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Nonuniform attenuation correction in brain SPECT can be done
routinely by means of additional v transmission CT (TCT)
measurements, using different commercially available line-
source isotopes. 201Tl, 153Gd, and %°™Tc are among the most
commonly used isotopes, depending on practical and cost-
effectiveness issues. We have measured additional radiation
burden from static uncollimated brain SPECT transmission
sources for these isotopes. The influence of the transmission
isotope on brain quantification was also measured and compared
with uniform attenuation correction for phantom and human data.
Full iterative transmission and emission reconstruction were
compared with filtered backprojection techniques. Methods:
Rod sources with 201Tl, 153Gd, and %™Tc were used on a
triple-head gamma camera. Dosimetry was performed using LiF
TLD-100 pellets and an anthropomorphic RANDO phantom.
Effective dose equivalents were calculated on the basis of
measured and extrapolated absorbed doses. For brain activity
measurements, a Hoffman phantom was used. Images were
corrected for scatter (triple-energy window) and were recon-
structed by Chang attenuation correction and filtered backprojec-
tion as well as full iterative reconstruction (ordered-subsets
expectation maximization [OSEM]). To study the effect of inhomo-
geneous bone attenuation, realistic measurements were per-
formed on 10 young, healthy volunteers with 153Gd TCT. After
stereotactic image realignment, a volume-of-interest analysis
normalized to total counts was performed. Results: Brain SPECT-
TCT using 2°1Tl, 158Gd, and ?°™Tc produced total effective dose-
rate equivalents of 50.3 + 11.2, 32.0 + 2.7, and 71.1 = 7.1
USV/IGBq X h, respectively, representing dose equivalents of
18.6, 11.9, and 26.3 uSv for a typical 20-min brain SPECT scan at
maximal used source strength. Standardized quantification re-
sulted in insignificant differences between the isotopes and
methods (Chang versus OSEM) used for nonuniform correction.
Iterative reconstruction enhanced image contrast and provided
more accurate gray-to-white matter ratios. Between nonuniform
and uniform attenuation with an optimized attenuation coefficient,
slight central discrepancies were found for volunteer studies.
Significantly lower intersubject variation was found for nonuni-
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form corrected values in infratentorial and posterior brain re-
gions. Conclusion: Brain transmission scanning using 201TI,
153Gd, or 9°mTc results in limited effective radiation dose equiva-
lents compared with the typical radiation burden. Relative brain
perfusion quantification is not significantly different for the various
nonuniform TCT isotopes. Iterative reconstruction improves gray-
to-white contrasts but has no significant influence on brain
perfusion semiquantification. Nonuniform attenuation correction
decreases intersubject variability in the posterior brain regions
that were compared, which may lead to improved sensitivity
toward clinical applications.
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Brain SPECT by means of additional single-photon—
based transmission CT (TCT) can be done routinely with
several different commercially available isotopes. The choice
of TCT isotope depends primarily on practical and cost-
effectiveness issues (Table By1TI, 155Gd, and®*"Tc are
among the most commonly used isotopksd). 1%3Gd is the
transmission source of choice in most commercial systems
because of its suitable physical characteristics, its relative
affordability, and the possibility of measuring simulta-
neously 2°1TI, 9"Tc, or 129. |sotopes such as$*Am (y
energy [E] = 59 keV, half-life [t,;] = 432 y), with a low
energy and photon yield, imply high specific activities. (
Other isotopes such &&Co (E, = 122 keV; t,, = 271 d),
10%Cd (E, = 88 keV; t, = 463 d),%°Au (E, = 99 and 130
keV; ty, = 183 d), and?¥ (E, = 159 keV, t,, = 13 h) have
appropriate energy spectra angdbut are less available, are
more expensive, and in some cases overlap with frequently
used®®™Tc emission.

Several factors can be considered in the choice and
evaluation of emission CT (ECT)-TCT isotope combina-
tions. The two most important factors are additional radia-
tion exposure to the patient and the capability of accurate
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TABLE 1
Physical Properties and Cost-Effectiveness of Commercial SPECT Transmission Sources

Isotope 201T] 153Gd 99mTe
Half-life 73h 240d 6.02 h
Energy (keV) 69-81 (+167) 97 + 101 140
Physical formulation Solution Solid Solution
Mode %°™Tc emission Simultaneous Simultaneous Simultaneous T1E2*
Mode 123] emission Sequential Simultaneous Sequential/simultaneoust
Typical total source strength 150-300 MBq 1-2.5 GBq 370-740 MBq
Replacements/month 10 0.06 40
Total costly ($) for average source strength +4000 +6000 +700

*T1E2 = simultaneous transmission and emission.
TSimultaneous can give cross-scatter problems.

guantification of emission images, irrespective of the apnd decreased noise in the reconstructed image. Advances in
plied TCT isotope. iterative algorithms and computational speed have opened
Different TCT geometries (e.g., uncollimated versus collelinical perspectives for these methods, especially optimally
mated) and devices exist, so there is a need for accurate desgitioned, block-iterative methods known as ordered-
measurements because of TCT. TCT scans can be obtaiggBsets expectation maximization (OSE B
sequentially or simultaneously. In the former case, exposurealthough nonuniform corrections are evidently most
of only a few minutes is necessary but there is a risk @hportant for the abdominothoracic region, the lower half of
mismatching associated with patient movement. For simuligre human brain is surrounded by a complexly shaped skull
neous TCT, the irradiation time is lengthened. Also, thease. The skull thickness influences the mean effective
quantitative information in the TCT image will be improvedyroad-beam attenuation coefficient by a paradoxical lower-
if appropriat_e cross-tal!< correction is per_formed. ing (15). Although the physical importance of NUAC in
~ Few published studies have appropriately addressed §§6ECT imaging of highly heterogeneous sections is well
issue of radiation burden during transm|s_3|on scannig (recognized 1,16,17, the clinical relevance of NUAC for
In most cases, the authors have provided merely crugdg,in SPECT has been under debate. Some authors state that
estimations on the basis of poorly described, or EV&hly modest-to-moderate improvements can be made with

inappropriate, dosimetry techniquéss-@). NUAC, but these statements have been based on receptor

