Considerations in the Selection of Radiopharmaceuticals for Palliation of Bone Pain from Metastatic Osseous Lesions

Lionel G. Bouchet, Wesley E. Bolch, S. Murty Goddu, Roger W. Howell, and Dandamudi V. Rao

Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida; and Department of Radiology, University of Medicine and Dentistry of New Jersey—New Jersey Medical School, Newark, New Jersey

Bone pain is a common complication for terminal patients with bone metastases from prostate, lung, breast, and other malignancies. A multidisciplinary approach in treating bone pain is generally required, which includes a combination of analgesic drug therapy, radiation therapy, hormonal therapy, and chemotherapy. Over the years, treatment of bone pain using bone-seeking radiopharmaceuticals has been explored extensively. Pharmaceuticals labeled with energetic β-particle emitters such as 32P, 89Sr, 153Sm, and 186Re, in addition to the low-energy electron emitter 117mSn, have been studied for this purpose. Bone-marrow toxicity as a consequence of chronic irradiation by the energetic β particles is a general problem associated with this form of treatment. It is therefore desirable to identify radiochemicals that minimize the dose to the bone marrow and at the same time deliver therapeutic doses to the bone. Methods: New S values (mean absorbed dose per unit cumulated activity) for target regions of human bone and marrow were used to ascertain the capacity of various radiochemicals to deliver a high bone dose while minimizing the marrow dose. The relative dosimetric advantage of a given radiopharmaceutical compared with a reference radiochemical was quantitated as a dosimetric relative advantage factor (RAF). Several radionuclides that emit energetic β particles (32P, 89Sr, 153Sm, 186Re, and 177Lu) and radionuclides that emit low-energy electrons or β particles (166Er, 117mSn, and 32P) were evaluated. For these calculations, ratios of the cumulated activity in the bone relative to cumulated activity in the marrow α equal to 10 and 100 were used. Results: When the radiopharmaceutical was assumed to be uniformly distributed in the endosteaum and α was taken as 100 for both the reference and test radiochemicals, the RAF values compared with the reference radionuclide 32P were 1.0, 1.2, 1.4, 1.6, 1.7, 1.9, and 2.0 for 89Sr, 166Er, 153Sm, 177Lu, 117mSn, and 32P, respectively. In contrast, when the radiopharmaceutical is assumed to be uniformly distributed in the bone volume, the RAF values for these 7 radionuclides were 1.1, 1.5, 2.4, 3.2, 4.5, 5.1, and 6.5, respectively. Conclusion: These results suggest that low-energy electron emitters such as 117mSn and 32P are more likely to deliver a therapeutic dose to the bone while sparing the bone marrow than are energetic β emitters such as 32P and 89Sr. Therefore, radiochemicals tagged with low-energy electron or β emitters are the radiopharmaceuticals of choice for treatment of painful metastatic disease in bone.

Key Words: bone pain; radionuclide therapy; dosimetry

The use of bone-seeking radiopharmaceuticals to relieve pain caused by osseous metastatic lesions has been a topic of considerable interest for more than 50 y. 32P-orthophosphate (1) and 89Sr-chloride (2) were the first radiochemicals to be evaluated for this purpose, with the first clinical use dating back to 1941. These radionuclides are energetic β emitters with mean energies (physical half-lives) of 695 keV (14.26 d) and 583 keV (50.53 d), respectively (Table 1). The relatively long range of these energetic β particles in soft tissue and bone (Table 1) can result in significant irradiation of the marrow compartment, which can lead to depression of bone marrow function. As a consequence, a great deal of research has been devoted to finding new radiochemical forms of 32P and new radionuclides with more favorable radiation properties. Among the 32P radiochemicals that have been studied are phosphonates and diphosphonate (disodium etidronate); however, these also resulted in high marrow toxicity (3).

