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PET was used to measure tumor blood flow, which is potentially
valuable for diagnosis and assessing the effects of therapy. To
help visualize regional differences in blood flow and to improve
the accuracy of region-of-interest placement, a parametric imag-
ing approach was developed and compared with the standard
region-of-interest method. Methods: Five patients with renal cell
metastases in the thorax were studied using [15O]water and
dynamic PET. To assess the reproducibility of the blood flow
measurements, multiple water studies were performed on each
patient. Model fitting was done on a pixel-by-pixel basis using
several different formulations of the standard single-compart-
ment model. Results: The tumors studied spanned a wide range
of blood flows, varying from 0.4 to 4.2 mL/min/g. These values
were generally high compared with those of most other tissues,
which meant that the tumors could be readily identified in
parametric images of flow. The different model formulations
produced images with different characteristics, and no model
was entirely valid throughout the field of view. Although tumor
blood flow measured from the parametric images was largely
unbiased with respect to a standard regional method, large errors
were observed with certain models in regions of low flow. The
most robust model throughout the field of view had only 1 free
parameter and, compared with a regional method, gave rise to a
flow bias of 0.3% 6 3.1% for tumor and 16% 6 11% for low-flow
soft tissue (muscle plus fat). With this model, tumor blood flow
was measured with an SD of 7.6% 6 4.0%. Conclusion:
Parametric imaging provides a convenient way of visualizing
regional changes in blood flow, which may be valuable in studies
of tumor blood flow.
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I nformation regarding tumor perfusion is potentially valu-
able for diagnosis, for assessing the expected delivery of
anticancer agents, and also for monitoring the effects of
therapy. PET, in conjunction with [15O]water, has been used
extensively to measure blood flow in the fields of neurology
(1,2) and cardiology (3,4), but the technique has not been
widely applied in oncology. Many of the reported tumor
applications have been confined to the brain (5–7), although
studies of liver (8,9), colorectal (10), and breast (11)

carcinoma have also been performed. A range of different
acquisition and analysis techniques has been used to investi-
gate tumor blood flow and, in some cases, methodological
restrictions limited these studies to a semiquantitative ap-
proach.

In this study we used a dynamic acquisition protocol that,
in conjunction with appropriate kinetic models, enabled the
quantitative measurement of tumor blood flow. The standard
method for analyzing such data (which we refer to as the
region-of-interest [ROI] method) is to draw an ROI around
the tumor, generate a time–activity curve from this region,
and then apply a kinetic model to the time–activity curve to
measure flow and other parameters described by the model.
One of the problems with the ROI method is that each time a
new region is to be analyzed, the entire set of dynamic data
must be used to produce the time–activity curve. If large
numbers of regions are to be analyzed, this produces equally
large numbers of time–activity curves, and the resulting data
are often difficult to present in a meaningful manner. In
addition, identification of the tumor ROI is not trivial and,
even if additional information is available from other
modalities, the definition of ROIs may be prone to errors.
Finally, most blood flow models assume that blood flow is
uniform throughout the tumor ROI, which may not be true.
To help overcome these problems we have developed a
parametric imaging approach in which the model fitting is
performed on a pixel-by-pixel basis, resulting in images that
directly reflect regional blood flow. Parametric images have
been used widely in studies of cerebral blood flow with
[15O]water (12–15) and also in other studies of the brain—
for example, with [11C]flumazenil (16) and [18F]fluoro-L-
dopa (17). The technique has also been used in cardiac
studies with FDG (18), renal studies with [13N]ammonia
(19), and tumor studies in the liver with FDG (20).

The application of the parametric imaging technique to
tumor blood flow studies using [15O]water raises several
interesting issues. Although the kinetic model used in most
water studies is a standard single-compartment model,
several different variations to this model have been devel-
oped, each of which has its own advantages in different
situations. In studies of the brain, a formulation of the model
that is frequently used allows measurement of both flow and
volume of distribution. This formulation derives flow infor-
mation primarily from the influx phase of the dynamic data
and is well suited to brain studies in which organ motion can
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be minimized. In studies of the heart, however, there can be
significant partial-volume effects caused by motion of the
myocardium and by the fact that the myocardial thickness
(typically #10 mm) is comparable with the resolution of
most PET scanners. An alternative formulation of the model
used for cardiac studies (21) assumes that the volume of
distribution in the myocardium is known and permits flow to
be computed in such a way that it is, in principle, indepen-
dent of partial-volume effects. This formulation derives flow
from the efflux phase of the dynamic data. In addition,
so-called spillover terms are often introduced into the model
to account for contamination of the tissue time–activity
curves by activity in nearby blood vessels.