Attenuation is one of the most important physical factorgnd absolute cerebral blood flow measurements with high

a_lffectlng SPECT qgantltatlorl()). Together with compensa uncertainties18,19.
tion for other physical factors such as scatter and detector o
: . . ..~ Apart for quantitation, there are other advantageous uses
system response, it can allow generation of higher quali . . . .
. ) - : : .~ for brain TCT such as detection and correction of patient
images for optimal clinical diagnosis and accurate estima- . .
. . A . movement. More important, for the growing number of
tion of radioactivity in vivo (). There are two major classes PECT receptor studies in which little anatomic reference
of attenuation compensation methods: uniform or nonun?— P

form. Uniform attenuation correction (JUAC] constant attenu'-nformat'on is included in the image, TCT images may be

ation coefficient) can be preprocessing, intrinsic, or poster—Sed for coregistration or stereotactic realignment purposes,

cessing. The most widely used precorrection method &qabling improyed construction.of spatially standardized
commercial systems is Sorenson’s method, in which corrét2t@bases and improved anatomic correlati.
tion factors are applied to projection before backprojection, Th€ @m of this study was twofold. First, an accurate
on the basis of the geometric mean of the two opposing rg¥aluat|on qf the_ addlthnal ra(_jlatlon burde_n for brain
sums (1). Nonuniform Chang correction allows postrecon—s ECT studies using static unshielded transmission sources
struction correction with factors calculated from the knowlas performed by means of an anthropomorphic phantom.
attenuation distribution1@). This modified Chang method Second, the influence of the transmission isotope on relative
for nonuniform attenuation correction (NUAC) is effectiveduantification of emission brain SPECT images was mea-
and includes the attenuation distribution in the calculation §fred for phantom and human perfusion studies. This
the correction factor. It is relatively fast, and overall goo@utcome measure was compared with UACs. Both filtered
quantitative accuracy can be obtained in one iteratl@h (  backprojection (FBP) and full (TCT emission) iterative
NUAC can also be performed by reconstruction method€construction were evaluated. The relative influence of
that are based on iterative algorithms. The exact attenuatieness talk on TCT and emission scatter on semiquantification
map through the patient can be incorporated into theas investigated. The measurement of the relative influence
projector and back-projector pair for accurate compensatia.these factors and their appropriate correction was placed
Such algorithms should give improved quantitative accura@ythe context of optimized clinical diagnostic sensitivity.
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MATERIALS AND METHODS phantom (Alderson Research Laboratories Inc., Stamford, CT)
Instrumentation consists of a human adult dried skull, filled with and surrounded by

A triple-head multislice GCA-9300 camera (Toshiba: Dutoi{issue-equivalent material (Alderson Research Laboratories) (Fig.
Medical, Wommelgem, Belgium) was used with supér-highl)' The phantom consisted of twelve 2-cm-thick slices. During the

resolution lead fanbeam (SHR-FB) collimators with a focal lengtf<Periments, 14 TLDs were placed inside the 5-mm-diameter holes
of 397 mm and a septal thickness of 1 mm. This configuration ha&t are present in the RANDO phantom, covered with a paper foil
tomographic resolution of 7.8 mm at a 132-mm radius of rotatighnd inserted between two 9.5-mm-long paraffin pellets. In this way,
(21). A headrest is attached to the base of the couch at fixed heigfioper buildup and true dose measurements inside the brain
The external transmission source assembly is a 35-cm-loMglume were ensured. The complete set of measurement points is
plastic tube (8-mm inside diameter, 10-mm outside diameter) filléodicated on the CT image of the phantom in Figure 1.
with radioisotope in liquid or solid form2). The transmission  To estimate the dose received by organs below the neck, a dose
sources can be placed in the focal lines of the collimators. Raécline curve was measured on separate scans with a set of 15
sources filled with®*™Tc (1 X 370 MBq for the ®"Tc-T1IE2 uncovered TLDs placed along the axial bed axis up to a distance of
protocol [see below] and dosimetry study>3370 MBq for the 130 cm below the upper head position of the phantom. Organ doses
99MTe-T3ES protocol) Tl (3 X 55 MBq), and*>*Gd (3 X 370  \yere calculated by the combination of the phantom head and neck
MBaq) were used. The latter sources are solid 4-mm diameter rogigea with the axial TLD values through biexponential interpolation
with, and are mounted inside, th(_e plastic tu_bes. '_I'he fluid ling organ position corresponding to a standard ma®). (This
sources¥"Tc and?**Tl) were well mixed before insertion. ~approach to estimate organ doses is similar to that followed by

For dosimetry, individually calibrated LiF Harshaw thermomm'Nmeida etal. §).

nescent dosimeters (TLD-100; 1-mm thick and 5-mm diameter, The values obtained from the TLD readout were corrected for
LandreGlinderman, Vilvoorde, Belgium) were used. Calibration ., . : . i )
of the TLDs was done witH®'Cs (Department of Radiation ambience noise and converted in effective dose equivalent (ED)

Protection). Readings were performed using a Harshaw QS 35@6‘35 per source activity (in uSv/GBgh) to compare different line

Reader following a standard protocol. Zero-dose calibration wSgUrces- ED values were calculated according to recommendations
done using two TLDs that remained with the measurement TLI9 the International Commission on Radiation Protects) (

exceptin the camera room. Under the measured dose range, the S ,5v/GBgx h) = 3D, (HGY/GbgX h) X wg X wy, Eq. 1
on individual readings i8:3%. ’

