
grouped may determine the severity of motion artifacts in
the reconstruction.

CONCLUSION

The OSEM and RBIEM algorithms are adequate substi
tutes for MLEM in myocardial perfusion SPECT, giving
similar quantitative results in the mean, even in extreme
cases of attenuation and truncation. Unacceptable errors do

result from truncation of high-activity organs in the same
slices as the heart, but these are no worse for OSEM and
RBIEM than for MLEM. This indicates that such extreme
truncation should be avoided no matter what reconstruction
algorithm is used. The number of views per subset, or
alternately the number of subsets, is significant in determin
ing the number of iterations required for regional quantita
tive estimates to converge. Increasing the number of subsets
decreases the number of iterations required to reach a certain
point of convergence and, thus, the total reconstruction
processing time; however, increasing the number of subsets
will increase reconstructed image noise. We recommend that
OSEM not be used with fewer than 4 views per subset to
avoid significant increases in image noise. We also recom
mend that clinical users consider using the fewest subsets
possible with regard to the processing time available.
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