The optimum formulation of the blood flow model for the
measurement of tumor perfusion has not been established.
Therefore, in this study, which concentrates on methodologi-
cal issues, we examined the characteristics of 6 different
formulations of the standard [15O]water blood flow model.
We estimated the reproducibility of the kinetic parameters
derived from each of these formulations using data from
repeated flow measurements. Finally, we examined the
quantitative accuracy of the parametric images by compar-
ing tumor blood flow values from these images with those
obtained using the standard ROI methodology. These issues
may prove to be particularly important in light of the
development of new anticancer drugs that aim to affect
tumor angiogenesis (22).

MATERIALS AND METHODS

Patients
Studies were performed on 5 patients with renal cell metastases

who were known, by previously acquired CT and MRI, to have
lesions that measured.2 cm in diameter. This group consisted of
patients in whom both the tumor and the heart (used for the
noninvasive determination of the arterial input function) could be
imaged simultaneously by the PET scanner. Before enrollment in
the study, each patient gave informed consent for the procedure,
which had been approved by the institutional review board of the
National Cancer Institute.

Data Acquisition
Image data were acquired on an Advance PET scanner (General

Electric Medical Systems, Milwaukee WI) (23) that was operated
in septa-extended, 2-dimensional mode. Thirty-five transaxial
planes of data were acquired simultaneously with a slice-to-slice
distance of 4.25 mm. Data acquisition started immediately before a
peripheral intravenous injection of 1.85 GBq [15O]water that was
administered as a rapid bolus over,5 s. Each acquisition lasted for
5 min and was performed in a dynamic mode with the following
frame times: 203 3 s, 6 3 10 s, and 63 30 s. To assess the
reproducibility of the perfusion measurements, each patient had
either 2 or 3 separate [15O]water studies. These studies were
performed either on a single day or over 2 consecutive days.

All projection data were corrected for photon attenuation using
data derived from an 8-min transmission scan that was acquired
immediately before tracer administration. The transmission scans
were acquired with septa extended using 2 rotating68Ge rod
sources that had a total activity of 333–555 MBq over the period

during which the scanning was performed. The emission data were
scatter corrected (24), and images were reconstructed using filtered
backprojection with a transverse spatial resolution of,7-mm full
width at half maximum (FWHM) at the center of the field of view.
To suppress noise and thus reduce the variability of the parameter
estimates in the subsequent model fitting, the images were resam-
pled so as to have a 43 4 mm pixel size, and an additional
smoothing filter was applied in the transaxial plane. This resulted in
a spatial resolution at the center of the field of view of,14-mm
FWHM in the transaxial plane and,4-mm FWHM in the axial
direction.

Both MRI and FDG PET data were available for qualitative
comparison with the flow images. After the last [15O]water study,
the patient remained within the PET scanner and was injected with
555 MBq FDG. Forty-five minutes after injection, an additional
15-min emission scan was begun. The resulting FDG data were
processed in the same way as the [15O]water data, although no
additional smoothing was applied after reconstruction. T1-
weighted, contrast-enhanced MR images, acquired on a 1.5-T unit
(Signa; General Electric Medical Systems), were also available.

Parametric Images
[15O]Water is a chemically inert, freely diffusible tracer, and its

behavior in tissue can be described by the following equation
(25,26):

C(t) 5 f 3 [Ca(t) # exp(2f/Vd 3 t)], Eq. 1

where C(t) is the radioactivity concentration in tissue at time t; Ca(t)
is the radioactivity concentration in arterial blood at time t; f is
regional blood flow (per gram of perfused tissue) from plasma to
tissue; Vd is the volume of distribution for water, which is defined
as the ratio of the water concentration in tissue to that in blood at
equilibrium; and # denotes convolution. The limited spatial
resolution of the PET scanner means that measurements of tissue
activity concentrations may be biased because of the partial-
volume effect. In addition, the tissue activity curve may be
contaminated by arterial blood from vessels nearby or within the
volume of interest. To compensate for these 2 effects, one can
incorporate a partial-volume factor into Equation 1 and add an
additional spillover term proportional to the arterial blood activity
concentration, producing the following expression:

Ci(t) 5 a 3 f 3 [Ca(t) # exp(2f/Vd 3 t)] 1 VaCa(t), Eq. 2

where Ci(t) is the tissue activity concentration measured from the
PET image,a is the corresponding recovery coefficient, and Va is
the fraction of the arterial blood concentration that appears in the
tissue. Note that spillover is assumed to be proportional only to the
arterial activity concentration, although in certain regions venous
blood may dominate and this assumption will be in error.

a, f, Vd, and Va are, in general, unknown parameters to be
determined by least-squares estimation. A unique solution for all 4
parameters cannot be obtained simultaneously, and this fact, plus
noise constraints, means that it is necessary to reduce the number of
free parameters in the fit. There are several ways to reduce the
number of parameters, each of which requires slightly different
assumptions. Table 1 summarizes the parameter assumptions for
the 6 different formulations of the model that were considered.
Model 1a derives f from the influx term (a 3 f) and Vd from the
efflux term (f/Vd), with the assumption of perfect resolution
recovery. Model 2a makes an assumption about the volume of
distribution and derives f from the efflux term, which is indepen-
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dent of partial-volume effects. Note that models 1a and 2a are
essentially the same with the flow information being obtained from
different terms. Model 3a makes assumptions about the recovery
coefficient and volume of distribution but calculates flow from both
the influx and efflux parts of the curve. Models 1b, 2b, and 3b are
identical to models 1a, 2a, and 3a but also include an arterial blood
volume term that is proportional to the arterial input function. For
those models in which Vd was fixed (models 2a, 2b, 3a, and 3b), we
assumed a value of 0.91 mL/g, which is frequently accepted for the
myocardium (21). Of course, this value may not be applicable for
other tissues, and the validity of this assumption will be examined.

The models were fit to the dynamic water data on a pixel-by-
pixel basis, resulting in 1 or more parametric images (1 for each
free variable in the model). Parameter estimation was performed
using the rapid linearized least-squares search method of Koeppe et
al. (14), which involved precomputing the convolution of the input
function with exp(2k 3 t) for a range of k values. The parameters
that minimized the total squared discrepancy between the measured
data and the model (x2) were obtained by recursively evaluatingx2

at 3 points over the k range, with the distance between each sample
becoming progressively smaller. On the basis of expected flow
values, the search was initially performed over the k range from 0
to 1 per minute, although if a minimum was found toward the top of
this range the search was expanded to cover 0–10 per minute. A
total of 2561 discrete k values were evenly sampled from 0 to 10
per minute, which, for a volume of distribution of 0.91 mL/g,
resulted in flow intervals of 0.00355 mL/min/g. Fitting was
performed in a weighted manner with each time frame having a
weight that was inversely dependent on the variance of the image
data. This variance was estimated by an approximate formula that
was a function of the frame duration, scanner dead time, and the
number of counts in both the prompt and delayed coincidence
windows. High randoms and dead time at the start of the study,
combined with short-acquisition frame times, meant that early
frames were often weighted less heavily than later ones. The image
dimensions were 1283 128 and, to speed up the computation, the
transmission image was used to mask out pixels that were in the
surrounding air. The computation time to produce 35 slices of
parametric image data for a single model was,10 min on a VAX
4000 computer (Digital Equipment Corp., Maynard, MA).

The input function Ca(t) was estimated from the image data
using manually defined ROIs drawn in the left atrium. Frames 5–12
(total acquisition time, 24 s) of the dynamic water data were added
to give an average image of the early phase of the study that clearly
showed the blood pool. Irregularly shaped ROIs with a mean size
of 4.4 6 2.4 cm2 per slice were drawn in the left atrium in 4

adjacent planes. These ROIs were then applied to the correspond-
ing dynamic images before the additional postreconstruction
smoothing filter (and therefore at a spatial resolution of,7-mm
FWHM). For each frame the mean activity concentration within the
volume formed by the 4 ROIs produced an approximate, noninva-
sive arterial input function.