The head and neck portion (up to first rib) of the RANDQOwhere w is the radiation weighting coefficient (one for photons

FIGURE 1. Transaxial CT scans of head and neck portion of RANDO anthropomorphic phantom with sagittal projection view. TLD
dosimeter places are indicated.
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and electrons), Br are the mean measured doses for eaatounts (Gua). This scatter fraction is calculated as a linear
considered organ, andpis the weighted radiation coefficient. combination of the subwindow counts:

A three-dimensional Hoffman brain phantom (Von Gahlen,
Didam, The NetherlandsP4) was used to evaluate the effects of Cocar= (GIW + CIW) X Wer/2, Eq.2
the different transmission sources on attenuation map constructigiere G and G, are the counts in the lower and upper subwindow,
perfusion semiquantification, and effects associated with othatid W, W,, and W, are the widths of the main window and the
processing parameters, as specified further. The theoretic grayttaver and upper subwindows, respectively.
white contrast for this Hoffman phantom is 4:1. The phantom was In this study, symmetric scatter windows were set at 7% apart
carefully filled with uniformly mixed®Tc-distilled water to which  from the 20% window over the 140-keV peak f§fTc. For the
a small quantity of wetting agent was added to avoid entrapmentioeiver transmission energies, a 15% main window was used. To
air bubbles. The phantom was filled with a homogeneous solutigdrrect for®c downscatter (cross talk), extra 5% scatter win-
of 60 MBq ®*"Tc (chosen to resemble routine clinical perfusiomiows were placed adjacent to both sides of the main transmission
activities: total counts acquired were typically around 4-5 milliowindow for simultaneous emission—transmission measurements.
counts using SHR-FB collimation, standard 925-MBYTc- The same TEW approach was used for this correction. The effect of
ethylcysteine dimer [ECD] injections, 20-min scan). 99mTc downscatter cross talk on quantification was investigated for
2017 by comparing sequential transmission (also using the water-

Healthy Volunteers filled Hoffman phantom for transmission) with simultane&tg|

99 _ i . . e . .
"Tc-ECD SPECT studies were performed on 10 young healthy, o mission acquisition without scatter correction around®ié
volunteers (mean age SD, 26.5+ 4.5y; age range, 21-35 y) with main window.

19%Gd TCT. All subjects were screened thoroughly by history |, o cases, the main window was filtered with a low-pass
(excluding head trauma, personal neuropsychiatric history, majefierworth filter of order 8 with a cutoff of 0.16 cycle per pixel
internal disease including diabetes mellitus, elevated cholesterolag)]rd a Butterworth filter of order 8 with a cutoff of 0.08 cycle per
uncorrected hypertension) and physical examination (includir&(el for the scatter windows (pixel size, 1.72 mm).

ngurologic and peu_ropsychologic examination pyaskilled _neurolo- For the dosimetry measurements, transmission scans were
gist and psychiatrist). They all had normal high-resolution MR cquired during 12-14 h, and appropriate correction for decay was
scans and normal biochemistry. These acquisitions were part O(f,tfhducted, resulting in an average source strength.

larger normal dataset consisting of 90 volunteers between 20 and

80 y old. The younger age group was chosen to minimi
morphological brain differences associated with aging effects. Al

subjects received a dose of 925 MBYTc-ECD under restin
) Sl g ﬁ:&y:ulated in two ways. First, by means of a modified nonuniform

conditions (eyes closed, low ambient noise level) and were scan e lqorith ith teratior? d d b f
on average 30 min (range, 28—36 min) after injection. All volun: ang algorithm with one iteratioi2), and, second, by means o

teers gave written informed consent to the protocol approved by t%:jattlve ?SEtM reccl)gr;strEctlon (;e;S'OWtE fﬂh‘”‘th s;xdsubietszoo
ethics committee of the hospital. and two iterations. Blank scan data with high-count density (

kcts per head) were acquired for all isotopes.

Acquisition Protocols Theoretic energy scaling coefficients were used to adjust the

Similar acquisitions were obtained for the Hoffman phantoriarrow-beam attenuation coefficients to 140 keV. Scaling factors of
and the volunteer emission scans, in continuous acquisition md#ié94 for2°'Tl and 0.906 for*>3Gd were appliedZ,3). Transmis-
with 90 projections in a 128 128 matrix. Each head revolvedsion maps for human data were calculated by means of a
over a double 120° rotation (where the camera revolves clockwigenuniform Chang algorithm (one iteration).
for the first half of the scan and counterclockwise for the second In the case of UAC, the map boundary was set at the edge of the
half, with on-line addition of the acquired frame counts). Scagylindric Hoffman phantom. For volunteer data, automatic edge
duration was 40 s per projection angle. Fanbeam projections wélgfection was used with a 5% contour. This value was chosen
converted to 128< 128 parallel geometry data in 4° bins by theébecause it is coincident with the outer skull rim of the coregistered
floating-point rebinning software as supplied by the manufacturdlCT images, and the latter is the optimal UAC contdi6)(Unless

For %"Tc as the TCT isotope, two acquisition protocols wer&tated otherwise, attenuation correction for the head support was
defined. The T1E2 protocol, in which one head measures emissiBgluded in the UAC calculation with a fixed p of 0.282 per cm.
and transmission simultaneously and the other two measure only=or determination of an empiric 140-keV optimal attenuation
emission 25), was compared with the T3E3 protocol, in whichcoefficient, the phantom (outer diameter, 186 mm; wall thickness, 6
TCT is performed sequentially with three transmission sourc&sm) was filled homogeneously with water without the brain
before activity injection (simulated by a water-filled HoffmanPlaques inserted. Uniform attenuation maps were created by
phantom), after which three-head emission is measured. T@%signing a uniform value to all pixels within the emission contour
measurements were performed over the same time period and witieshold, 30%). This was done for attenuation coefficients p
the same acquisition parameters when acquired sequentially for Bgéween 0.06 and 0.15 per cm. A similar relative optimization
Hoffman phantom scans. metric as described by Stodilka et dl6f was used. Horizontal and

