I. EDITORIAL POLICY

The Journal of Nuclear Medicine (JNM) publishes material of interest to the practitioners and scientists in the broad field of nuclear medicine. Proffered articles describing original laboratory or clinical investigations, brief communications, technical notes and letters to the editor will be considered for publication. Case Reports and First Impressions are no longer being accepted. Occasionally, invited articles, editorials and reviews of selected topics will be published. Manuscripts, including illustrations and tables, must be original and not under consideration by another publication.

JNM has agreed to receive manuscripts in accordance with the Uniform Requirements for Manuscripts Submitted to Biomedical Journals as cited in the following sources: Ann Intern Med. 1997;126:36-47, and JAMA. 1997;277:927-934. In preparing manuscripts, authors should follow the Uniform Requirements for Manuscripts Submitted to Biomedical Journals and the specific author instructions detailed below. Also, helpful guidance in conforming to the Uniform Requirements may be found in Huth E J. Medical Style & Format: An International Manual for Authors, Editors, and Publishers. Philadelphia, PA: ISI Press; 1987.

II. MANUSCRIPT SUBMISSION

Submit four copies of the manuscript and figures to the following address:

Martin P. Sandler, MD
The Journal of Nuclear Medicine
Society of Nuclear Medicine
1850 Samuel Morse Drive
Reston, VA 20190-5316
Phone: (615) 322-3761
Fax: (615) 343-2504
E-mail: tom.ebers@mcmail.vanderbilt.edu

Manuscripts will not be accepted by facsimile.

All manuscripts should be accompanied by a cover letter from the author responsible for correspondence regarding the manuscript. The cover letter should contain the following copyright disclosure statement in compliance with the Copyright Revision Act of 1976, effective January 1, 1978.

Upon acceptance by The Journal of Nuclear Medicine, all copyright ownership for the article ________________________ is transferred to The Society of Nuclear Medicine. We, the undersigned coauthors of this article, have contributed significantly to and share in the responsibility for the release of any part or all of the material contained within the article noted above. The undersigned stipulate that the material submitted to The Journal of Nuclear Medicine is new, original and has not been submitted to another publication for concurrent consideration.

We also attest that any human and/or animal studies undertaken as part of the research from which this manuscript was derived are in compliance with regulations of our institution(s) and with generally accepted guidelines governing such work.

We further attest that we have herein disclosed any and all financial or other relationships that could be construed as a conflict of interest and that all sources of financial support for this study have been disclosed and are indicated in the acknowledgments.

This statement must be signed by all of the listed coauthors. Designate “first author” and “corresponding author” in parentheses by their signatures.

This copyright transfer requirement does not apply to work prepared by U.S. government employees as part of their official duties.

The cover letter should also contain a statement that the manuscript has been seen and approved by all authors and should give any additional information that may be helpful to the Editor. If there has been any prior publication of any part of the work, this should be acknowledged and appropriate written permission included. If color illustrations are included, a statement that the author(s) is (are) willing to assume the cost of color separations and reproduction is requested.

Authors may suggest individuals who could serve as reviewers for their manuscripts.

III. REVIEW PROCEDURE

Submitted manuscripts are reviewed for originality, significance, adequacy of documentation, reader interest, composition and adherence to the guidelines contained herein. Manuscripts not submitted in accordance with these instructions will be returned to the author for correction before beginning the peer review process.

All manuscripts considered suitable for review are evaluated by a minimum of two reviewers. Reviewers receive manuscripts with abbreviated title pages (no author names listed) to ensure unbiased review. It is unusual for a manuscript to be accepted for publication without first undergoing a process of revision. Revised manuscripts are judged on the adequacy of responses to suggestions and criticisms made during the initial review. Two copies of the revised manuscript should be sent with a diskette (3.5- or 5.25-in.) containing the word processing file of the manuscript. The disk should be labeled with the name of the file, word processing software, operating environment (i.e., DOS, Windows) and platform (i.e., IBM, Macintosh). A diskette need not be sent before a revision is requested. JNM reviewers may seek assistance from sources within their institution when reviewing manuscripts, but the data reported in submitted manuscripts must be kept confidential at all times.

All accepted manuscripts are subject to editing for scientific accuracy, clarity and style. Authors of accepted manuscripts may also incur printing charges ($80 per page) for articles exceeding eight printed pages.

IV. FORMAT REQUIREMENTS

A. General Requirements

Manuscripts must be written in English. When necessary, authors should seek the assistance of experienced, English-speaking medical editors. A medical editor should review the final draft of the original and any revisions of the manuscript. Articles written in substandard English will be returned before review or production, as applicable.

Type the manuscript on white bond paper, 8½ x 11 in. (21.6 x 27.9 cm), with margins of at least 1½ in. (4 cm). Type size should be at least 10 pt. Type on one side of the paper only, double spacing every page. Begin each of the following sections on separate pages and in the following order: title page, abbreviated title page, abstract, text (see Text Presentation below), acknowledgments, references, tables (each on a separate page) and figure legends. Number pages consecutively, beginning with the abstract. The use of automated word processing functions (such as auto numbering, footnotes or endnotes, or formatted tables) should be avoided. To ensure anonymity in the review process, authors' names should appear on the full title page only. Names of authors or institutions should not be given in the text or on illustrations.
B. Title Page

The title page of the manuscript should include the following:
(1) concise and informative title (fewer than 200 characters); (2) short running headline or footnote of no more than 40 characters (letters and spaces) placed at the bottom of the title page and identified; (3) complete byline, with first name, middle initial and last name of each author and highest academic degree(s) (up to 10 authors may be cited); (4) complete affiliation for each author, with the name of department(s) and institution(s) to which the work should be attributed; (5) disclaimer, if any; (6) name, address, telephone number, fax number and e-mail address of one author responsible for correspondence about the manuscript; (7) name, address, telephone number, fax number and e-mail address of the first author, specifying whether this person is currently in training (e.g., fellow, resident or student); (8) name, address and e-mail address of author to whom reprint requests should be directed, or statement that reprints are not available. Financial support for the work should be noted in a statement on this page as well as in the acknowledgments.