Image Analysis
The quantitative nature of the parametric images was assessed

by ROI analysis. Although tumor blood flow was the main interest
of the study, ROIs were drawn around regions of myocardium and
soft tissue as well as tumor. The myocardium was of interest
because it has been widely studied and provided an opportunity to
compare the quantitative values obtained from the parametric
images with previously published data. The soft-tissue regions
were useful because they showed the typical flow values that might
surround a tumor and they also highlighted the noise problems that
occur in regions of low flow. Each ROI was manually drawn using
the model 3b flow images from each patient’s first water study. To
compensate for patient motion between scans, the original ROIs
were visually repositioned, but not redrawn, for the subsequent
studies performed on the same patient. Tumors were identified in
conjunction with the FDG data and ROIs (mean size, 6.56 3.0 cm2

per slice) were drawn, in 3 adjacent planes, around the region of
highest flow. Similarly, the myocardial ROIs (mean size, 21.16
5.1 cm2 per slice) were defined in 3 transverse planes and included
the septum, anterior wall, and lateral wall. The soft-tissue ROIs
(mean size, 60.86 24.2 cm2) were drawn in single planes and
probably included a combination of pectoral muscle and fat.

The ROIs described above were applied to the parametric
images for each model. The mean flow within each ROI was
calculated and, in the cases of the tumor and myocardial regions,
the data from multiple planes were averaged to obtain the mean
flow over the volume of interest. Because an independent gold
standard was not available, the mean flow values from the
parametric images were compared with flows measured using the
standard ROI method. The ROI method computed flow by applying
the same ROIs to the dynamic water data and then fitting the
resultant time–activity curves to each of the 6 models, using
previously reported nonlinear regression software (27). Input
functions and weights used for the ROI method were identical with
those used for the pixel-by-pixel method. Therefore, the 2 methods
should differ only because the mean of the individual pixel flows
may not equal the flow from the mean time–activity curve from all
individual pixels (especially if flow is not homogeneous throughout
the ROI) and because of possible differences in the fitting
algorithm.

RESULTS

Figure 1 shows an example of the blood flow parametric
images for each of the 6 models. Corresponding FDG and
transmission images for the same patient (patient 3) are also
shown for comparison. Note that the tumor can be seen as a
region of high FDG uptake that corresponds to an area of
increased blood flow in each of the 6 flow images. Note also
the different noise structure of the 6 flow images, particu-
larly the high-intensity pixels toward the edge of the patient
in the model 2a and 2b images. With models 1a, 2a, and 3a,
which do not include a blood volume term, blood vessels

TABLE 1
Six Formulations of Standard [15O]Water Blood Flow Model

Model Fixed parameters Free parameters

1a a 5 1.0, Va 5 0 f, Vd

1b a 5 1.0 f, Vd, Va

2a Vd 5 0.91 mL/g, Va 5 0 f, a

2b Vd 5 0.91 mL/g f, a, Va

3a a 5 1.0, Vd 5 0.91 mL/g, Va 5 0 f
3b a 5 1.0, Vd 5 0.91 mL/g f, Va

During fitting procedure, fixed parameters were held at stated
values and free parameters were allowed to vary.
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appear as regions of high flow. Adding an arterial blood
volume term to models 1a, 2a, and 3a resulted in the
formulations of models 1b, 2b, and 3b. This addition had the
effect of removing much of the arterial blood from the flow
images. For example, compare Figure 1C with Figure 1D,
Figure 1E with Figure 1F, and Figure 1G with Figure 1H.
The arterial curve from the left atrium was used for the blood
volume term in models 1b, 2b, and 3b. No corrections were
made for delay or dispersion because these effects will be
different at different points in the body, and the data were too
noisy to include them as additional parameters in the fit. As a
result, venous blood, or arterial blood that was significantly
delayed with respect to the heart, was not well described by
this term, and blood vessels occasionally remained in the
perfusion images as regions of high flow (Figs. 1D and F).