Scatter correction for emission scans was done by means of ugtical emission count profiles were determined (averaged over
triple-energy window (TEW) correction method before rebinninghe central 10 pixels). These profiles were fitted quadratically to the
and reconstruction2@). This method requires three windows fordistance (pixel position) for the width of the emission profile. A
data acquisition: a main window at the photopeak and twgymmetric quadratic distribution was assumed given by:
subwindows on both sides of the main window. The primary
photon count in the main window () is estimated by subtract-
ing an estimate of the scatter fraction{g from the total window where c is the activity along the profile x. The coefficieptdll be

econstruction Procedures
For the Hoffman phantom, nonuniform attenuation maps were

C=0C, X X2+, Eq. 3
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0 at the effective empiric attenuation coefficients,puthereby and rotation) using a principal axis transform and a count-density
yielding a uniform profile. g was determined through quadraticminimization algorithm (fit threshold, 0.50: BRASS Brain Registra-
interpolation from the experimental;(g;) pairs. tion and SPECT Semiquantification; Nuclear Diagnostics). On this
Emission maps were calculated by iterative OSEM (six subsaemplate, a predefined set of 19 volumes of interest (VOIs) was
and four iterations) as well as by FBP. For the first, postfilterindetermined, which was used for semiquantification, as published
with a Butterworth filter of order 8 with a cutoff of 0.4 cycle per(29). VOI data were grouped according to the following classifica-
pixel was performed; for FBP, a Shepp-Logan prefilter and téon along their attenuation characteristics: 1, cortical; 2, subcorti-
Butterworth postfilter of order 8 with a cutoff of 0.12 cycle percal (basal ganglia, mesiotemporal); 3, central (thalamus); and 4,
pixel were combined. FBP calculations were done after rebinnisgbtentorial (cerebellum and pons). Gray-to-white ratios were
into parallel projections before any further processing of the dai@etermined on two consecutive slices 35 mm above the anterior
whereas OSEM data were reconstructed directly in fanbeam modemmissure—posterior commissure plane by small square ROIls
Except for the OSEM data, reconstruction was performed on(& X 3 pixels; pixel size, 3.59 mm) that were placed in a
Sun UltraSparc 2 (200-MHz processor, 128-MB random-accegsntricular-free white matter area and centrally in the cortex. These
memory [RAM]; Sun Computers, Zaventem, Belgium). For iterasmall ROIs were taken to exclude partial-volume effects as much as
tive reconstruction, blank scan and scatter-corrected projection datssible.
were first transferred through Interfile 3.3 conversion onto a . .
personal computer-based Hermes imaging platform under Solari@tiStics
(Nuclear Diagnostics, Hgersten, Sweden). Scaling of the transmis- Nonlinear curve-fitting parameters and all statistics were calcu-
sion sinogram was performed on a nonattenuated rectangu@ffd with SPSS (version 7.5 for Windows; SPSS Inc., Heverlee,
region of interest (ROI) by means of the blank scan data. Imagg§/gium). The Friedman test was used to detect significant
were converted to BIGENDIAN format through an in-housélifferences between reconstruction procedures for subtentorial,
conversion program (MedCon) and reconstructed on a Sun ultsitbcortical, central, and cortical brain VOI data. The Wilcoxon

Sparc 10 station (300-MHz processor, 128-MB RAM; Sufigned rank test, which considers both direction and size of
Computers). differences, was used to analyze paired semiquantitative results.

Quantification . RESULTS

All reconstructed images were transferred to Hermes. The |
reconstructed emission data were fitted automatically onto HQSIMetry _
in-house constructed perfusion database template positioned inl N€ dose rate per unit source strength, averaged over the
Talaraich coordinates26) that was measured with the samédi€ad of the RANDO phantom, was 28345, 129+ 11, and
acquisition and reconstruction parameters as given above. &5 = 25 PGY/GBq X h for 201Tl, 155Gd, and "Tc,
fitting procedure was performed with nine parameters (scale, shifgspectively. Figure 2 shows the measured stray radiation
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profile along the central axis of the patient bed for all threidoffman Phantom Measurements
TCT isotopes used. This axial profile measured with un- Semiquantitative values for the Hoffman phantom, ob-
shielded TLD pellets was used for calculation of target orgaained with the different nonuniform transmission maps,
doses below the neck. A very rapid decline is noted from theere calculated and are given in Table 3. Figure 3 shows a
upper thorax position onward. The fast distance-dec@yx plot for the semiquantification for the regional sub-
constants of the biexponential fit through these data wegfoups as defined above. There were no significant differ-
0.08 + 0.01, 0.11+ 0.01, and 0.10+ 0.01 per cm (esti- ences between either group (subgroup Friedman Rest;
mate * asymptomatic SE) forTl, *53Gd, and **"Tc  (.10). The total FBP reconstruction time for scatter correc-
measurements, respectively. This indicates a similar relatiygn Chang transmission, and corrected emission was on
dose decline rate with axial distance, which is slightly |°Wedverage 10 min.
for 294TI. This is probably associated with an increased getween the different TCT isotopes used, no significant
scatter component at lower photon energy. _differences were found for the emission values calculated
Effective dose equivalents were calculated for the diffefyish, 0sEM combined transmission and emission (Friedman

ent isotopes and expressed as effective dose equivalent 18L8 or all subgroups® = 0.08-0.41). There were also no
per unit source activity (uSv/GBy h). These results are significant differences for the subgroups between fully

given in Table 2 for the different target organs and total bodgﬁratively reconstructed semiquantified images and FBP

Converted to the maximal source strength at the time Phages with Chang NUACR = 0.28-0.70). The time for

preparation or purchase, the average effe_ct|ve dose N 12 (emissiont transmission) iterative reconstruction was
lents (=SD) for a typical 20-min scan duration were 18:6 .
on average 8 min.