C. Abbreviated Title Page

An abbreviated title page, giving only the title, should be included in each copy of the manuscript. This allows for anonymity during the review process.

D. Abstract

A structured abstract must be included with each original scientific manuscript submitted to JNM. The abstract should contain a maximum of 350 words and include four clearly identifiable elements of content: rationale (goals of the investigation), methods (description of study subjects or experiments, animals and observational and analytical techniques), results (major findings) and principal conclusions. Except for the rationale, which should state the goals of the investigation, these sections should be preceded by headings (i.e., Methods, Results and Conclusion). Three to five key words should also be submitted with the abstract.

E. Text

1. Presentation

Generic names should be used throughout the text. Identify instruments and radiopharmaceuticals by manufacturer name and address in parentheses and describe procedures in sufficient detail to allow other investigators to reproduce the results.

The text of original scientific and methodology articles is usually divided into the following sections: Introduction, Materials and Methods, Results, Discussion and Conclusion. The text of original scientific papers, exclusive of the abstract, legends, tables and references, should not exceed 5000 words.

Brief Communications should contain a concise description of no more than 1250 words, 2 illustrations, 2 tables and a maximum of 5 references. Abstracts for this type of article should contain a maximum of 150 words.

Letters should concern previously published material or matters of general interest and should be brief and to the point. A diskette (3.5- or 5.25-in.) containing a copy of the word processing file of the letter should accompany a hard-copy version of the manuscript. The disk should be labeled as described above in Review Procedure. Letters should also be accompanied by a copyright disclosure statement as specified above in Manuscript Submission. All material is subject to editing. Letters commenting on previously published articles should be received within 1 year of the date of the referenced article's publication. Letters should contain no images or tables and no more than 5 references.

JNM policy prohibits the use of hyperbolic terms or phrases in the title, abstract or body of the text of submitted manuscripts. Qualitative claims as to the superiority (superior, best), primacy (first, novel, unique) or performance of an idea or instrument should be omitted.

2. References

References (not to exceed 40) should be cited in consecutive numerical order at first mention in the text and designated by reference number underlined and in parentheses. References appearing in a table or figure should be numbered sequentially with those in the text.

The reference list must be typed, double-spaced and numbered consecutively as in the text. When listing references, follow American Medical Association style (American Medical Association Manual of Style. 9th ed. Baltimore, MD: Williams & Wilkins; 1998). Abbreviate journal names according to the List of Journals Indexed in Index Medicus. "Unpublished observations" and "personal communications" should not be used as references, although written—not verbal—communications may be noted as such in the text. References cited as "in press" must have been accepted for publication and not merely in preparation or submitted. The author is responsible for the accuracy of all references and must verify them against the original document.

List all authors when six or fewer; for seven or more, list the first three followed by et al.

For journal articles:

For books and book chapters:

3. Units of Measurement

All measurements should be listed in Système Internationale (SI) units. Older conventions may be used after the SI units but should be placed in parentheses.

4. Abbreviations and Symbols

With the exception of units of measurement, JNM discourages the use of abbreviations. For additional information on proper medical abbreviations, consult Scientific Style and Format: The CBE Manual for Authors, Editors, and Publishers. Chicago, IL: Council of Biology Editors; 1994. The first time an abbreviation is used, it should be preceded by the full word or name of the item being abbreviated.
5. Tables
Type each table double-spaced on a separate page. Do not submit tables as photographs. The number of tables should be limited to seven, except in the case of dosimetry articles, which may exceed that number in lieu of illustrations.

Tables should be self-explanatory and should supplement, not duplicate, the text. Each table must be cited in consecutive numerical order in the text. Number the tables consecutively with an arabic number following the word “TABLE.” Titles should be descriptive and brief and typed centered in upper- and lowercase letters. Horizontal rules should be placed below the title and column headings and at the end of the table. Do not use vertical lines. Give each column a short or abbreviated heading.

Place explanatory matter in footnotes, not in the heading. Use the following symbols in this sequence: *, †, ‡, §, ¶, **. Expand in the footnote all nonstandard abbreviations used in each table in the order in which they appear in the table. For footnotes, identify statistical measures of variations, such as standard deviation and standard error of the mean. If data from another published source are used, obtain written permission from the publisher of the original source and acknowledge fully. If data from an unpublished source are used, obtain permission from the principal investigator and acknowledge fully.

6. Illustrations
Illustrations should clarify and augment the text. Because imaging is a major aspect of nuclear medicine, the selection of sharp, high-quality illustrations is of paramount importance. Figures of inferior quality will be returned to the author for correction or replacement. Additionally, because of space limitations, illustrations are frequently reduced in size. Each submitted illustration should clearly identify areas of interest with only enough surrounding area necessary for orientation.

