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Because of its computational simplicity, the graphic method
introduced by Logan et al. is frequently used to analyze time–
activity curves of reversible radiotracers measured in brain
regions with PET. The graphic method uses a nonlinear transfor-
mation of data to variables that have an asymptotically linear
relationship. Compared with compartmental analysis of untrans-
formed data, the graphic method enables derivation of regional
distribution volumes that are free from assumptions about the
underlying compartmental configuration. In this article, we de-
scribe statistical bias associated with this nonlinear transforma-
tion method. Methods: Theoretic analysis, Monte Carlo simula-
tion, and statistical analysis of PET data were used to test the
graphic method for bias. Results: Mean zero noise is associated
with underestimation of distribution volumes when data are
analyzed with graphic analysis, whereas this effect does not
occur when the same data are analyzed by nonlinear regression
and compartmental analysis. Moreover, this effect depends on
the magnitude of the distribution volume, so that the bias is more
pronounced in regions with high receptor density than regions
with low receptor density or no receptors (region of reference).
Conclusion: These results indicate that conventional kinetic
analysis of untransformed data is less sensitive to mean zero
noise than is graphic analysis of nonlinearly transformed data.
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Graphic analysis of PET data acquired with reversible
(1) or irreversible (2) radiotracers is commonly used for
quantification. The method of Logan et al. (1) for analysis of
reversible radiotracers comprises a nonlinear change of
variables applied to region-of-interest (ROI) activities and to
the arterial plasma input function (Ca), in which the trans-
formed variables have an asymptotically linear relationship.
The linear part of the graph can be written in the form of an
equation for a line:
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The slope m is equal to the tracer total volume of distribution

(VT). VT is equal to (K1/k2) 1 VP in the 1-tissue-
compartment model and (K1/k2) 3 [1 1 (k3/k4)] 1 VP in the
2-tissue-compartment model, where VP is the vascular
contribution and the k values are (nonnegative) time param-
eters associated with the models. The intercept b is given by
the expressions:
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in the 1- and 2-tissue-compartment models, respectively.
The slope is the desired outcome measure, but note that the
intercepts are negative in both cases; this fact will be
pertinent to the subsequent discussion.

The graphic method has several attractive aspects. It is
less computer intensive than classic compartmental analysis
and not subject to the convergence problems that may arise
with iterative methods. Furthermore, it allows derivation of
VT without making assumptions about the compartmental
configuration of the underlying data. For these reasons, the
graphic method is widely used for analysis of neuroreceptor
imaging studies performed with reversible radiotracers.

PET data always include a significant noise component,
whose multiple sources have been discussed (3). In this
article, we consider the effect of only noise with a zero mean
value, that is, noise that increases and decreases measured
PET values to the same extent. We show that this type of
noise causes this graphic technique to systematically under-
estimate the outcome measure VT and that the amount of
underestimation increases as the SD of the noise increases.
We also show that the effect depends on VT itself, so that the
effect is more pronounced in regions with high VT than
regions with low VT. The implication is that if the distribu-
tion volume ratio (ratio of regional VT to the VT of a
reference region) is used as an outcome measure, the
distribution volume ratio will be underestimated as well.

The phenomenon of statistical bias caused by mean zero
noise introduced by a change of variables may not be
intuitively expected. Given that individual points are ran-
domly increased or decreased by the same amount, why does
the slope (i.e., VT) systematically decrease? In the case of
the method of Logan et al. (1), the bias has been documented
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by Monte Carlo simulation in a study comparing the
noise-related bias levels in several methods of PET analysis
(4). Here, we replicate the Monte Carlo analysis as applied
to 2 new and promising radiotracers, offer a theoretic
explanation for the simulation results, describe the relation-
ship between the bias in estimated VT and true VT, and show
the presence of the effect in real PET datasets. In the graphic
method, noise in the ROI curve appears in both the x and the
y transformed variables, and the x noise and y noise are
highly correlated. Draper and Smith (5) discuss the case in
which the x and y variables have statistically independent
noise. Here, we present reasoning that predicts the bias on
the basis of the correlation structure.