4.2, 11.9+ 1.0, and 26.3+ 2.6 uSv for21Tl, 155Gd, and . . .
%onTc, respectively. Whe_n s_tudylng effects of simultaneous versus seq_uer_rflal
transmission foP*"Tc measurements, there were no signifi-
Homogeneous Phantom Measurements cant differences for all subgroups for semiguantitative
Calculated narrow-beam attenuation coefficients for Chanaitcome values for the T1E2 and T3E3 acquisition protocol
reconstructed attenuation maps wererp= 0.189+ 0.012, (Friedman testP > 0.20) (values also included in Table 3
puszq = 0.178= 0.006, and pmre = 0.155* 0.005 per cm  and subregions shown in Fig. 3).
(value for water at the isotope energy E 1 SD). These  To evaluate the effects of correction for scatter and
values are in good agreement with theoretic narrow-beastission—transmission cross talk, tRETI transmission
linear attenuation coefficients of\i = 0.187, 4%%4 =  scans were reconstructed with and with#ific downscat-
0.175, and j#°m. = 0.154 per cmZ,30,3). ter cross talk, corrected by TEW. This resulted in highly
For attenuation coefficients ranging from 0.06 to 0.15 p§gnificant differences for the subcortical (99.1 versus 90.0;
cm, uniform Sorenson attenuation maps were created. Frocoxon P = 0.003) and central brain (100.5 versus 86.4:
the p-axis intercept of the quadratic fit through the plot Qfjiicoxon P = 0.001) regions. Ignoring cross talk provides
experimental (hc,) values, an optimal value ofefl = t5i5ely high contributions of scatter@@iTc photons in the
0.105 0.004 per cm was found for the empiric broad-beam 5 jium projection data. This scatter fraction is maximal at
attenuation coefficient. the center of the object and will therefore lead to an
underestimation of central attenuation coefficients.

TABLE 2 Emission scatter correction had a relatively smaller influ-
Calculation of Equivalent Dose Rate and Effective Dose ence on quantification values, as can be seen from Table 3,
Equivalent (ED) Rate (+SD) for Three Line Sources of where this comparison is included f8fTc-T1E2 measure-
Toshiba GCA9300 Gamma Camera ments. However, for the subregions, a significant difference
was found in the subcortical regions (95.5 versus 100.9;
MSVIGBg x h Wilcoxon P = 0.001), most likely caused by the inward
Organ il 1*3Gd e scatter of cortical activity. Central region differences did not
Gonads (testes) 0.2 0.7 23 reach statistical significance (93.1 versus 99.1; Wilcoxon
Bone marrow 6.2 3.8 8.5 P = 0.12), which may be, in part, associated with the fact
Colon 0.8 08 25 that the thalamic activity is less influenced by spilling
Lung 5.6 2.7 7.2 o . .
Stomach 17 11 34 activity of the surrounding brain.
Bladder 01 0.2 05 Uniform phantom reconstruction was conducted with and
Breast 1.7 0.9 2.4 without inclusion of theoretic attenuation of the head holder
Liver 0.7 0.5 1.4 (Table 3). UAC without head support modeling resulted in
Eﬁsfor;ggus 3:2 é:i 13:2 1.8% lower cerebellar and 1.5% lower occipital relative
Skin 0.3 0.2 05 uptake values.
Bone surface 0.5 0.3 0.7 The optimized value ofg = 0.105 was used to compare
Other 19.5 13.0 25.4 emission on the basis of the nonuniform attenuation maps

ED (Sv/GBqxh) 503112 3820x27 711x71  gptained with the®Tc-E3T3 protocol and with uniform
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TABLE 3
Contrast and Semiquantitative Results for UAC and NUAC Methods with Three Different Transmission Isotopes

Transmission
isotope 9OMTC-T3E3 9MTc-T1E2 99mTc-T1E2 200T]  2017] 183G — — 9MTc-T3E3  201T|  158Gd
FBP FBP FBP FBP FBP FBP FBP FBP OSEM OSEM OSEM
Chang* Chang Chang Chang Chang Chang Sorensont Sorenson OSEM OSEM OSEM
Emission + head
Transmission support
TEW scatter No E NoT
correction Yes Yes scatter Yes scatter Yes Yes Yes Yes Yes Yes
Contrast (gray:white) 3.66 3.28 2.28 363 338 358 3.01 3.12 3.79 361 3.89
VOIf VOl size§
Cortex
Frontal L 1483 100.2 94.8 93.6 1005 1029 98.6 102.4 98.3 104.2 1046 98.8
Frontal R 1517 102.6 103.9 101.7 1085 1122 106.8 117.1 113.8 107.5 106.1 106.3
Temporal L 593 108.3 106.6 105.0 107.5 108.2 103.8 98.1 98.4 106.6 1045 110.9
Temporal R 592 109.4 111.7 109.1 107.3 106.4 110.2 102.5 104.5 100.5 108.4 102.7
Sensorimotor L 254 106.0 99.2 100.4 102.6 101.2 101.9 89.3 88.5 101.4 1100 111.3
Sensorimotor R 260 1109 112.8 111.8 106.7 1054 1137 106.5 106.5 107.5 1185 110.1
Parietal L 425 105.1 101.5 100.6 100.0 1004 1025 95.4 96.0 101.5 102.2 103.9
Parietal R 425 105.3 105.4 104.7 98.3 982 1134 98.7 99.2 100.5 107.8 102.4
Occipital L 591 94.6 94.2 94.4 914 942 973 96.3 98.6 97.9 950 95.2
Occipital R 576 88.5 87.6 89.6 847 871 895 86.8 87.6 87.9 86.2 86.4
Subcortical
Mediotemporal L 177 87.6 93.2 97.7 873 80.8 850 86.7 90.1 94.8 845 90.3
Mediotemporal R 166 91.1 84.5 90.9 942 848 927 83.0 87.1 82.9 943 85.6
Striatal L 181 1015 103.4 108.1 1055 962 98.9 102.4 106.9 103 1005 104.7
Striatal R 176 106.3 108.3 112.1 1095 98.0 103.1 106.7 112.6 104 106.1 111.3
Central
Thalamus L 118 92.1 87.2 95.0 904 765 87.0 85.3 91.2 85.8 823 965
Thalamus R 114 88.3 82.5 91.3 96.0 810 85.0 83.0 89.5 89 86.1 87.9
Pons 130 103.6 109.6 111.0 115.3 101.8 109.0 95.6 98.0 104 103.6 113.9
Cerebellum
Cerebellum L 829 93.9 95.3 97.4 954 958 889 95.9 97.9 97.5 932 96.7
CerebellumR 767 92.1 93.0 93.5 919 914 952 93.1 94.5 89.2 90.0 933