The drawbacks associated with 32P and 89Sr as palliative agents have led to the search for other suitable radiochemicals. Among them are 186Re-hydroxyethylene diphosphonate (HEDP) and 153Sm-ethylene diamine tetramethylene phosphonate (EDTMP) (4,5). These radionuclides have physical half-lives of only 3.8 and 1.9 d and mean β particle energies of about 323 and 225 keV, respectively. The significant pain reduction observed for 153Sm-EDTMP recently led to approval by the U.S. Food and Drug Administration (FDA) for its use in palliation of bone pain.

Although the clinical efficacy of 153Sm-EDTMP appears to be good (6), there is ample room for continued improvement in reducing bone pain and at the same time minimizing adverse effects to the marrow. Recent studies with the low-energy electron-emitter 117mSn were performed with this
goal in mind (7–9). In this study, a theoretical framework is developed to aid in the selection of radiopharmaceuticals with optimal radiation characteristics that are likely to maximize the dose delivered to the bone and minimize the absorbed dose delivered to the red bone marrow. These calculations allow a physical comparison of the relative efficacy of various radiochemicals to meet the overall objective of this modality.

MATERIALS AND METHODS

Dosimetric Relative Advantage Factors

All radiopharmaceuticals that have been evaluated for bone pain relief are bone seekers; hence, the bone marrow is the critical organ for this modality. The principal goal for alleviating bone pain with radiopharmaceuticals is to deliver a sufficiently high radiation dose to the bone or bone tumor while delivering the lowest possible dose to the red marrow. The radiation properties of the radionuclide play a major role in achieving this goal. Consequently, it is of interest to compare the capacity of various radionuclides that, based on their radiation properties, are likely to meet the stated goal. One can quantify the advantage of a given radionuclide compared with a reference radionuclide using a quantity called the dosimetric relative advantage factor (RAF).

According to the MIRD formalism (10), the mean absorbed dose to a given target region r_T from radioactivity localized in source regions r_S is given by:

$$D(r_T) = \sum_{\text{all sources}} \tilde{A}(r_S) S(r_T \rightarrow r_S),$$

Eq. 1

where $\tilde{A}(r_S)$ is the cumulated activity in source region r_S, and $S(r_T \rightarrow r_S)$ is the mean absorbed dose to target region r_T per unit cumulated activity in r_S. Hence, the mean absorbed dose to a bone compartment (i.e., bone volume or endostem) from a radiopharmaceutical distributed in both the bone and bone marrow can be written as:

$$D(\text{bone}) = \tilde{A}(\text{bone}) S(\text{bone} \rightarrow \text{bone}) + \tilde{A}(\text{marrow}) S(\text{bone} \rightarrow \text{marrow}),$$

Eq. 2

Similarly, the mean absorbed dose to the bone marrow from radioactivity distributed in these same bone and marrow compartments is given as:

$$D(\text{marrow}) = \tilde{A}(\text{bone}) S(\text{marrow} \rightarrow \text{bone}) + \tilde{A}(\text{marrow}) S(\text{marrow} \rightarrow \text{marrow}).$$

Eq. 3

In the palliation of bone pain, the goal is to maximize the absorbed dose to the bone compartment and minimize the absorbed dose to the bone marrow. Consequently, the ratio of the absorbed dose to the bone compartment compared with the dose to the bone marrow is of interest:

$$\frac{D(\text{bone})}{D(\text{marrow})} = \frac{\tilde{A}(\text{bone}) S(\text{bone} \rightarrow \text{bone}) + \tilde{A}(\text{marrow}) S(\text{bone} \rightarrow \text{marrow})}{\tilde{A}(\text{bone}) S(\text{marrow} \rightarrow \text{bone}) + \tilde{A}(\text{marrow}) S(\text{marrow} \rightarrow \text{marrow})}.$$