MATERIALS AND METHODS

Theoretic Analysis
Analysis of a Simple Case.As a simple example of data with

correlation between the x and the y noise, consider the line y5 mx,
m . 1, and perturb both x and y by the same small amounte (Fig.
1). That is, (x,y) becomes (x1 e,y 1 e). Consider the line segment
from (x,y) to (x 1 e,y 1 e). The rise over the run of this segment
will always bee/e 5 1, and the perturbed point will be moved either
down and to the left but above the original line or up and to the right
but below the original line, according to the sign ofe. Now map
each data point yj 5 mxj, j 5 1,. . .N, to (xj 1 ej,yj 1 ej), where the
ej values are independent identically distributed random variables
with mean zero and variances2. Geometric intuition suggests that

if the ordinary linear least squares regression slope is then
computed, it will be less than m. This can be made mathematically
rigorous by computing the expectation of the difference m2 m̂.
The proof can be made to cover a much broader class of models
without much extra effort. Now assume the true data are still y5

mx but that the data points (x,y) are perturbed to (xj 1 exj,yj 1 eyj),
where theexj values are independently distributed with mean zero
and variances2

xj (not necessarily the same for all j) and theeyj

values are independently distributed with mean zero and variance
s2

yj. Further, assume that for each j,exj andeyj have covariancesxyj

but thatexj andeyk are not correlated for jÞ k. Then setting D5

NS(xj 1 exj)2 2 (Sxj 1 exj)2, m 2 m̂ is equal to:

m 3 D 2 NS(xj 1 exj)(mxj 1 eyj)
1 S(xj 1 exj)S(mxj 1 eyj)

D
. Eq. 1

The denominator D is the determinant of a positive definite
matrix and therefore always positive, so the sign of m2 m̂ will be
equal to the sign of the numerator. The expectation of the
numerator reduces to:
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This expression will be positive when m. (Ssxyj)/(Ss xj
2 ). In the

simple case above,exj 5 eyj and (Ssxyj)/(Ss xj
2 ) 5 1, which, by

design, is less than m.
Graphic Method.Analysis of the graphic method is not as

simple as in the previous case, partly because multiple noise
sources exist, including counting statistics both in the brain image
and in Ca, measurement errors, and motion artifacts. Also, the noise
has a more complicated effect on the data than in the model of the
previous section, because of the transformation of variables.
Typically, a fitting procedure such as a sum of exponentials is used
to presmooth the plasma data, so that the effect of noise in the
plasma data is minimized. Even if the plasma data have not been
preprocessed, Ca, and therefore noise in Ca, appears only in an
integral. Integration is a smoothing process that tends to reduce the
effects of mean zero noise. Finally, noise in Ca can reasonably be
assumed to be statistically independent of noise in the PET data, so
that effects from plasma noise and ROI noise can be treated
separately. Here, we ignore error in Ca, focusing instead on noise in
the ROI curve. This noise will be assumed to have mean zero and
variances2

j at time tj. Because the mean is zero, this noise will tend
to be cancelled ine0

t
ROI(t)dt, provideds2

j changes slowly over
time. Let:

SCa(t) 5 e
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0

t
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Then the graphic transformation can be written in vector form as:
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Ty(ROI(tj)) 5 m 3 Tx(ROI(tj)) 1 b. Eq. 5

If we assume the magnitude of the noise is relatively small, the

FIGURE 1. Simple linear regression. Effect on noise perturba-
tion, 6e, added to both x and y values of given point of simple
regression y 5 mx with m greater than 1 (52.5) and m less than 1
(50.5). New location of point (x 6 e,y 6 e) relative to original line
depends on value of m. If m is greater than 1 and value of e is
positive, perturbed point will fall to right and above its original
position but below original line. Negative e will result in point
below and to left of original position but above line. If m is less
than 1, positive e will move point to right and above original line,
whereas negative e will move point to left and below original line.
Geometric intuition suggests that linear least squares fit of
perturbed data will have slope less than m if m is greater than 1
and greater than m if m is less than 1.
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perturbed transformation can be approximated by a first-order
Taylor expansion as:
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Let this final expression be our new model process. For small
s2

j, this process and the graphic transformation will behave
similarly. For this process, the ratio (Ssxyj)/(Ssxj

