Biodistribution and Absorbed Radiation Dose Estimates of 99mTc-Labeled Dimercaptopropionyl Human Serum Albumin

Andries van Aswegen, Johan Marais, Gerdus Kemp, Mariana G. Nel, Johan A. van Staden, Anton C. Otto, Mattheus G. Lötter and Alfons M. Verbruggen

Departments of Medical Physics and Nuclear Medicine, University of the Orange Free State, Bloemfontein, South Africa; and Department of Radiopharmacy, University of Leuven, Leuven, Belgium

The use of 99mTc-labeled red blood cells (RBC) for the evaluation of left ventricular function using equilibrium-gated blood-pool imaging suffers from several problems and potential risks. In this study, we estimated the absorbed radiation dose of 99mTc-labeled dimercaptopropionyl human serum albumin (DMP-HSA) as a potential alternative to 99mTc-RBC. Methods: After the administration of 99mTc-DMP-HSA, whole-body imaging was performed up to 48 h after injection in five volunteers. The heart contents, liver and remainder of the body were used as source organs. Multicompartment modeling of the biodistribution was performed and absorbed radiation dose estimates for 99mTc-DMP-HSA were obtained using the Medical Internal Radiation Dose (MIRD) calculation. Results: Residence times of 0.62 and 0.43 h were obtained for the heart contents and liver, respectively. Radiation dose estimates yielded an effective dose of 0.0055 mSv/MBq. Conclusion: 99mTc-DMP-HSA yielded absorbed radiation doses comparable with those of 99mTc-RBC. Therefore, the radiation properties of 99mTc-DMP-HSA are such that it can be used for clinical diagnostic studies.

Key Words: 99mTc blood-pool labeling; dosimetry; Medical Internal Radiation Dose; 99mTc-labeled dimercaptopropionyl human serum albumin

Noninvasive radionuclide multigated blood-pool imaging at equilibrium is still widely used in clinical practice for several reasons. These include objective determination of global left ventricular (LV) systolic function (LV ejection fraction and rate), LV size and wall motion, LV diastolic function, right ventricular size and function as well as determination of the presence of possible pericardial disease (1–3). Studies must often be performed in succession, for instance, to evaluate a patient’s response to drug therapy (usually performed at rest) (4,5) or to evaluate possible ischemic heart disease (performed during rest and exercise) (6,7). To obtain reliable results, it is imperative that the radionuclide blood-pool label remain in the blood pool for the total duration of the examination.

99mTc-labeled human serum albumin (HSA) was originally used as the blood-pool labeling agent (8) because the HSA diffuses into the plasma component of the blood. Unfortunately, the binding of the radionuclide to this protein is relatively weak, resulting in a rapid extravascular diffusion. Furthermore, high liver uptake occurs, impeding the accurate determination of the LV inferior border; this contributes to making this blood-pool marker unsatisfactory for multigated blood-pool imaging.

The development of efficient methods for labeling of red blood cells (RBCs) with 99mTc resulted in the multigated blood-pool study being established as one of the primary screening investigations for evaluating patients with functional cardiac disease. Labeling of RBCs with 99mTc can be performed either by in vivo or in vitro methods (9,10). The labeling efficiency of the in vivo method often is not high and can be influenced negatively by certain drugs (11) or even by the injection technique (12), resulting in images with low target-to-background count ratios. On the other hand, labeling efficiencies of >90% are usually obtained with the in vitro method. Although the in vitro method yields the best results, certain hazards are associated with it. These hazards include, among others, the following. First, it requires that the blood be handled by nuclear medicine technologists, increasing the risk of contamination with the hepatitis B or AIDS viruses. Second, the possibility exists that patients’ blood samples could be interchanged when more than one patient’s blood is labeled simultaneously, especially in departments with high workloads.

It would be a major advantage in the performance of multigated blood-pool imaging if the tracer agent could be reconstituted from a labeling kit and could be available on demand with the least loss of time to start the study. Verbeke et al. (13,14) reported the development and evaluation of a derivative of 99mTc-HSA that is more stable in blood and stays in the circulation nearly as well as 99mTc-labeled RBCs, namely 99mTc-dimercaptopropionyl (DMP) HSA. Hambaye et

1532 THE JOURNAL OF NUCLEAR MEDICINE • Vol. 40 • No. 9 • September 1999
al. (15) reported the clinical use of \(^{99m}\text{Tc-DMP-HSA}\), which meets the aforementioned requirements of an ideal labeling agent. In this study, the biodistribution and patient radiation dose estimates of \(^{99m}\text{Tc-DMP-HSA}\) were determined.