The number of illustrations submitted should not be excessive for the length of the manuscript and in no case should the total number of illustrations exceed seven. These seven illustrations may consist of up to 14 separate glossy figure parts.

Submit four complete sets of glossy illustrations, no smaller than 3½ × 5 in. nor larger than 8 × 10 in. Do not send original artwork. Glossy photographs of line drawings rendered professionally on white drawing paper in black India ink, with template or typeset lettering, should be submitted. No hand-drawn or typewritten art will be accepted. Letters, numbers and symbols (template or template) must be clear and of sufficient size to retain legibility after reduction. Avoid dotted or lined shadings.

Each illustration must be numbered and cited in consecutive order in the text. Illustrations should be identified on a gummed label affixed to the back of each illustration and contain the following information: figure number, part of figure (if more than one, i.e., A, B or C), short running headline (from the title page) and designation of “top.”

Color illustrations will be considered for publication, but the author is responsible for all charges relating to separations and printing. An estimate of these charges will be sent to the author at the time of revision. Author approval of charges is required before production will begin. Additionally, authors may incur charges for corrections to black and white images (e.g., resetting labels and symbols, ganging multipart images as one image). Four complete sets of glossy color photographs (not transparencies) must be submitted for review. Polaroid prints are not acceptable. All submitted illustrations become the property of The Society of Nuclear Medicine and will not be returned unless the manuscript is rejected. Only two sets of illustrations are returned with rejected manuscripts.

7. Legends for Illustrations
Legends for illustrations should be concise and should not repeat the text. Legends should be typed double-spaced on a separate page. Each figure should be cited in consecutive numerical order in the text. Number the figures with an arabic number following the word “FIGURE.” Use letters to designate parts of illustrations (e.g., A, B or C) and describe each part clearly in the legend. Any letter designations or arrows appearing on the illustration should be identified and described fully. Nonstandard abbreviations used in each figure should be expanded in the legend in the order in which they appear in the illustration.

Original (not previously published) illustrations are preferred for publication in JNM; however, if illustrations have been published previously, authors are responsible for obtaining written permission from the publisher to reprint. The source of the original material must be cited in the references and the following credit line in parentheses included in the legend: “Reprinted with permission of Ref. X.” All permission releases must be submitted to the Editor at the time of manuscript submission.

F. Acknowledgments
Acknowledgment persons or agencies contributing substantially to the work, including any grant support.

V. MANUSCRIPT CHECKLIST

_____ Four double-spaced, typed copies of the manuscript.

_____ 3.5- or 5.25-in. diskette containing only final, revised, accepted version of the manuscript.

_____ Four sets of unmounted glossy figures (no smaller than 3½ × 5 in. nor larger than 8 × 10 in.).

_____ Copyright transfer.

_____ Title page with title, authors’ names and complete affiliations; complete address, telephone number, fax number and e-mail address for corresponding author and first author, if different; and complete address and e-mail address of author for reprint requests.