2 ) is equal to:
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At each point, the ratio SROI/SCa, which equals the ratio
[Ty(ROI)]/Tx(ROI)] of the unperturbed variables is, by Equation 5,
equal to:
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The intercept b is negative, so (SROI/SCa) , m. Therefore,
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By Equation 2, the expected value of m2 m̂ is positive.
At each time tj, the ratio SROI/SCa is the slope of the line segment

from the original point to the perturbed point. Note from Equation 8

that the amount by which SROI/SCa deviates from the original slope
m is equal to:

b

Tx(ROI(tj))
5

b 3 ROI(tj)

SCa(tj)
. Eq. 10

The denominator on the right side of Equation 10 will be the
same across brain regions, but the numerator will tend to have a
larger magnitude in regions with high uptake, both because ROI(t)
will stay elevated and because a large m will drive b in the negative
direction. This suggests that the bias effect will be more pro-
nounced in regions with large VT, and our simulations support this
suggestion.

Simulations
We examined data derived from 2 different experiments. The

first set of analyses was based on the brain uptake of the 5HT1A
antagonist [carbonyl-11C]WAY 100635 (6) in a baboon (R.V.
Parsey, unpublished data, 1999). After a single bolus injection
(injected dose, 60 MBq; specific activity, 27,417 GBq/mmol),
emission data were acquired for 120 min, as previously described
(7). The arterial input function was measured, corrected for the
metabolites, and fitted to a sum of 3 exponentials (Fig. 2A).
Regional uptake was analyzed using a 3-compartment kinetic
analysis as previously described (7). Results from 3 regions were
selected, representing regions with high uptake (cingulate cortex),
regions with low uptake (dorsal raphe nuclei, DRN), and a
reference region devoid of 5-HT1A receptors (cerebellum). Kinetic
parameters were as follows: cingulate cortex, [K1, k2, k3, k4]5
[0.4407, 0.3367, 0.1899, 0.027]; DRN, [K1, k2, k3, k4]5 [0.2595,
0.1982, 0.0358, 0.0268]; and cerebellum, [K1, k2, k5, k6]5
[0.6038, 0.8364, 0.0421, 0.0518], where K1 (mL/g/min) and k2
(per minute) describe the rate of transfer between the plasma to the
free and nonspecific (nondisplaceable) compartments, k3 (per
minute) and k4 (per minute) describe the rate of transfer between
the nondisplaceable and specific compartments, and k5 (per
minute) and k6 (per minute) describe the rate of transfer between
the fast and the slow nondisplaceable compartments in the cerebel-
lum.

These parameters were used to create 3-compartment impulse
response functions that were then convolved with the smoothed
arterial input function to create ‘‘perfect’’ noise-free regional
time–activity curves (Fig. 2B). Data were simulated for 120 min,
with values calculated every minute. Normally distributed mean
zero noise of various magnitudes was added to the data, assuming a
constant level of noise over time. The magnitude of the noise was

FIGURE 2. (A) Plasma unmetabolized
[11C]WAY100635 after injection of 60 MBq
in baboon. Points are measured values; line
represents values fitted to linear combina-
tion of 3 exponential functions (logarithmic
scale). (B) Regional activities in cerebellum
(n), DRN (d), and cingulate cortex (s).
Curves and data points were generated by
convolution of fitted plasma with impulse
response functions. Kinetic parameters for
impulse response functions are listed in
Simulations section.
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characterized by its SD, expressed relative to the mean value of the
noise-free ROI activity over time. Noisy datasets were created in
increments of 0.01, from SD5 0.01 to SD5 0.2 (20 noise levels).
At each noise level, 1000 noisy curves were created. Noisy curves
were then analyzed with the graphic method. The average of the
1000 VT values was compared with the true VT value (i.e., the VT
value used to create the data) for each noise level to measure the
bias introduced by the noise. In the absence of bias, the average VT

of 1000 simulations would be identical to the true value of VT.
The second set of data was based on the brain uptake of the