*|terative Chang, one iteration.

TUerr = 0.105 per cm; Unead holder = 0.282 per cm.

FNormalization to total VOI counts.

8§In voxels of 3.59 X 3.59 X 3.59 mm3,

T3E3 = sequential transmission and emission on all three camera heads; TLE2 = simultaneous transmission and emission; E = emission;
T = transmission.

attenuation. No significant relative uptake differences welNonuniform Versus Uniform Attenuation for ~ 9°mTc-ECD

found between nonuniform and uniform attenuation for the Healthy Volunteers

above described subregions (Friedman test; 0.11-0.47). Measured attenuation coefficients for human brain tissue
Contrast Recovery after linear energy scaling to 140 keV were 0.153.007,

The theoretic gray-to-white matter activity ratio for the?/NiChis in good agreement with true narrow-beam values of
Hoffman phantom is 4:1. For both NUAC FBP and OSEN-199 for brgm tissue anql 0.254 0.014 for bone (skull)
reconstruction with the various TCT isotopes as well as f§PMPared with the theoretic value of 0.246 per &) (

UAC, the measured gray-to-white ratios are also included in Figure 4 shows an example $fTc-ECD perfusion scans
Table 3. Contrast recovery was good for FPB NUAC but stiftf @ healthy volunteer with uniform and nonuniforfiiGd
slightly better for iterative reconstruction (ratios, 3.62 versugansmission.

3.76). Both methods of NUAC improved contrast with The results of the semiquantification with normalization
respect to UAC (ratio, 3.12). No scatter correction on tHe the total VOI counts for nonunifori?3Gd transmission
emission data®™Tc-T1E2) reduced contrast severely to afiterative Chang transmission and FBP emission) (NUAC)
activity ratio of 2.28. and Sorenson uniform attenuation withy = 0.105 are
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FIGURE 3. Box-and-whisker plot for Hoff- 2 i [l201-1 0SEM
man phantom activity semiquantification ob- N 804
tained in cerebellar, cortical, subcortical, g i Ex153-Gd 0SEM
and central regions for isotopes 2°1Tl, 153Gd, o ]
and ®mTc. Iterative (OSEM) and FBP recon- Z 70 . i : i Boom-Tc TIE2 OSEM
struction techniques are compared. For cortical  subcortical  central  cerebellum
99mTe FBP, simultaneous ECT-TCT (T1E2)
was also compared with sequential ECT— Region
TCT (T3E3).

given in Table 4. Significant differences were found for thevere not significantly different for the other regions (4.7

cerebellum, subcortical, and central values. For the pongrsus 4.6P = 0.7).

differences of-1.7% were present (Wilcoxdd = 0.29; not

significant); for all cortical regions, no significant changes

were found (WilcoxorP = 0.26-0.94). The radial gradientD'SCUSS'ON

present in the supratentorial regions indicates that a lowerTransmission scanning poses an extra radiation burden to

effective attenuation coefficient for UAC may have beethe patient and, therefore, needs be evaluated carefully.

appropriate to match NUAC values more closely. Several transmission imaging geometries have been pro-
Interestingly, in this series a significantly smaller SD oposed, but for brain imaging line sources in the focal line of

the relative uptake values was found for the subtentori@nbeam collimators are most widely uset,32. The

region and occipital cortex (4.2 versus 6.7; Wilcoer= combination of a line-source and fanbeam collimator has the

0.04). The influence of irregular skull or head support (@dvantages of small scatter photon fraction, relatively lower

both) is largest in these regions. The relative uptake valuggse content of the TCT source, and easy handling.