METHODS

Patients

Five healthy men were enrolled in the study on a voluntary basis. Their ages ranged from 26 to 31 y (mean 28.2 ± 1.7 y), and they weighed between 65 and 100 kg (mean 89.6 ±11.6 kg). No volunteer was using any medication. The Ethics Committee and Radiation Control Committee of the University of the Orange Free State approved the study protocol and permission was obtained from the Medicines Control Council of South Africa for use of the \(^{99m}\text{Tc}\)-labeled DMP-HSA. Informed written consent was obtained from each volunteer.

Radiopharmaceutical

Labeling kits for the preparation of \(^{99m}\text{Tc-DMP-HSA}\) were obtained from the Radiopharmacy Department of the University of Leuven, Belgium (16). Labeling of DMP-HSA with \(^{99m}\text{Tc}\) was a three-step procedure. First, the DMP-HSA kit was reconstituted by the addition of 1–5 mL (925–3700 MBq) freshly eluted \(^{99m}\text{Tc}\)-pertechnetate (Peltek-F; Atomic Energy Corp., Pelindaba, South Africa). Second, 10 mL saline were added to a vial containing Sn-diethyleneetriamine pentaacetic acid (DTPA) and the Sn-DTPA was completely dissolved. Last, 0.25 mL of the Sn-DTPA solution was added to the vial containing the \(^{99m}\text{Tc-DMP-HSA}\). Labeling efficiency was determined according to the method described by Verbeke et al. (16) using thin-layer chromatography strips with acetone and acid-citrate-dextrose solution as mobile phases to determine the percentage of free \(^{99m}\text{Tc}\)-pertechnetate and labeled \(^{99m}\text{Tc-DMP-HSA}\). A total activity (bound plus unbound \(^{99m}\text{Tc}\)) of approximately 740 MBq \(^{99m}\text{Tc-DMP-HSA}\) was administered intravenously to each volunteer.

Data Acquisition

Imaging was performed with a dual-detector scintillation camera system (Multispect 2; Siemens, Hoffman Estates, IL) with the patient in the supine position. The camera was fitted with low-energy high-resolution collimators. A 15% energy window was positioned over the 140-keV photopeak for \(^{99m}\text{Tc}\).

After the intravenous administration of the radiopharmaceutical, whole-body anterior and posterior images were acquired simultaneously in 1024 × 256 matrices using a scan speed of 8 cm/min. This yielded a total count of almost 1 million in each image with an acquisition time of about 20 min per scan. Similar images were acquired with the same scan speed at 3, 6, 24, 30 and 48 h.

Data Processing

As a result of the whole-body distribution of \(^{99m}\text{Tc-DMP-HSA}\), the heart, liver and remainder of the body were used as source organs. (Although some bladder and kidney uptake was seen in the early images in some cases, this uptake was relative low, and we decided not to use these as separate source organs but to include the uptake in the remainder counts.) The first whole-body scan was used as the 100% activity uptake value and the anterior and posterior images were analyzed separately. Regions of interest were drawn around the heart, the liver and the whole body. The counts in the heart and the liver were subtracted from the whole-body counts to obtain the counts for the remainder of the body. The geometric mean counts (i.e., the square root of the product of the anterior and posterior counts) were calculated for each source organ, expressed as a percentage of the whole-body activity and normalized to the 100% value obtained from the first whole-body image. The arithmetic mean percentage uptakes in the various source organs of the five volunteers were used for further calculations.

The biokinetics of \(^{99m}\text{Tc-DMP-HSA}\) were determined using a multicompartment model consisting of three compartments, one each for the blood, the liver and the remainder of the body. The simulation analysis and modeling were performed with the SAAM30 software (Washington State University, Seattle, WA). The areas under the modeled time-activity curves for the different source organs were calculated to obtain the biological washout. Source organ elimination by physical decay alone was assumed to occur from the last measured time point. The biological removal and physical decay data were used to yield the mean residence times of the radionuclide in the different source organs. Subsequently, these data were used as input data to calculate radiation dose estimates for \(^{99m}\text{Tc-DMP-HSA}\) according to the Medical Internal Radiation Dose (MIRD) schema (17) using the MIRDose 3.1 software (18) that incorporated the dynamic bladder model. This model assumes that the bladder is voided every 3 h during the first 12 h after the administration of the radiopharmaceutical.