Eq. 4

Generally, for bone-seeking radiopharmaceuticals, the cross-dose to the marrow and bone from all other sources of activity in the body (e.g., muscle, kidney) is small compared with the contributions from activity in the marrow and bone and may therefore be ignored in these estimates. Hence, the advantage of test radionuclide T compared with reference radionuclide R for palliation of bone pain may be expressed as a dosimetric RAF:

$$\text{RAF} = \frac{\tilde{A}_T(B) S_T(B \rightarrow B) + \tilde{A}_T(M) S_T(M \rightarrow M)}{\tilde{A}_T(B) S_T(M \rightarrow B) + \tilde{A}_T(M) S_T(M \rightarrow M)} \times \frac{\tilde{A}_R(B) S_R(B \rightarrow B) + \tilde{A}_R(M) S_R(M \rightarrow M)}{\tilde{A}_R(B) S_R(B \rightarrow M) + \tilde{A}_R(M) S_R(M \rightarrow M)},$$

Eq. 5

where the letters B and M denote bone and marrow, respectively. This last equation can be further simplified by using ratios of cumulated activity in bone and marrow compartments for both the reference and test radiopharmaceuticals:

$$\text{RAF} = \frac{\alpha_T S_T(B \rightarrow B) + S_T(M \rightarrow M)}{\alpha_T S_T(M \rightarrow B) + S_T(M \rightarrow M)} \times \frac{\alpha_R S_R(B \rightarrow B) + S_R(M \rightarrow M)}{\alpha_R S_R(B \rightarrow M) + S_R(M \rightarrow M)},$$

Eq. 6

where α_T and α_R are the ratios of the cumulated activity in the bone relative to cumulated activity in the marrow for the test and reference radiochemicals, respectively:

$$\alpha_T = \frac{\tilde{A}_T(B)}{\tilde{A}_T(M)} \text{ and } \alpha_R = \frac{\tilde{A}_R(B)}{\tilde{A}_R(M)}.$$

Eq. 7

Average Skeletal S Values for Human Trabecular Bone

The S values for sources and targets in trabecular bone of the human skeleton are taken from Bouchet et al. (11) and are summarized in Table 2. The S values represent a weighted skeletal average over 22 trabecular bone regions (13 containing active marrow) of a 70-kg standard man including cranium, mandible,
humerus (upper and lower half), radius, ulna, hands, scapulae, clavicles, sternum, ribs, cervical vertebrae, thoracic vertebrae, lumbar vertebrae, sacrum, os coxae, and femur (upper and lower half). Details of the Monte Carlo dosimetry model for trabecular bone (12) and details of the S value determinations (11) have been reported elsewhere. Briefly, the electron transport through the 3-dimensional microstructure of human trabecular bone was simulated by sampling chord-length distributions through bone trabeculae and marrow cavities measured by Beddoe et al. (13) (14–17). Using the EGS4/PRESTA Monte Carlo transport code (18–20) to simulate the physics of electron transport, absorbed fractions of energy were calculated for 3 source–target regions: the trabecular marrow space (TMS), the trabecular endostem (TBE), and the trabecular bone volume (TBV). S values were subsequently derived for the 22 bone sites, using standard masses derived from reference data (21), and for all trabecular regions used in the calculations of the absorbed fraction. In addition, explicit consideration of the trabecular active marrow (TAM) as both a source and target region was made. Corresponding skeletal averages of these regional S values were also calculated as discussed in Bouchet et al. (11). The skeletal average S values for human trabecular bone, summarized in Table 2, were used below to ascertain the relative dosimetric merits of various radiochemicals for palliation of bone pain.

RESULTS

The average skeletal S values for human trabecular bone given in Table 2 were used in Equation 6 to calculate RAIFs for several radiopharmaceuticals tagged with the radionuclides 32P, 89Sr, 153Sm, 177Lu, 169Er, 177Lu, 153Sm, 186Re, 89Sr, and 32P. As expected, the radionuclides were in order of ascending mean particle emission energy (Table 1). By comparing equivalent entries within Tables 3 and 4, the model can be used to predict an efficacy for radiopharmaceuticals tagged with either 32P or 89Sr that is essentially the same, regardless of how the radioactivity is distributed within the bone tissue.