FIGURE 4. 9mTc-ECD perfusion scans
for healthy volunteers with nonuniform (A)
versus uniform transmission (B) at different
levels parallel to commissural plane. (C)
153Gd transmission CT map.
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TABLE 4
Semiquantification of 9MTc-ECD Perfusion Studies for 10 Healthy Volunteers with Nonuniform Versus Uniform
Transmission Correction

VOI NUACT P8
Region size* (153Gd) UACt Difference (ttest)
Cortical
Frontal 3000 971+ 1.7 97.7 + 3.6 -0.6 (0.53)
Sensorimotor cortex 514 98.6 = 4.6 98.7 = 5.0 -0.1 (0.94)
Temporal 1185 932+ 27 927+ 24 0.6 (0.49)
Parietal 850 99.5 + 3.3 100.3 = 3.4 -0.9 (0.26)
Occipital 1167 1009 = 2.2 99.8 £ 6.2 11 (0.54)
Total 6716 975+ 1.6 97.6 £ 1.6 -0.1 (0.78)
Subcortical
Mediotemporal 343 70.7 + 3.8 74.3 + 3.8 -3.7 0.006
Basal ganglia 357 111.0 = 4.9 117.4 = 4.7 —6.4 0.001
Total 700 91.1 = 3.6 96.2 = 3.0 -5.1 0.000
Central
Thalamus 232 943 48 100.9 = 4.6 -6.7 0.000
Pons 130 829 49 84.2 £6.0 -1.3 (0.29)
Total 362 90.2 £ 3.0 949 + 3.1 -4.38 0.000
Cerebellum 1596 116.7 = 5.1 113.0 = 6.1 3.7 0.023

*In voxels of 3.59 X 3.59 X 3.59 mm3.

TNUAC with 153Gd and iterative Chang (one iteration); semiquantitative values are given in % *+ SD with normalization to total VOI counts.
FUniform Sorenson attenuation correction + SD with e = 0.105 per cm.

§Values in parentheses are not significant.

Note from our measurements that the effective radiati@mosimeters inside the bod§)( These authors measured dose
dose equivalent from static line sources in brain SPEGuivalents for a dual-head camera with two 4-GB8¢d
accounts for<1% of the total average patient radiatiorscanning linear sources and a similar anthropomorphic
burden. Our dose calculations were based on conservatprentom including the thorax. They measured typical brain
estimates for body regions lower than the neck, becausé&SRECT doses of 5.& 2.6 uSv, which is two to five times
was assumed that relevant organs received the (overestialler than the doses in this work with an uncollimated
mated) midsagittal plane surface dose. The everyday useuothielded configuration.
99mTc and 2°1T1 TCT sources implies even lower patient In most other studies, the authors provided values for
doses because the values given here were calculated atnttaximum absorbed dose measured at the skin surface and
initial maximal source strength, which will decline, dependdid not estimate the effective dose equivalent value, which is
ing on the time interval after source loading and the sourtiee true biologic measure of patient radiation burden.
changing time interval. Murase et al. §) found additional patient radiation dose

Relatively, °"Tc was found to produce the higheskquivalent rates of 750 uGy/GBg h for an unshielded
effective dose equivalent, primarily associated with th&85-MBq flood source of®"Tc. Ficaro et al. §) merely
higher radiation dose for body organs below the neckstimated doses with a survey meter and stated approximate
Therefore, decreasing stray radiation by means of extralues for a 2- to 20-min scan of 30 uGy/GBq for a
shielding toward the scanner bed or use of collimated lire55-GBg?*?Am source and 810 uGy/GBq for a 444-MBq
sources is expected to produce a significantly lower radi®™Tc source. Kluge et al.7j found values for cardiac
tion burden. We had also performed measurements for asanning line sources o&3 uSv/GBq X h, but their
department’s Prism 3000 camera (Picker International, Clevaeasurement method was not specified. Prvulovich e®al. (
land, OH), where dose rates of only 2:00.4 uSv/GBgx h  measured rates 0ok7.6 uSv/iGBqXx h for 7400-MBq
were measured for a 2.2-GBq shielded and collimated singtansmission scans with two collimated line sources. Hashi-
line source, under the same conditions and with the sam®to et al. 8) measured absorbed dose by TLD during a
head phantom (K. Van Laere, unpublished data, OctohEs-min transmission scan with 8 370-MBq ®*"Tc, using
1999). blank BeO dosimeters on the edge of a brain phantom,

Only a few published studies have addressed the dosintbiereby estimating skin doses. They reported very high
ric implications of TCT in SPECT. The use of anthropomoreffective dose equivalent rates of 790 uSv/GBq h.
phic phantoms was included in only one study, in which Although some large variations in dose rate exist between
realistic contribution of attenuation and scatter is consideréue different approaches, in most cases the extra radiation
as are build-up effects associated with the localization of therrden is comparably low. It is clear that collimated and
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shielded line sources can substantially reduce additionathich allows establishment of a functional relationship
patient (and staff) radiation burden. between the different isotope attenuation coefficients by

For the SPECT measurements, the validity of TEWeneration of a two-dimensional histogram of individual
correction has been shown by Monte Carlo calculation®xel values that can be related by least-square fitthi@) (
(33). TEW correction compensates for both the selffhis approach was not attempted because human data,
scattering and the cross talk between lower energy isotopesluding skull, were available with only single TCT isotope
and %"Tc¢ (34). Other methods for scatter correction havedata.
been applied in clinical situation4¥) and have shown that Contrast enhancement between gray and white matter is
images with triple-energy correction can be noisier. Ther&fluenced by scatter correction and attenuation. From our
fore, prefiltering of the projection data before reconstructiomeasurements, scatter correction produced only modest
was performed. Although it has been stated that narrowhanges in semiquantitative values, in contrast to changes of
beam attenuation coefficients should be used when applyi2@%—30% for absolute quantitativéd-iodoamphetamine
attenuation correction that has been corrected for scatfvP) data as measured by lida et d9). They found that
(30), we have found lower values to be appropriate fareocortical and subtentorial regions were underestimated,
reconstruction of a uniform emission density with Sorensamhereas white matter tended to be overestimated without
attenuation correction. This finding indicates that optimizacatter correction. Because of the semiquantitative ap-
tion of attenuation coefficients, depending on various amoumisoach, the underestimation for the neocortical regions is
of scatter in the images, is not straightforward. Althougkimilar. Hence, differences after semiquantification were
spectral scatter correction methods such as TEW are ratated only for the subcortical regions. However, white
tively easy to implement, it is only a first-order approximamatter was also overestimated more without scatter correc-
tion toward true scatter correction, and a significant numbgon, in agreement with previous findings. Similar contrast
of scattered photons may still be present in the projectioneasurements for the same Hoffman phantom reconstructed
data. Our findings are in accordance with those by Stodilkédthout scatter and attenuation correction resulted in a ratio
et al. 35), who showed for several different scatter corremf 1.70 for the same cameral).
tions (including optimal patient-dependent scatter correc-The narrow-beam attenuation coefficient for 140-keV
tion) that the use of narrow-beam attenuation coefficients fphotons in water is 0.15 per cm, whereas the broad-beam
scatter-corrected UAC might not be justified. The issue obefficient appropriate for most imaging geometries had
optimal attenuation coefficients is further complicated blgeen stated as0.10-0.12 per cm3({7). However, the value
skull presence, which requires an additional reduced broauf{is = 0.105 per cm, which was found to be optimal for the
beam attenuation coefficier@%). Hoffman phantom, may not be simply transformed to an