dopamine D1 receptor antagonist [11C]NNC 112 (8) in a human
(injected dose, 648 MBq; specific activity, 48,655 GBq/mmol; Fig.
3). Details of the experimental and analysis procedures have been
published (9). Three regions were selected, with high D1 receptor
density (striatum), moderate D1 receptor density (subgenual prefron-
tal cortex, SGPC), or no detectable D1 receptors (cerebellum).
Kinetic parameters derived from this experiment were as follows:
striatum, [K1, k2, k3, k4]5 [0.1533, 0.0674, 0.1241, 0.0358];
SGPC, [K1, k2, k3, k4]5 [0.1674, 0.0736, 0.0727, 0.0453]; and
cerebellum, [K1, k2]5 [0.12, 0.0526] (i.e., 1 tissue compartment).
As in the [11C]WAY 100635 experiment, noise-free curves were
generated with these parameters, various levels of mean zero noise
were added, noisy curves were analyzed with graphic analysis, and
the results were plotted against the noise level.

Confirmation in Real Data
Results from derivation of [11C]WAY 100635 binding potential

(BP) to 5-HT1A receptors derived in 15 region of the human brain
with the kinetic method were compared with results from the
graphic method. Each regional BP value was the mean value of 10
experiments (10). Kinetic analysis (3 compartments) and graphic

analysis were performed to derive regional VT. The 5-HT1A
receptor BP was then calculated as the difference between VT in the
ROI and VT in a region of reference devoid of receptors (cerebel-
lum). The size of these regions varied considerably, from large
neocortical regions such as the dorsolateral–prefrontal cortex
(32,575 6 2579 mm3) to small limbic regions such as the
hippocampus proper (58246 441 mm3) to very small and noisy
regions such as the DRN (8806 742 mm3). Given the large
between-region variability in size, we anticipated large variability
in the noise level associated with the regional measurements. We
tested the hypothesis that [11C]WAY 100635 BP derived by graphic
analysis would be lower than [11C]WAY 100635 BP derived by
kinetic analysis and that this underestimation would depend on the
level of the noise, as measured by the residual sum of squares of the
kinetic fit.

RESULTS

Simulations
Figures 4 and 5 present the graphic analysis of the

noise-free dataset and the result of Monte Carlo simulations
for the [11C]WAY 100635 and [11C]NNC 112 experiments,
respectively. The simulation results show that the bias effect
of zero mean noise was detected. As the level of the noise
increased, the mean estimate of VT decreased. This bias has
the 3 properties predicted by the theoretic analysis: first, that
given the negative intercept, the bias always leads to an
underestimation of VT; second, that this effect increases as
the noise increases; and third, that this effect is more
pronounced in regions with high VT than in regions with low

FIGURE 3. (A) Plasma unmetabolized
[11C]NNC 112 after injection of 648 MBq in
human. Points are measured values; line
represents values fitted to linear combina-
tion of 3 exponential functions (logarithmic
scale). (B) Regional activities in cerebellum
(n), SGPC (d), and striatum (s). Curves
and data points were generated by convolu-
tion of fitted plasma with impulse response
functions. Kinetic parameters for impulse
response functions are listed in Simulations
section.

FIGURE 4. (A) Graphic analysis of noise-
free data presented in Figure 2. (B) Results
of simulations show mean VT as function of
SD of noise (SD normalized by mean re-
gional activity of noise-free dataset, so as to
have comparable level of noise between
regions). One thousand trials were per-
formed at each noise level. Effect of bias is
more pronounced in cingulate cortex than in
regions with lower VT (DRN, cerebellum).
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VT, because regions with high VT are associated with more
negative y-axis intercepts and greater ROI values for large t.
Similar simulations using classic, iterative, nonlinear least
squares curve fitting to a compartmental model have led to
bias estimates that, as a fraction of true VT, are an order of
magnitude smaller than those observed with the graphic
method (9).

Confirmation in Real Data
Graphic BP values were slightly but significantly lower

than kinetic BP values, by an average of 5%6 9% (repeated
measures ANOVA,P , 0.001). This BP underestimation
was detected mostly in small and noisy regions. For
example, BP obtained by the graphic method was 3%6 3%,
13%6 6%, and 33%6 8% less than BP obtained by kinetic
modeling in the dorsolateral–prefrontal cortex (region size,
32,5756 2579 mm3), hippocampus (58246 441 mm3), and
DRN (880 6 742 mm3), respectively. The noise in the
measurement, as estimated by the residual sum of the square
of the kinetic fit, was significantly associated with the
magnitude of the underestimation of BP by the graphic
method compared with the kinetic method (r2 5 0.59,P ,
0.004; Fig. 6). This analysis shows the presence of the effect
in real data.