_____ Abbreviated title page with only title of manuscript.

_____ Structured abstract (maximum 350 words) and key words.

_____ References in consecutive numerical order. Reference list typed double-spaced. References in correct style.

_____ Figures and tables in consecutive numerical order.

_____ Legends for all figures, typed double-spaced.

_____ Consent forms for patient photographs.

_____ Written permission from the publisher to reprint previously published figures and tables.
cardiac SPECT, 359(ab), 456(ab), 1310(ed), 1335(ab) comparison of filtered backprojection and OS-EM methods, 1252(ab) dual detector coincidence imaging, 1303(ab) effect of transmission scan duration and smoothing, 1313(ab) error estimation, 1308(ab) esophageal cancer, FDG PET assessment, 594(ab) negative-positivity magnetic ischemic study, 788(ab) FDG coincidence imaging in oncology studies, 1311(ab) FDG lung studies, 46(ab) FDG PET, 562(ab) lesion detectability in breast cancer, 2025(ed) geometrical models, 298(ab) image processing, 1309(ab) improves target size assessment on 201T1 SPECT images, 749(ab) initial clinical validation profile, 361(ab) iodinated contrast, accounting for the presence of, 458(ab) iterative calculated body contour-based vs scan-ba, 730(ab) iterative reconstruction, 1323(ab) iterative reconstruction methods, 1326(ab) line array source for, 1331(ab) maximum-likelihood transmission gradient algorithm, 1312(ab) MRP reconstruction in whole-body PET studies, 1330(ab) multiple line source array, 15(ab) nonuniform scatter in brain SPECT without transmission imaging, 1330(ab) PET brain studies, 1315(ab) processing techniques for, clinical evaluation of, 1257 reducing urinary bladder artifacts in SPECT studies, 1315(ab) bential endocarditis, 418(ab) registration problems, 1296(ab) scatter window measurements, 1277(ab) segmented, 460(ab), 1304(ab) simultaneous emission/transmission tomography, visual assessment of 99mTc perfusion images, 1303 specificity improves 201T1 SPECT images, 363(ab) three-dimensional myocardial SPECT, quantification of defect size, 817(ab) transmission-emission myocardial gated SPECT, 752(ab) transmission scans in cardiac, SPECT, 1262(ab) transmission SPECT cardiac images, 701(ab) watershed segmentation algorithm, 1297(ab) 99mTc SPECT, brain imaging, 456 111In scanning line source for noncardiac, 1327(ab) Auger electrons DNA cleavage, 1405(ab) gene radiotherapy, 1009(ab) therapeutic efficacy of, 1374(ab) 121I, decrease in induction and toxicity from decay of, 1377(ab) 121In in vivo therapy of neoplastic meningiats, 986(ab) Autonomic nervous system, idiopathic dilated cardiomyopathy, prognostic value of 123I MIBG in, 917 Autotransplantable cell, multipurpose apparatus for radiopharmaceutical production, 1467(ab) Avascular necrosis bone SPECT vs MRI in detection of, 534(ab) changes in blood flow and bone metabolism, 870(ab) Avidin, modification, glycosylation and isoelectric point, 479 Avidin-biotin system, clearance of antigen, preinjection of intact antibody, 1381 Avidin chase, reduction of bone marrow toxicity, 1003(ab) B Back pain, bone SPECT, attenuation correction, 604 Bacterial Infection in granulocytopenia, scintigraphic imaging, 2066 99mTc HMPAO, 2073 Barium, history of, 242(7) Basal ganglia disorders, diagnosis, optimized and automated, 110(ab) SPECT imaging of Crigler Najjar syndrome, 914(ab) Bench to Bedside program, NIH imaging research opportunities, 9N(4) Benzamides, sigma receptor scintigraphy with, 488(ab) Benzodiazepine receptor decreased frontal cortical receptors, 578(ab) detection of viable cortical neurons, 1160(ab) neocortical epileptic foci, 131F FMZ PET, 1985 neuroprotective agent, FK506, 1172(ab) in vivo imaging of activated microglia, 571(ab) 18F fluorothymofluazem imaging of, 1222(ab) Benzodiazepines, regional brain metabolic responses, 788(ab) reproducibility of, 715 Beta-adrenergic receptor cardiac imaging, 351(ab) perfusion defects reversed by glucagon, 518(ab) synthesis and evaluation of, 496(ab) Beta-methyl-p-lodophenyl-pentadecane acid (BMIPP) dual label studies, rat tissues, 1918 sestamibi scintigraphy and, myocardial viability, 1468 Beta-Ray emitters, pure, Brillouinstrahlung radiation exposure from, 1024 Biliary dyskinasis, radionuclide prediction of clinical outcome, 856(ab) Biliary tract statistics, scintigraphic assessment of obstruction after hepatic resection, 214(ab) Biodistribution studies animal experiments, 121I-DES for, 403(ab) compartmental models, 830(ab) PET radiolabeled receptor scintigraphy with substituted benzamides, 488(ab) 99mTc complexes and 201T1, tumor/background ratios, 1036(ab) 111In-labeled dendritic cells, 1028(ab) 117In-PS 11159, 1354(ab) 18F, elimination study, 356(ab) Biota, 111In-labeled, streptavidin and, pretargeting of bacterial myocardial tracts, 484 Bisnath-213, antibody labeled with, preparation of constructs for clinical use, 1722 Bisnath-213 HIMU/195, alpha particle emitter labeled antibody, leukemia patients, 1958 Biphosphonates, radiolabeled, stability and bone accumulation, 1197 Bladder tumor, staging and therapy of, 399(ab) Blood Flow assessment of relative flow to detect viable myocardium, 184(ab) bronchial artery, perfusion scintigraphy, after lung transplant, 290 cerebral acetazolamide challenge test, 1173(ab) diagnosis of brain death, 1459(ab) diagnosis of 99mTc ECD, 1464(ab) distribution of 99mTc ECD changes related to age, 1818 dose response of renetinfilant, 291(ab) epilepsy, SPECT image registration for, 1098 gender differences, 1220(ab) naltrrexone effects in addicts, SPECT, 19 noninvasive determination of, 1272(ab) primary antiphospholipid antibody syndrome, 188(ab) Tc HMPAO evaluation of, 1446 quantification and SPECT to detect vasospasm, 1188(ab) quantitation using 99mTc ECD and SPECT, 1737 remote regional consequences of focused infarcts, 721 SPECT evaluation of acute cerebral infarction, 569(ab) statistical parametric matching, Parkinson’s disease, 1583 without blood sampling, 1273(ab) 99mTc compounds to measure brain perfusion index, 1271(ab) muscle, PET assessment of, 591(ab) myocardial absolute quantification with 201T1, 312(ab) baseline and hyperemic, 99mTc-labeled water and PET, 1848 intersubject variability in baseline studies, 763(ab) iterative reconstruction, PET, 862 monitoring therapeutic response, 732(ab) oxidative metabolism abnormalities, PET, 846 parametric imaging of, 295(ab) quantification by gated SPECT in normal subjects, 748(ab) simultaneous measurement of brain and MBF, 841(ab) 11N ammonia and PET, 1045 131I iodolortepane and 99mTc sestamibi in ischemic and infarcted myocardium, 352(ab) PET measurement of skeletal muscle, 359(ab) tumor, PET and MRI to measure, 1029(ab) tumoral, measurement with O-15 water, 464(ab) Blood pool Imaging determination of left ventricular ejection fraction, 776(ab) evaluation of left ventricular ejection fraction, 178(ab) gated built-in eye polar map display, 794(ab) quantification of abnormal ventricular function, 712(ab) three-dimensional analysis program for, 1278(ab) Tc, dose estimates, 1532 Blood sampling programmable sampling device, 1235(ab) FDG as radiolabel for cells, 951(ab) BMIPP (1-p-lodophenyl)-3-(RS)-methyl penad early detection of doxorubicin cardiotoxicity, 12(ab) early detection of myocardial damage with, 796(ab) myocardial viability assessment, 804(ab) Bombesin accumulation and retention of, 419(ab) design and synthesis of, 318(ab) gastrin-releasing peptide receptor, 317(ab), 418(ab) Bone anti-NCA granulocyte to image bone infection, 897(ab) leukocyte imaging of painful joint replacements, 43(ab) SPECT, OSEM vs filtered backprojection in, 1333(ab) Bone densitometry calcein ultrasound of postmenopausal osteoporosis, 538(ab) differential bone loss in femoral neck, 533(ab) effect of increasing tissue, 929(ab) third-generation fan-beam bone densitometer, 1230(ab) Bone marrow FDG PET in acute leukemia, 956(ab) local irradiation, effect on, 88(ab) sparing effects of Sn-117m-DTPA for pain palliation, 978(ab) 99mTc anti-NCA 90 granulocyte imaging of, 952(ab) 99mTc MIBI, high accumulation of, 943(ab) Bone metastases distribution in lung cancer, 1144(ab) FDG PET detection of, whole-body, 386(ab) gastroenteropancreatic tumor, somatostatin receptor imaging, 1602 high-dose Ho-166-DOTMP therapy, 160(ab) planar bone scintigraphy, vs 99mTc PET, 1623 receiver operating curve as SUV, 387(ab) same-day sequential FDG study, 83(ab) 18F sodium fluoride PET detection of breast cancer, 82(ab) 99mTc methylene diphosphonate, detection of bone tumors, 1140(ab) Bone neoplasm, malignant lymphoma, bone, 4Ga scintigraphy and MRI comparison, 387 Bone pain metastatic, management with systemic radionuclide therapy, 1420 palliation breast cancer metastasis, 188 Re Bruton in, 639 clinical data analysis, 264(ab) with Re-186, 1015(ab) Re-186 HEDP, 265(ab) Re-188, kinetics and therapeutic effect, 975(ab) Sr therapy, 585 radiolabeled bisphosphonates, 1197 Bone resorption proximal femoral component remodeling, 533(ab) usefulness of NTx in, 874(ab) Bone scan detection of breast cancer metastases, 82(ab) FDG PET detection of osseous metastasis, 81(ab) patterns in multiple stress injuries, 876(ab) SPECT vs MRI in nasopharyngeal carcinoma, 1052(ab) Bone scanning, radionuclide, osseous lesions, 1623 Bone scintigraphy bone metastasis, 413(ab) diagnostic value in prostate cancer, 874(ab) FDG PET replacement of, primary staging of malignant lymphoma, 1407 infection imaging, 905(ab)
effect on lesion detection in breast imaging, 140(ab)
fan-beam evaluation and calibration of, 1259(ab)
hole array pattern of, 1310(ab)
mapping of hologramulation errors, 1257(ab)
NEMA system plane sensitivity, penetrating photons, 1261(ab)
predicted lesion detection performance, 133(ab)
small gamma camera, 1226(ab)
ultra-high resolution uranium pinhole, 138(ab)