Nonuniform correction using the Chang first-order algemptimal coefficient for realistic human data. Slight differ-
rithm may not be optimal for attenuation correction and, fa@nces (of the order 6%), predominantly central and subcorti-
better accuracy, nonuniform attenuation may be neededcas, were present between NUAC and UAC. Stodilka et al.
an integral part of iterative algorithms. However, ou(l16) has shown that the attenuating effect caused by bone
phantom experiments have shown that nonsignificant diffenakes peripheral quantification difficult, particularly adja-
ences in emission reconstruction semiquantification resa#nt to regions of thick bone. The optimal coefficient used in
using an iterative versus the Chang first-order scheme. Al&0AC is dependent on skull thickness and, therefore, may
Dey et al. 86) have shown that, for cardiac studies, Changlso be slice dependent. For ideal relative quantification,
versus OSEM are quantitatively equivalent with comparabsenaller values of 1 are needed to correct for attenuation in a
calculation times. cerebellar slice than in cortical slices.

Also, simultaneous versus sequential transmission withFrom the clinical point of view, different conclusions have
99MTc resulted in nonsignificant differences. This fact provdseen reached by authors who reviewed or investigated the
an appropriate separation of emission and transmission datportance of NUAC for the brain. Rajeevan et a8\
for the simultaneous T1E2 protocol and allows its practica¢ported that only moderate improvements in the measure-
use in routine applications because sequential T3E3 scament of absolute activity in individual brain ROIs were
ning is impractical for brain studies with delayed scanningresent for dopamine-transporter studies. Semiquantitative
after injection. measurements of target-to-background ratios showed only

For the correction of attenuation maps to the emissi@mall differences compared with UAC or even no attenua-
energy at 140 keV, linear scaling of attenuation coefficient®n correction. This statement was based on measurements
was used. Because for relatively high-Z elements, suchwgh high coefficients of variation (up to 30%); nevertheless,
calcium in bone, the photoelectric probability increasdarge individual and group differences were found compared
proportionally with 2 and E3, linear scaling may not be with SDs, but no additional statistics were performed. lida et
sufficient for tissues containing heavier elements and the we(19) stated that loss of accuracy was small when constant
of single-value scaling factors is only approxima®4{. uniform attenuation maps were compared with measured
One possible way to evaluate this, using measured T@ftenuation coefficients. Again, no statistical measures were
maps, is by image coregistration of the transmission imagespressed to determine whether the differences were signifi-
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cant. For the absolute IMP perfusion data in this worlgnatomy 40). Although technical issues in detector optimi-

coefficients of variation on the regional cerebral blood flowation need to be addressed further, clinical applications of

(rCBF) values are of the order 15%—20%. This is in contrastich devices may include evaluation of head trauma and

to the more sensitive semiquantitative values with coeffstroke. These applications were out of the scope of this work

cients of variation of the order 5%—-8%. but further stress the importance of nonuniform TCT in
When accurately quantified cerebellar uptake values arénical and research brain SPECT.

of importance, certainly when assumptions on stability of

reference regions (e.g., cerebellum) are made, NUAC may\cLusion

be important. Anatomically, the assumption of uniform foctive d val | derived f
attenuation in the head remains questionable, because skulFTectiveé dose equivalent values derived from TCT scans

sinus cavities, and head holder have attenuation propert"f‘ég,romparable W'éh values mentlodnzg]jlgl the ::teratdqre for
different from those of brain tissue; other authors hava!ar SOUrCes an geometries an 0 to the radia-

shown that the assumption of homogeneous attenuatisy! burden in a typical perfusion or receptor nuclear

throughout the head can result in large quantitative errdgedmme brain SPECT scan. Therefore, radiation burden is

38). This is also in agreement with Licho et a9, who nc_Jt_Iimiting to the use of tra_msmission meafsur_em_ents in
(38) ¢ . gmlcal brain SPECT. The choice of the transmission isotope

found significant differences in clinical brain SPECT coun ) S .
g %es not influence the NUAC significantly. Compared with

profiles depending on how attenuation compensation w; terati truction (OSEM all ructi
made. These authors concluded that cerebellar uptake nee % fterative reconstruction ( ) allows reconstruction

to be measured by NUAC. Stodilka et aL6f also showed of the highest gray-to-white ratios but does not improve
that NUAC must be performed to accurately estimat%emiquantification.Transmission imaging can decrease inter-

relative rCBF, especially the cerebellar count estimate. Thsigb.JeCt variability in posterior cer.e.bral .and sqbtentopal
- : regions and may allow more sensitive diagnostic applica-
study has also shown quantitatively that the magnitude o
) ) . igns.
errors associated with UAC is comparable or greater than
the uncertainties associated with intersubject variability and,

therefore, than clinically demonstrable effects. ACKNOWLEDGMENTS
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