The effect of adding a blood term to model 3a can also be
seen in Figure 2 for another patient. The aorta, which
appeared as a high-flow region in Figure 2C, was removed
from the flow image in Figure 2E. Figure 2F shows the
arterial blood volume image that corresponds to the flow
data in Figure 2E. In this image, high blood contributions
can be seen in the aorta (Va 5 0.94) and, to a lesser extent,
the lungs (Va 5 0.25). Tumor A can be clearly seen as an
area of high FDG uptake in Figure 2A and also shows high
perfusion in the flow images (Figs. 2C and E). Note that in
the FDG image, the presence of a second lesion was also
suspected in the right lung, although additional information
would increase confidence in this assessment. In Figures 2C
and E, lesion B is more strongly suggested, and the flow
images can be seen to provide information that complements

FIGURE 1. Representative FDG, transmission, and flow images of patient 3 show nature of parametric images derived from each of
6 models. (A) FDG. (B) PET transmission. (C) Flow f, model 1a. (D) Flow f, model 1b. (E) Flow f, model 2a. (F) Flow f, model 2b. (G)
Flow f, model 3a. (H) Flow f, model 3b. Arrow A indicates tumor; arrows B and C indicate aorta. Images in (A) and (B) were acquired
sequentially with water data and are approximately aligned with parametric images. Patient outline obtained from transmission image
has been superimposed on images in (A), (C), (D), (G), and (H) to aid interpretation. Images in (A) and (B) were scaled to their
individual maximums; images in (C–H) were scaled from 0 to 5 mL/min/g, and pixels with flows that exceeded upper limit took
maximum color table value.

FIGURE 2. Example images of patient 1.
(A) FDG. (B) PET transmission. (C) Flow f,
model 3a. (D) MRI. (E) Flow f, model 3b. (F)
Arterial blood volume Va, model 3b. (A and
B) Images were acquired sequentially with
water data and are approximately aligned
with parametric images. (D) MR image
shows approximately same region as PET
images. Arrows A and B indicate lesions;
arrows C and D indicate aorta. Patient
outline obtained from transmission image
was superimposed on images in (A), (C),
(E), and (F) to aid interpretation. Images in
(A), (B), (D), and (F) were scaled to their
individual maximums; images in (C) and (E)
were scaled from 0 to1 mL/min/g, and pixels
with flows that exceeded upper limit took
maximum color table value.
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the metabolic data. The MR image, shown in Figure 2D,
confirmed the presence of a suspicious lesion.

Figure 3 shows the reproducibility of tumor blood flow
measured from the parametric images (with model 2b, in this
case), for each of the 5 patients, as determined from the 2 or
3 replicate measurements. The 5 tumors studied spanned a
very wide range of blood flows, varying from 0.4 to 4.2
mL/min/g, and the replicate studies are seen to give fairly
consistent flow values. Figure 4 shows the mean tumor
blood flow (averaged over the 2 or 3 replicates) for each
patient and model. The error bars denote 1 SD, as estimated
from the replicate studies. Comparing the flows from model
1a to model 1b, model 2a to model 2b, and so forth, the
effect of adding the blood term can be seen. Addition of the
blood spillover term reduced the tumor flow, on average, by
2.4% (model 1a to model 1b), 4.7% (model 2a to model 2b),
and 15.0% (model 3a to model 3b). To compare the
variability of the different models, each of these SDs of flow
were divided by their respective means to determine a series
of normalized SDs. The mean of these normalized SDs, for
all patients, were 7.2%6 4.8%, 7.4%6 3.5%, 8.8%6
5.6%, 10.1%6 6.4%, 7.6%6 4.0%, and 6.6%6 3.2% for
models 1a, 1b, 2a, 2b, 3a, and 3b, respectively. Note that the
normalized SDs are small and are not significantly different
between models (Student pairedt test, P . 0.28 in each
case).

The tumor flow data obtained from the parametric images,
shown in Figure 4, were compared with the equivalent data
obtained using the ROI method. Figure 5 shows the paramet-
ric flow values divided by the ROI flow values for each
patient and model (a value of 1 indicates perfect agreement
between the 2 methods). The mean6 SD (over all patients
and studies) of these fractions were 1.0126 0.031, 1.0066
0.029, 1.0266 0.030, 1.0066 0.029, 1.00360.031, and
0.942 6 0.155 for models 1a, 1b, 2a, 2b, 3a, and 3b,
respectively. Only for model 3b did the ROI and parametric
methods give appreciably different mean flow values. Fur-
thermore, only for this model were there individual patients

who exhibited large differences in flow between the 2
methods (maximum difference, 35%).

For each patient, the soft-tissue ROIs were assumed to
encompass tissues with comparable blood flow. The mean
and SD of the flow measurements were thus calculated from
the 13 studies performed on all patients. These data, which
were calculated separately for each model, are shown in
Table 2 for both the parametric image and the ROI methods.
Note the range of flows given by the different models and the
large differences in the flow obtained by the 2 methods for
models 1a, 1b, 2a, and 2b. Note also the closer agreement
between the parametric and ROI data for models 3a and 3b.