Colonic cancer
FDG PET whole-body imaging, 93(ab)
liver metastasis from, radiolabeled antibody distribution and radioimmunotherapy, 685
transplanted to nude mice, 18F FDG uptake in, 339 xenograph
fractionated external beam radiotherapy and radioimmunotherapy, 1764
MAB CC49 constructs, 1536

Colon transit
Pyliost suspension in, 848(ab)
67Ga labeling of activated charcoal capsules, 1383(ab)
99mTc citrate transport, in constipation, 277

Colorectal cancer
biodistribution of 18F P1666 vasoactive peptide, 1081(ab)
correlation of PET studies with CEA levels in, 1070(ab)
diagnosis with PET, 412(ab)
FDG PET assessment of recurrence, 1074(ab)
improved FDG PET abdominopelvic evaluation, 1083(ab)
multimodality imaging, 92(ab)
potentially resectable lesions, 1068(ab)
radioimmunotherapy of small-volume disease, 428(ab)
therapeutic efficacy of combined radioimmunotherapy, 429(ab)

Community hospitals, FDG PET scanning in, 11N(11)

Compartamental models
accurate parameter estimates for dynamic 18F Ti SPECT, 313(ab)
FDG distribution, 1358
muscarnic cholinergic ligand, 119(ab)

Compton camera, predicted lesion detection performance, 133(ab)

Computed tomography (CT)
combined C T/ SPECT, 596(ab)
radiouclide transmission, attenuation maps, multimodality registration, 448
liver imaging, 1134(ab)
vSPECT in evaluation of cerebral hypoperfusion, 572(ab)

Computer-assisted diagnosis
database tracking on the Internet, 1468(ab)
decision support system, physician benefit from, 96
d2 receptors, semi-quantation of, 110(ab)
education, 145(ab)
interpretation of myocardial perfusion tomograms, 508(ab)
MIRDose 4, 1357(ab)
myocardial perfusion imaging, 1457(ab)
myocardial perfusion SPECT databases, 1290(ab)
voice recognition dictation system, 1292(ab)

Computer simulation
computer-based tutorials, 1461(ab)
Monte Carlo estimate of Cr-51-EDTA clearance, 210(ab)