DISCUSSION

Limitations in S Values

S values used to calculate the RAIF for the different radionuclides of Table 1 were calculated for only the electron component of the disintegration (11). Indeed, in the model of electron transport used in this study (12), the path of the transported particles was assumed to be small compared...
with the macroscopic dimensions of the bone. Consequently, in the calculations of S values for the radionuclides considered in a previous study (1), the photon component (x and y rays) was assumed to be negligible compared with the electron component. For pure β emitters (32P, 89Sr, and 33P) and for radionuclides with small photon emission components (169Er and 186Re), these S values were consequently adequate. However, for 117mSn, 153Sm, and 177Lu, the electron and photon component of the mean energy emitted per transition were of the same order of magnitude. To evaluate the error due to exclusion of the photon component in the S value calculations, photon-specific absorbed fractions of

RAFs for Bone Pain Agents • Bouchet et al. 685
energy from MIRD calculations (23) can be used. These photon-specific absorbed fractions were derived using a homogenized skeletal mixture, and the absorbed fractions were partitioned by mass ratios (24). Consequently, these specific absorbed fractions of energy were overestimated when the marrow was considered the target region and underestimated when the bone was considered the target region (23).

Source and target regions of interest for the RAF calculations were the red marrow and the bone volume. MIRD photon-specific absorbed fractions of energy are given for the red marrow, yellow marrow, and the skeleton as source regions, and the red marrow and bone volume as target regions (23). Using these data, S value contributions from the emitted photon radiation of the decay were estimated for 117mSn, 153Sm, and 177Lu. As expected, the maximum errors in the S value were seen when the bone volume and red marrow were used as either the source or target region. For these 2 source–target combinations, the error in the S value for 153Sm and 177Lu was <5% and <20% for 117mSn (10% when the red marrow is the source and 20% when the bone was the source). Errors in the S values when the source and target regions are the same was <5% for all 3 radionuclides. RAFs calculated using S values that considered the x-ray/γ-ray component of the decay scheme did not change for either 153Sm or 177Lu. Only a 10% decrease was noted in the RAFs for 117mSn. Consequently, the RAF calculated using S values that did not account for the photons could be considered valid for all radionuclides considered in Table 1.

Limitations in RAF Calculations

The RAF results presented in Tables 3 and 4 suggest that radionuclides that emit short-range electrons/β-particles offer a distinct advantage over energetic β-particle emitters in the palliation of bone pain caused by osseous metastases. RAFs ranging as high as ~6 were obtained for the lowest energy emitter 33P when compared with the energetic β emitter 32P ($\alpha = 100$). These theoretical RAF calculations used a model that considers only normal bone and normal marrow. Not considered is the impact of abnormal bone, which has different architecture and much higher uptake of radioactivity than surrounding normal bone. Therefore, the RAFs reported here may be taken as lower estimates of the true RAF, given that higher absorbed doses will be delivered to metastatic lesions (25).

There are other factors that have not been folded into these calculations that may affect the overall relative advantage of one radionuclide compared to another. Among the many potential factors not considered in the present model are the physical half-life of the radionuclide, the microscopic distribution of the radiochemical, the fraction of injected activity taken up by bone, the kinetics of the radiochemical in bone tissue, as well as the cost and availability of the radionuclide. For example, the physical half-life affects the injected activity required, as well as the duration of pain relief. Longer-lived radionuclides generally require lower injected activities and show more prolonged pain relief; however, they also are slower acting in terms of the initial reduction in pain (22). This may be the result of the lower dose rates delivered by these radionuclides. In addition, they may lengthen the time required between injections when bone marrow toxicity is an issue. Such issues may also need to be considered when selecting the optimal radionuclide for palliation of bone pain.