Values of the volume of distribution for water, obtained
using the parametric images and the ROI method, were
compared for both soft-tissue and tumor regions. Table 3
shows the mean values for all patients, calculated using
model 1b. On average, the estimates of the volume of
distribution for tumor were very similar (Student pairedt

FIGURE 3. Multiple tumor blood flow measurements obtained
from model 2b parametric images. Patients 1 and 2 each had 2
water studies; patients 3–5 each had 3 water studies.

FIGURE 4. Tumor blood flow for each of 5 patients calculated
from parametric images. Results from 6 different formulations of
single-compartment model are shown, slightly offset from each
other. Blood flow values are mean of measurements obtained
from separate water studies, and error bars denote 1 SD.

FIGURE 5. Tumor blood flow calculated from parametric im-
ages as fraction of same parameter calculated using ROI method
with corresponding model. Data for 6 models are shown and, for
each model, data points for each patient are offset for clarity.
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test,P 5 0.57) for the 2 methods; furthermore, no individual
patients differed by.3%. Note the large discrepancy
between the parametric image and ROI data for the soft-
tissue regions that was highly significant (Student pairedt
test,P , 0.001).

The values of myocardial blood flow obtained from the
parametric images were compared with those measured by
the ROI method using, in each case, model 2b. The absolute
values of flow obtained by this latter method have been well
validated for the myocardium (21). Flow values calculated
using both ROI and parametric image methods are shown in
Figure 6. The mean blood flow was 1.186 0.13 and 1.096
0.15 mL/min/g for the parametric and ROI methods, respec-
tively; on average, the parametric images overestimated
flow by 8.5%6 2.8% compared with the ROI method. Note
that all 5 patients had myocardial blood flow in a similar
range, including patients 2 and 3, who had large values of
tumor blood flow (Fig. 4).

DISCUSSION

The particular tumors encountered in this study had blood
flow in the range 0.4–4.2 mL/min/g and, compared with the
low values typically found in surrounding tissue, this meant
that they could be readily identified on the parametric flow
images. In Figure 1, the tumor can be seen on the parametric
images from each of the flow models as a region of locally
increased perfusion that corresponds to the area of high FDG
uptake. The parametric maps may facilitate comparisons

between blood flow and FDG metabolism and might be
useful in studies of tumor heterogeneity. In regions with low
blood flow, the fits frequently failed to reach an accurate
convergence (described below), and the images appeared
noisy. This effect was most pronounced in the images
produced with models 2a and 2b and made these images
hard to interpret. Model 3b handled the low-flow regions
well but displayed sharp discontinuities at high-flow areas
that were not present in the model 3a images. Having only 1
free parameter, model 3a was robust throughout the field of
view and, apart from the arterial blood volume effects,
produced the most easy-to-interpret flow images.

The tumor blood flow obtained from the parametric
images compared well with the corresponding data derived
from fitting the model to the regional time–activity curves
(Fig. 5). Although differences in the results of the 2
approaches might be expected because of tissue heterogene-
ity (28), no significant differences were detected for models
1a, 1b, 2a, 2b, and 3a. The reason for this close agreement is
probably associated with the fact that the image data were
heavily smoothed and the pixels within the tumor regions
were thus highly correlated. It may be possible to reduce the
size of the transverse smoothing filter if the injected dose
were increased, if additional smoothing were applied in the
axial direction, or if an iterative reconstruction algorithm
were used. For model 3b, the discrepancy in the flow results
may be attributed to the incorrect assumptions of this
particular model (i.e., that resolution recovery is perfect and
that the volume of distribution is fixed at 0.91 mL/g).
Including a blood term in this model provided a mechanism
to artificially compensate for the differences between the
measured data and the model, but the accuracy of the
parameter estimates was apparently compromised. The large
variability in ROI versus parametric flow values seen in
Figure 5 for model 3b may be caused by the increased
sensitivity of this model to the high noise levels present in

TABLE 2
Soft-Tissue Blood Flow Calculated Using Both ROI

and Parametric Image Methods

Model

f (mL/min/g)* f (parametric)/
f (ROI)†ROI Parametric

1a 0.027 6 0.011 0.123 6 0.049 5.0 6 2.0
1b 0.025 6 0.010 0.041 6 0.059 1.3 6 2.5
2a 0.213 6 0.053 3.4 6 1.0 17.3 6 7.9
2b 0.186 6 0.057 3.6 6 1.1 22.0 6 12.0
3a 0.018 6 0.007 0.021 6 0.007 1.16 6 0.11
3b 0.017 6 0.006 0.019 6 0.007 1.16 6 0.15

*Mean 6 SD of flow measurements for all patients (13 studies).
†Mean 6 SD of 13 individual bias estimates.