RESULTS

Labeling Efficiency

The mean percentage of \(^{99m}\text{Tc}\) bound to DMP-HSA after reconstitution was 95.1% ± 1.8%, ranging from 92.5% to 98.4%.

Biodistribution

The whole-body distribution of \(^{99m}\text{Tc-DMP-HSA}\) and that of \(^{99m}\text{Tc-RBC}\) from a volunteer study is shown in Figure 1. Figure 2 indicates the mean time-activity curves of \(^{99m}\text{Tc-DMP-HSA}\) obtained for the heart and liver. Uptake values in these respective organs were 9.6% and 10.0% in the first image and 5.2% and 7.6% after 48 h.

Radiation Dose Estimation

The residence times obtained for \(^{99m}\text{Tc-DMP-HSA}\) in the heart contents, liver and remainder of the body were 0.62, 0.43 and 8.47 h, respectively. The absorbed radiation dose estimates for \(^{99m}\text{Tc-DMP-HSA}\) are given in Table 1. \(^{99m}\text{Tc-DMP-HSA}\) yielded an effective dose of 0.0055 mSv/MBq. Therefore, for a typical 740 MBq administration of \(^{99m}\text{Tc-DMP-HSA}\), the absorbed radiation dose to the heart wall, spleen, lungs, liver, kidneys and red marrow will be 12.43, 3.86, 4.13, 5.72, 3.89 and 3.54 mGy, respectively. A total effective dose of 4.07 mSv will be delivered.

DISCUSSION

In this study, the radiation dose estimates associated with blood-pool labeling with \(^{99m}\text{Tc-DMP-HSA}\) were calculated. The use of \(^{99m}\text{Tc-DMP-HSA}\) has advantages over \(^{99m}\text{Tc-RBC}\): The radiopharmaceutical can be reconstituted with a labeling kit for instant use, and there is no direct handling of the patient’s blood, eliminating the associated hazards.
Furthermore, a high labeling efficiency of 99mTc to DMP-HSA (range 92.5%–98.4%) was obtained that corresponds well with reported values >95% for in vitro-labeled 99mTc-RBC (19).

Residence times obtained for 99mTc-DMP-HSA in this study compared well with those reported by Russell et al. (20) for 99mTc-RBC and 99mTc-HSA. The residence times for the heart contents for 99mTc-RBC were 0.57 h (in vitro labeling) and 0.864 h (in vivo labeling), whereas the residence time for 99mTc-HSA was reported to be 0.813 h compared with 0.622 h obtained in this study for 99mTc-DMP-HSA. The longer residence time of 99mTc-HSA could be due to

TABLE 1

<table>
<thead>
<tr>
<th>Target organ</th>
<th>Absorbed dose (mGy/MBq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenals</td>
<td>0.0062</td>
</tr>
<tr>
<td>Brain</td>
<td>0.0039</td>
</tr>
<tr>
<td>Breasts</td>
<td>0.0038</td>
</tr>
<tr>
<td>Gallbladder wall</td>
<td>0.0065</td>
</tr>
<tr>
<td>LLI wall</td>
<td>0.0055</td>
</tr>
<tr>
<td>Small intestine</td>
<td>0.0057</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.0055</td>
</tr>
<tr>
<td>ULI wall</td>
<td>0.0056</td>
</tr>
<tr>
<td>Heart wall</td>
<td>0.0168</td>
</tr>
<tr>
<td>Kidneys</td>
<td>0.0053</td>
</tr>
<tr>
<td>Liver</td>
<td>0.0077</td>
</tr>
<tr>
<td>Lungs</td>
<td>0.0056</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.0044</td>
</tr>
<tr>
<td>Ovaries</td>
<td>0.0058</td>
</tr>
<tr>
<td>Pancreas</td>
<td>0.0065</td>
</tr>
<tr>
<td>Red marrow</td>
<td>0.0048</td>
</tr>
<tr>
<td>Bone surfaces</td>
<td>0.0085</td>
</tr>
<tr>
<td>Skin</td>
<td>0.0030</td>
</tr>
<tr>
<td>Spleen</td>
<td>0.0052</td>
</tr>
<tr>
<td>Testes</td>
<td>0.0041</td>
</tr>
<tr>
<td>Thymus</td>
<td>0.0064</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.0048</td>
</tr>
<tr>
<td>Urinary bladder wall</td>
<td>0.0053</td>
</tr>
<tr>
<td>Uterus</td>
<td>0.0058</td>
</tr>
<tr>
<td>Total body</td>
<td>0.0048</td>
</tr>
</tbody>
</table>