Variation of RAF with Cumulated Activity Ratio

It is interesting to analyze variations of the RAFs with cumulated activity ratios. Tables 3 and 4 also give RAF values for test and reference radiochemicals labeled with the same radionuclide but with cumulated activity ratios of 100 and 10, respectively. This scenario represents a comparison of 2 different radiopharmaceuticals labeled with the same radionuclide. For the high-energy β emitters such as 32P and 89Sr, an increase by a factor of 10 in the cumulated activity ratio increases the RAF by only ~10% and ~20% for endosteum and volume sources, respectively. On the other hand, for the low-energy β emitters 117mSn and 33P, the corresponding increase is ~40% and ~90%, respectively. Therefore, an increase in cumulated activity ratios between bone volume and marrow is dosimetrically more significant for the low-energy β emitters than for high-energy β emitters. Furthermore, an increase in the cumulated activity ratio leads to a larger RAF when the radiochemical concentrates in the bone volume versus the bone endosteum.

RAF for 117mSn-DTPA, 153Sm-EDTMP, and 33P-Orthophosphate

Radionuclides such as 117mSn and 33P can offer a significant advantage over 153Sm, the radionuclide that was recently approved by the FDA for alleviation of bone pain. Although the advantage is relatively small (RAF < 1.8) when the endosteum is taken as the source and bone volume is taken as the target (Table 3), it is substantial (RAF < 3.7) when the bone volume is taken as both the source and target (Table 4). Given that 117mSn-diethylenetriamine pentaacetic acid (DTPA) and 153Sm-EDTMP are known to localize almost exclusively on bone surfaces and a substantial fraction of 33P-orthophosphate localizes in the bone volume (26,27), perhaps the most useful comparison among these 3 radionuclides would take into account differences in biodistribution. Using the skeletal S values in Table 2 and the definition of the RAF given by Equation 6, and assuming a cumulative activity ratio of 100 for both the test and reference radiochemicals, the relative dosimetric advantage of 33P-orthophosphate over 153Sm-EDTMP can be calculated to be 5.9, when 33P and 153Sm are distributed in the bone volume and endosteum, respectively. This is compared with an RAF of only 1.4 between the surface seekers 117mSn-DTPA and 153Sm-EDTMP (Table 3, $\alpha_T = \alpha_S = 100$). An RAF of 4.4 is obtained when 33P-orthophosphate is similarly compared with 117mSn-DTPA. Therefore, based on theoretical dosimetric considerations only, 33P-orthophosphate seems to be an excellent choice for palliation of bone pain resulting from osseous metastases. This radionuclide was previously
suggested as a potential candidate by Potsaid et al. (3), when they found that 32P caused marrow toxicity regardless of its radiochemical form. Our experiments in laboratory mice using intravenously administered 32P and 33P indeed show that for a given absorbed dose to the bone, the survival of granulocyte/macrophage colony forming cells (GM-CFC) in the femoral marrow is considerably higher with 33P than with 32P (28). Given that GM-CFC survival is an indication of marrow toxicity, this suggests that 33P offers a distinct therapeutic advantage. There are some drawbacks to this radionuclide, among them the high muscle uptake (28), the absence of imaging photons, and the high injected activities that may be required as a result of the low energy of the emitted β particles. These drawbacks, however, may be offset by the high dosimetric RAFs predicted for this radionuclide.

CONCLUSION

In the treatment of bone pain with radiopharmaceuticals, low-energy electron emitters such as 117mSn and 32P are preferred because they are more likely to deliver a therapeutic dose to the bone and spare the bone marrow than are energetic β emitters such as 32P and 85Sr.

ACKNOWLEDGMENTS

This work was supported in part by U.S. Public Health Service grant CA-32877, U.S. Department of Energy grant DE-FG05-95ER62006, and the Health Physics Faculty Research Award Program administered by Oak Ridge Associated Universities, Oak Ridge, TN.

REFERENCES