TABLE 3
Volume of Distribution for Regions of Tumor and Soft Tissue

ROI

Vd (mL/g)* Vd (parametric)/
Vd (ROI)†ROI Parametric

Tumor 0.79 6 0.14 0.80 6 0.15 1.001 6 0.016
Soft tissue 0.123 6 0.039 0.014 6 0.016 0.10 6 0.11

*Mean 6 SD of volume of distribution measurements (model 1b)
for all patients (13 studies).

†Mean 6 SD of 13 individual bias estimates.

FIGURE 6. Myocardial blood flow obtained using both paramet-
ric image and ROI methods for each patient. Model 2b was used
in both cases and data points for each patient have been offset
for clarity. Blood flow values are mean of measurements obtained
from separate water studies, and error bars denote 1 SD.
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the pixel-by-pixel data. Errors of this sort may be more
likely to occur in regions of high flow where the tissue
time–activity curve more closely resembles the input func-
tion. This problem can be visualized in the model 3b images
(Figs. 1H and 2E) as a sharp discontinuity between high and
low flow, which was not consistent with the 14-mm resolu-
tion of the image data. The quantitative accuracy of these
images may not be reliable in these regions, but the sharp
discontinuity did provide a way of identifying the high-flow
part of the tumor that was used for ROI definition. Note that
the invalid model assumptions described above also affect
model 3a, but, because this model has only 1 free parameter,
it may handle these data better. Although models 1b and 2b
also include a blood volume factor, these models allow the
influx and efflux terms to be independent free variables and
the problem does not arise.

Although estimates of tumor blood flow obtained from the
parametric images were unbiased (at least for models 1a, 1b,
2a, 2b, and 3a) with respect to the ROI method, this was not
the case for other regions of the image. For nontumorous
soft tissue, column 4 of Table 2 shows that the parametric
images gave estimates of flow that were considerably greater
than those of the ROI method, particularly for models 2a and
2b but also for models 1a and 1b. The high flow encountered
in the tumors resulted in both pixel and ROI time–activity
curves with relatively low noise, which meant that reason-
able fits were achieved. For other parts of the body, the blood
flow was lower and the time–activity curves, particularly for
the parametric method, were much noisier. This led to model
parameters with relatively high variance, especially in the
case of models 1a, 1b, 2a, and 2b, which had 2 or 3 free
parameters. In our implementation of the parametric method,
model parameters were always computed, although noisy
data tended to produce k values (14) toward the maximum of
the permitted search range (these points are readily apparent
in Figs. 1E and F). Even when the search algorithm was
replaced by a brute-force search that examined all k values
in the permitted range, the problem remained. This effect is
equivalent to a failure to converge (when the influx is low it
is difficult to measure the efflux) and accounts for the very
high flow values encountered in the soft-tissue regions of the
parametric images (for models 1a, 1b, 2a, and 2b).

For the soft-tissue data obtained with models 3a and 3b,
good agreement can be seen between the ROI and paramet-
ric imaging results (Table 2). This is because these models
imposed a more constrained fit and, in all cases, reached
convergence. Although these ROIs probably contain a
mixture of muscle, fat, and other soft tissue, the flow values
agree well with previously reported muscle blood flow
values of 0.0186 0.010 mL/min/g (29). The flow values
obtained with the ROI method for models 1a and 1b are also
consistent with these previously published values, but the
flow values for models 2a and 2b are an order of magnitude
greater. This is associated with the fact that, in these models,
an assumption was made about the volume of distribution.