DISCUSSION

Our results indicate that mean zero noise is associated
with underestimation of distribution volumes when PET
data are analyzed with the graphic method. The underestima-
tion was theoretically predicted, confirmed in Monte Carlo
simulations, and observed in real data. The pertinent features
of our noise model are that it has zero mean and is not
temporally correlated. The transformation brings about a
particular correlation structure between the error terms in the
predictor and dependent variables, leading to biased esti-
mates of VT. This phenomenon is reminiscent of noise-
dependent bias encountered in the analysis of saturation
binding data. The transformation of saturation data com-
monly called the Scatchard plot (11) has been shown to
introduce a noise-related bias to the estimates of Bmaxand KD

(12).
In this article, we considered the effect of only random

mean zero noise, such as the noise associated with measure-
ment of radioactive decay. Because the noise is expected to
increase with the duration of the experiment (because of
isotope decay), we also performed a simulation in which
mean zero noise increased with time, and the results were
similar (8).

Despite this problem, the graphic method is still prefer-
able to kinetic compartmental analysis when nonlinear
analysis is ill-conditioned. One advantage of the graphic
method is that the derivation of VT does not depend on an
underlying choice of compartment model. This property
makes the method particularly useful when the possible
error from noise bias is outweighed by the error from an
inappropriate choice of model. For example, the cerebellum
uptake of [11C]NNC 112 does not perfectly fit a 1-tissue-
compartment model. However, the small size and slow

FIGURE 5. (A) Graphic analysis of noise-
free data presented in Figure 4. (B) Results
of simulations show mean VT as function of
SD of noise (SD normalized by mean re-
gional activity of noise-free dataset, so as to
have comparable level of noise between
regions). One thousand trials were per-
formed at each noise level. Effect of bias is
more pronounced in striatum than in re-
gions with lower VT (SGPC, cerebellum).

FIGURE 6. Relationship between experimental noise in ROIs
(n 5 15), as estimated by residual sum of squares of kinetic fit
(x-axis), and underestimation of BP by graphic analysis com-
pared with kinetic analysis. Each point is average of BP of 10
[11C]WAY 100635 experiments conducted on humans. Dorsal
raphe nucleus (DRN, arrow) is region associated with highest
noise, and DRN BP is considerably underestimated by graphic
analysis compared with kinetic analysis.
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kinetics of the third compartment result in poor identifiabil-
ity of the cerebellum VT when the 2-tissue-compartment
model is used (9). In this situation, graphic analysis is
preferable, at least in the cerebellum.

Nevertheless, our results suggest that, when the data are
appropriately described by a given compartmental configu-
ration, kinetic analysis of untransformed data may be more
robust than graphic analysis. In this situation, the proposi-
tion that graphic analysis is less sensitive to experimental
noise is not correct (13), and nonlinear analysis of untrans-
formed data may be the method of choice to analyze data
from reversible neuroreceptor radiotracer PET studies. We
propose that, at the minimum, the potential effect of this bias
be carefully evaluated before graphic analysis is used for
new radiotracers.

CONCLUSION

We have shown that additive mean zero statistical noise in
PET data causes a negative bias in the estimate of VT when
the graphic method is used. We have also shown that the
extent of the bias depends on both the magnitude of the noise
and the magnitude of the true VT. Theoretic analysis,
computer simulation, and correlation with clinical data all
support these conclusions. But the method also has several
advantages. It is subject to neither the convergence problems
nor the compartment-choice problems sometimes associated
with iterative methods. All these factors should be consid-
ered when choosing a method for analysis of data from
reversible neuroreceptor radiotracer PET studies. In particu-
lar, if the investigator is confident that the data are well
described by a particular compartmental configuration, then
nonlinear analysis of untransformed data appears to be the
method of choice.
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