Congestive heart failure
cardiac sympathetic function, 736(ab)
class to prognosis, 1699(ab)
left ventricular dilatation as predictor of, 181(ab)

Constipation
67Cu citrate, segmental colonic transit after, 277

Continuing Medical Education (CME), earning credit electronically, 99N(2)

Convex hull, global spatial normalization, brain, 942

Coppper-62 ATSM, comparative analysis reduction of, 1290(ab)

Coppper-62 P TSM, vs 99mTc estamibi SPECT in detection of coronary artery disease, 723(ab)

Coppper-64 ATSM, evaluation, hypoxic tumor model, 177

Coronary artery bypass surgery
effects on brain perfusion, 1225(ab)
gated myocardial SPECT to assess improved perfusion and function, 742(ab)
ischemic heart disease, assess regional function a, 76(ab)
myocardial perfusion SPECT, prognostic value of, 22(ab)

Colon cancer
FDG PET whole-body imaging, 93(ab)
liver metastasis from, radiolabeled antibody distribution and radioimmunotherapy, 685
transplanted to nude mice, 18F FDG uptake in, 339 xenograph
fractionated external beam radiotherapy and radioimmunotherapy, 1764
MAB CC49 constructs, 1536

Colon transit
Pyliost suspension in, 848(ab)
67Ga labeling of activated charcoal capsules, 1383(ab)
99mTc citrate transport, in constipation, 277

Colorectal cancer
biodistribution of 18F P1666 vasoactive peptide, 1081(ab)
correlation of PET studies with CEA levels in, 1070(ab)
diagnosis with PET, 412(ab)
FDG PET assessment of recurrence, 1074(ab)
improved FDG PET abdominopelvic evaluation, 1083(ab)
multimodality imaging, 92(ab)
potentially resectable lesions, 1068(ab)
radioimmunotherapy of small-volume disease, 428(ab)
therapeutic efficacy of combined radioimmunotherapy, 429(ab)

Community hospitals, FDG PET scanning in, 11N(11)

Compartamental models
accurate parameter estimates for dynamic 18F Ti SPECT, 313(ab)
FDG distribution, 1358
muscarnic cholinergic ligand, 119(ab)

Compton camera, predicted lesion detection performance, 133(ab)

Computed tomography (CT)
combined C T/ SPECT, 596(ab)
radiouclide transmission, attenuation maps, multimodality registration, 448
tumor imaging, 1134(ab)
vs SPECT in evaluation of cerebral hypoperfusion, 572(ab)

Computer-assisted diagnosis
database tracking on the Internet, 1468(ab)
decision support system, physician benefit from, 96
d2 receptors, semi-quantation of, 110(ab)
education, 145(ab)
interpretation of myocardial perfusion tomograms, 508(ab)
MIRDose 4, 1357(ab)
myocardial perfusion imaging, 1457(ab)
myocardial perfusion SPECT databases, 1290(ab)
voice recognition dictation system, 1292(ab)

Computer simulation
computer-based tutorials, 1461(ab)
Monte Carlo estimate of Cr-51-EDTA clearance, 210(ab)

Congestive heart failure
cardiac sympathetic function, 736(ab)
class to prognosis, 1699(ab)
left ventricular dilatation as predictor of, 181(ab)

Constipation
67Cu citrate, segmental colonic transit after, 277

Continuing Medical Education (CME), earning credit electronically, 99N(2)

Convex hull, global spatial normalization, brain, 942

Coppper-62 ATSM, comparative analysis reduction of, 1290(ab)

Coppper-62 P TSM, vs 99mTc estamibi SPECT in detection of coronary artery disease, 723(ab)