The flow information comes entirely from the washout term
and, although this value is expected to be largely indepen-
dent of partial-volume effects, it requires that the volume of
distribution be known. For the myocardium, this value is
thought to be 0.91 mL/g, but it is not likely that this value is
applicable throughout the body. From model 1b we can
estimate the volume of distribution, and the data in Table 3
show a value of 0.1236 0.039 mL/g (ROI method) for soft
tissue. Taking Vd 5 0.91 mL/g was therefore a poor
approximation, in this case, and might account for the errors
in the soft-tissue flow data obtained with these models. For
the tumor regions, the volume of distribution was found to
be 0.80 6 0.15 mL/g and 0.796 0.14 mL/g for the
parametric image and ROI methods, respectively. These
values may be underestimates (30) of the true values
because of partial-volume effects, and it seems that the
assumed value of 0.91 mL/g might be more accurate for
these tumors than for soft tissue. Of course, other tumors
may have quite different volumes of distribution, in which
case models that do not fit Vd would be incorrect. Further
studies involving a larger group of tumors would be required
to verify this.

In one of the few quantitative studies of tumor blood flow
(11), values of flow in malignant lesions were found to be
0.2986 0.170 mL/min/g. This study was of breast tumors,
and flow was calculated using the model that we have
referred to as model 1a. At least 2 of the 5 patients in our
study had values of tumor blood flow that were significantly
greater than this value: approximately 4.2 and 3.6 mL/min/g.
Although these values seem surprisingly high, it should be
remembered that renal cell metastases are known to be very
vascular tumors. In addition, the flow in other parts of these
images was in the normal range, suggesting that the
high-flow values for tumor are reliable. The mean myocar-
dial blood flow for all 5 patients, obtained with model 2b
(the model typically used for cardiac studies) was 1.186
0.13 and 1.096 0.15 mL/min/g for the parametric and ROI
methods, respectively. All 5 patients were expected to have
normal myocardial flow, and our data, including the 2
patients with the high tumor flows, were consistent with
previously reported normal values of 0.956 0.09 mL/min/g
(21), obtained using the same model. The pixel-by-pixel
method overestimated flow by 8.5%6 2.8% compared with
the ROI method. This is not unexpected. The pixels near the
edge of the myocardium had very low counts and resulted in
flow values that had large relative SDs. Because the lowest
possible flow value was 0 and the highest was (arbitrarily)
10, averaging such noisy pixel values together would bias
the flow data to slightly high values. This effect does not
occur with the ROI method because the pixels with the low
counts do not contribute significantly to the mean time–
activity curve.

In this study, the parts of the body that could be
investigated were restricted by the limited axial extent of the
PET scanner and the requirement to have the heart in the
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field of view. This enabled the input function to be obtained
from the image data and meant that the entire procedure
could be performed in a noninvasive manner, without
arterial blood sampling (31,32). Quantitative errors in deter-
mining the arterial input function may arise because of
partial-volume and spillover problems, but these were
expected to be small because of the large blood pool in the
left atrium and the relatively low spillover from [15O]water
in the atrial walls. Extending the parametric imaging ap-
proach to other parts of the body would require more
sophisticated techniques for extracting the input function
from images (33).

More complex kinetic models may be required in certain
circumstances (e.g., liver (34)) but, even in these cases, the
simple method we present may be useful to help visualize
regional differences in blood flow. It is unlikely that any
single model will be completely valid for all parts of the
body, and this should be borne in mind when interpreting
parametric images. Highly accurate quantification may not
always be possible using simple models such as model 3a.
Nonetheless, the parametric images generated in this way
are useful to aid the placement of ROIs (without the need for
registration with complementary images), to permit detailed
regional analysis, and to assess potential inhomogeneities in
flow over the tumor.

CONCLUSION

Pixel-by-pixel methods are a convenient way of analyzing
large dynamic datasets, and the technique was found to be
applicable to studies of tumor blood flow. The tumors
encountered in this study had high flow compared with that
of most other tissues, which meant that they could be readily
identified on the parametric images. With the exception of
model 3b, the estimates of tumor blood flow derived from
the parametric images were unbiased compared with those
of the ROI method and were reproducible with an SD of
7%–10%. In models 1a, 1b, 2a, and 2b, large errors were
observed in pixels with low counts, and care must be taken
to exclude such pixels from tumor ROIs. Having only 1 free
parameter, model 3a produced the most robust images
throughout the field of view and may prove to be a useful
model for visualizing regional tumor blood flow and for
guiding the placement of tumor ROIs.
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