DMP-HSA = dimercaptopropionyl human serum albumin; LLI = lower large intestine; ULI = upper large intestine.

FIGURE 1. Typical whole-body anterior (left) and posterior (right) scans obtained in same individual with (A) 99mTc-labeled dimercaptopropionyl human serum albumin (99mTc-DMP-HSA) (1 h postinjection) and (B) 99mTc-labeled red blood cells (99mTc-RBC) (7 d before 99mTc-DMP-HSA study).

FIGURE 2. Mean (n = 5) uptake time-activity curves of 99mTc-DMP-HSA obtained for heart (bottom curve) and liver (top curve) according to multicompartment analysis.
to its extravascular diffusion. In vitro-labeled 99mTc-RBC and 99mTc-DMP-HSA both have high labeling efficiencies, and because they stay intact in the blood, the residence times are similar. Furthermore, residence times for in vitro- and in vivo-labeled 99mTc-RBC for the liver were 0.322 and 0.334 h, respectively, and residence time for 99mTc-HSA was 0.457 h. In this study, the residence time for 99mTc-DMP-HSA was 0.428 h.

The estimated absorbed organ doses obtained for 99mTc-DMP-HSA compare favorably with those reported by Atkins et al. (21) for 99mTc-RBC. The absorbed doses for the respective radiopharmaceuticals to the various organs were as follows: heart wall, 0.0168 and 0.015 mGy/MBq; spleen, 0.0052 and 0.011 mGy/MBq; lungs, 0.0056 and 0.011 mGy/MBq; liver, 0.0077 and 0.0070 mGy/MBq; kidneys, 0.0053 and 0.0068 mGy/MBq; and red marrow, 0.0048 and 0.0051 mGy/MBq. The 99mTc-RBC values are for in vitro-labeled RBCs and a 2.4-h voiding schedule. The higher 99mTc-RBC dose to the spleen is probably due to the accumulation of RBCs in the organ. This could also be the reason for the higher dose to the lungs, because the spleen will be a source organ (situated relatively close to the lungs) with 99mTc-RBC and will not be a source organ with 99mTc-DMP-HSA.

The effective dose of 0.0055 mSv/MBq that is obtained with 99mTc-DMP-HSA is lower than the effective dose of 0.0098 mSv/MBq that is obtained for 99mTc-labeled erythrocytes and 0.0088 mSv/MBq that is reported by Johansson et al. (22) for 99mTc-HSA. The higher effective dose of 99mTc-labeled erythrocytes compared with 99mTc-DMP-HSA could be due to the accumulation and extended retention of the RBCs in the spleen as a source organ. Likewise, the high uptake of HSA in the liver as source organ and increased uptake in the remainder of the body due to the extravascular diffusion could contribute to the higher effective dose reported for 99mTc-HSA compared with 99mTc-DMP-HSA found in this study. Furthermore, internal radiation dose estimation is subject to a certain magnitude of error. Errors on the calculation of the percentage organ uptake and effective half-life of the radiopharmaceutical, for instance, will contribute to a combined error on the absorbed radiation dose (23). This is illustrated in reports on the dose estimates of 123I-fluoropropyl-carboxmethoxy-iodophenyl-tropane (FP CIT) in healthy participants in which effective dose values of 0.024 mSv/MBq (24) and 0.041 mSv/MBq (25) were stated.

CONCLUSION

The new modified HSA blood-pool-labeling agent 99mTc-DMP-HSA yielded absorbed radiation doses comparable with those of 99mTc-RBC. Therefore, it may be concluded that, due to its radiation properties, 99mTc-DMP-HSA can be considered as a practical blood-pool-labeling agent for the evaluation of LV function.

REFERENCES

Dose Estimates of 99mTc-DMP-HSA • van Aswegen et al. 1535