Coppper-64 ATSM, evaluation, hypoxic tumor model, 177

Coronary artery bypass surgery
effects on brain perfusion, 1225(ab)
effect of exercise on striatal dopamine release, 58(ab)
endogenous, 13C raclopride competition with brain response to methylphenidate, 1285
IBZM SPECT measure of reduced dopamine release, 444(ab)
PET measurement of receptor availability, 1176(ab)
Parkinson's disease, 125(ab)
DSPECT imaging of dopaminergic system in bipolar disorder, 380(ab)
Dopamine D2 receptors: autonomic, 272(ab)
synaptic, 1209(ab)
intrastriatal dopamine level, 124(ab)
quantification, 132(ep)
epiderm, 1902
raclopride, 58(ab)
sequential and parallel detection, 607(ab)
relative distribution in postmortem brain, 115(ab)
simplified analysis to metabolite corrected distribution, 143(ab)
"C PHT, 133(ab)
"F-fentanyl, 437(ab)
Dopamine transporter: age effects, 1812
autonomic Dopa-responsive dystonia, 272(ab)
changes in cocaine users, 441(ab)
characterization of highly selective DAT ligand for SPECT, 153(ab)
detection, 126(ab)
nigrostriatal dopaminergic pathway, Parkinson's disease, 753
pharmacokinetics of "F FCP, 1339(ab)
simultaneous SPECT studies, 260(ab)
SPECT Parkinson's disease, 530
SPECT imaging with "InTc TRODAT-1, 583(ab)
striatal quantification with microPET, 115(ab)
synthesis and structure-affinity studies of pipеридине-based analogs, 134(ab)
in vitro evaluation of acyclic amine-amide analogs, 134(ab)
"InTc labeled ligand and SPECT imaging of, 1161(ab)
"InTc TRODAT SPECT imaging of Parkinson's disease, 109(ab)
"InTc TRODAT-1 imaging agent, kinetic modeling of, 150
123I FCPIT, reproducibility of SPECT images, 1201(ab)
123I labeling, 154(ab)
123I labeling to monitor progression of Parkinson's disease, 111(ab)
Dose calibrator: errors related to radiopharmaceutical administration, 616(ab)
setting for 199Re, 1508
Dose estimation: therapy with 131I-octreotide, 983(ab)
"W lipiodol after brachytherapy, 167(ab)
"W Tc tesaotide, 1363(ab)
Dosimetry: applications, new rectal model for, 1524
autonomous thyroid nodule, radiiodine therapy candidates, 1928
biodistribution of 131I FCWAY, 168(ab)
biological, radiation adaptive response, 1378(ab)
brain
pediatric head and brain models, 1327
reviewed model, radionuclide S values in, 625
clearance fitting, in thyroid cancer, 131
direct and indirect radionuclide cytoagrapy, children, 2127(ab)
effective dose determination of 131I FBT, 1356(ab)
error estimation, 158(ab)
influence of stents, 165(ab)
 internal radiation, mouse models for, 1969(ab)
internal radionuclide, EGS4 Monte Carlo code-based software for, 1517
intravascular radioimmunotherapy, 979(ab)
marrow, radioactivity concentration in blood and body, 2102
MIRDose 4, 1357(ab)
Monte Carlo calculation of dose conversion factors, 1337
nonuniform, implications for radioimmunotherapy, 1337
nonuniform activity distributions, radionuclide S values at voxel level, 115
normal organ estimates of 1-131-NN-404, 155(ab)
patient morphology, MIRD models of, 157(ab)
radiation
biodistribution and, 1321(ab) antimyosin, 464
FDG distribution, 1358
marrow dosimetry based on radioactivity concentration, 159(ab)
non-Hodgkin's lymphoma and chronic lymphocytic leukemia, 1317
tests, after 131I therapy for thyroid cancer, 1716
urinary bladder model for, MIRD, 1025
"F fluorouracil, effect of 5-"F FU on, 1361(ab)
"Cu-211-BAT-Lym-1, tumor regression in lymphoma, 302
"InTc DMP-HSA serum albumin, 1532
"InTc labeled IgM antibody to CD15 antigens, 625
radiation absorbed dose and response to 1-131-Anti-B1 therapy, 77(ab)
radiotherapeutic nucleotides in breast milk, 1335(ab)
red marrow, prediction with 131I labeled anti-CEA MAbS, 169(ab)
three-dimensional transport model, 596(ab)
absorbed fraction of energy, cortical bone, 2115
absorbed fraction of energy within trabecular bone, 1947
two-step targeting and, small cell lung cancer, 1216
"W, PET imaging with, 1237(ab)
"W-180m and 198Hg-198m, 106(ab)
"In-PK 11195, 1354(ab)
"InTc labeled 18C monoclonal antibody, malignant brain tumors, 631
131I MIBG radionuclide therapy, errors in, 983(ab)
"Tc endovascular irradiation, 1359(ab)
Drug development: research, PET, and, 1154
Society of Nuclear Medicine Imaging in Drug Development (SNIDD), 22(7)
Drug-tracer interaction: biological activity of brain cannabinoid CB1 receptors, 438(ab)
PET assessment of, 440(ab)
DTPA, alpha-emitting bismuth cyclohexylenyl, anti-CD33 antibodies, 166
Dual-isotope imaging: accurate assessment of myocardial perfusion, 1321(ab)
tetrofosmin and FDG SPECT, 801(ab)
assessing renal function in essential hypertension, 863(ab)
cross-talk correction, 470(ab)
dopamine transporter, 1170(ab)
false-negative studies, 733(ab)
left ventricular ejection fraction measurements, 724(ab)
prostate cancer, 167(ab)
SPECT, in vivo prediction of radiosensitivity and multidrug resistance, 1084(ab)
spectral factor analysis in, 471(ab)
Dynamic SPECT: acute parameter estimates, 313(ab)
acquisition protocol design for, 589(ab)
detection of doxorubicin cardiotoxicity with I-123-BMIPP, 12(ab)
physiological parameter estimation, kinetic modeling, 312(ab)
quantification of dopamine transporter, 144(ab)
simultaneous emission/transmission, 382(ab)
D2-like dopamine receptor density, reproducibility, 270(ab)
D2 receptors, SPECT study of schizophreria, 123(ab)
E
Echocardiography (ECG): acute chest pain, 174(ab)
dobutamine, "InTc Tcaltumib comparison, 1683
gated SPECT
automatic ejection fraction determination, 797(ab)
left ventricular function and volumes, 1857
myocardial contrast, salvage after primary PTCA, 363
vs gated SPECT in determining left ventricular volume and ejection fraction, 778(ab)
Echocardiography (ECG): acute chest pain, dobutamine myocardial perfusion imaging or chest pain in women, 1222(ab)
Ectasy, upregulation of 5HT2A receptors in occipital cortex, 1216(ab)
Education & Research Foundation, Society of Nuclear Medicine, 32N(ab)
Ejection fraction automated gated SPECT calculations, 314(ab)
calculation with gated SPECT, 364(ab)
ECG-gated SPECT evaluation of, 747(ab)
gated PET determination of, 755(ab)
gated SPECT measure, 768(ab)
supernormal automated LVEF, 714(ab)
Electroanatomic mapping, quantitative, "InTc HMPAO SPECT and, Alzheimer's disease, 522
Embryonic antigen-1, anti-stage-specific, infection imaging, granulocyte membranes, 2107
Embryonic antigen-1 antibody, anti-stage-specific, radiation dosimetry, granulocytes, 625
Emission computed tomography: limited memory quasi-Newton reconstruction, 301(ab)
segmentation-based reconstruction vs gamma-regularized Bayesian reconstruction, 299(ab)
Emphysma, diffuse lung disease, scintigraphy, 85
EMT6 cells, hypoxic tumor model, 44(II)
Endocarditis, bacterial, pretargeting with streptavidin and "InTc labeled biotin, 484
Endothelial cells, labeling with "InTc HMPAO, cell-biomaterial interactions, 1756
Enrico Fermi Award, Presidential award given for PET research, 10N(4)
Enzyme inhibitors, hypoxic accumulation and metabolism of BRU59-21, 1019(ab)
Epidermal growth factor receptor antibody, 99mTc-labeled antihuman, tumors of epithelial origin, 768
Epilepsy: artificial neural network classifier for, 476(ab)
brain perfusion, 277(ab)
extratemporal and temporal, 132(FDG PET studies, 737
FDG PET as predictor of surgical outcome, 119(ab)
foci localization with FDG PET, 274(ab)
fractrationed ECD kits in epileptogenic zone detection, 1393(ab)
ictal SPECT predictor of epileptogenic region, 280(ab)
image registration and subtraction in ictal brain SPECT, 278(ab)
influence of anti-epileptic drugs on cerebellar glucose metabolism, 118(ab)
localization of seizure focus, 616(ab)
SPECT in children, 786
neocortical, 13C FMZ PET, 1985
normalization of ictal and interictal SPECT, 279(ab)
partial, dual-isotope "Tc and 131I SPECT in, 677
positive SPECT images of prolonged hyperperfusion, 275(ab)
postoperative neuropsychological changes, PET, 1180(ab)
Fluoro-m-tyrosine, Furosemide, Gallbladder, Gamma, Gallium-67, Gastric, Gallium-67, 28! tyrosine, splenic phantom PET, nonuniform metabolic renal divergence rheumatic integrative solid transferrin transfemn-independent therapy oncologic evaluation therapy. Infection, procedure, dimension PET, 1477 pertechnetate kits, 25N(2) cell CD71. The cold collimator. of uptake. of tumor. Ga-67, bone tumor '8F photodegraded therapy, 25N(3) bone. 2066 of uptake. Gastric, stomach, GI 18F PET, Splenic, FHPG, 333(ab) quantification, in myocardial angiosenesis, 760(ab) viral transfer of nucleoside transporter, 1011(ab) 5-FU pretreatment with HSV thymidine kinase, 1010(ab) 18F HFBG, PET imaging agent of gene expression, 103(ab) 171I FIAU imaging of, 104(ab) Gene therapy development of, PET imaging in, 995 PET with 18F HPG, 333(ab) quantitative evaluation, in myocardial angiosenesis, 760(ab) viral transfer of nucleoside transporter, 1011(ab) 5-FU pretreatment with HSV thymidine kinase, 1010(ab) 18F HFBG, PET imaging agent of gene expression, 103(ab) 171I FIAU, 105(ab) Gliblastoma, malignant glioma brachytherapy, 971(ab) Glioma enhanced 1C TPMM uptake, PET, 1180 prognostic assessment with 18F SPECT, 1063(ab) SPECT delineation of, 397(ab) Glomerular filtration rate count based camera method, to measure, 207(ab) estimation, renography, 1968(ab) Glucose cerebral metabolic rate of, PET FDG noninvasive measurement, 1441 metabolism blood-brain transport 1C methyl-D-glucose measure of metabolic rate of glucose, 293(ab) brain tumors, after stereotactic radiosurgery, 1085 cerebral, regional brain metabolic responses to lorcazepam, 715 cerebral cortex, statistical mapping of, 294(ab) dynamic changes in, 1174(ab) FDG uptake in human inflammatory cells, 888(ab) FDG uptake of prazosin, 828(ab) heart and skeletal muscle, insulin action effects on FDG uptake, 1116 myocardial PET imaging of, lump constant variability, 824(ab) myocardial uptake, ischemic cardiomyopathy patients, FDG PET, 1292 permeability, nonprimate erythrocytes, 2125(ab) tumor localization, 1369(ab) underestimation of MUGI with C-11, 842(ab) uptake, myocardial, FDG PET measurement, 1186 1C vs 18F FDG to measure MUGI, 836(ab) Glucose metabolic rates, cortical metabolic deficits in depression, 1211(ab) Glucose transport, phosphorylation and, FDG PET, 977 Glucose transporter FDG uptake and, untreated primary non-small cell carcinoma, 536 putative hypoxia, detection of tumor hypoxia, 854 1C O-methyl-D-glucose, 293(ab) Glutathione kit preparation of, 1395(ab) localization, brain, 1475 HMPAO, 1056 GLUT-1 (glucose transporter) expression in bronchioloalveolar lung carcinoma, 86(ab) KI-67 score, 998(ab) mitochondrial hexokinase, 999(ab) Glycodelate, conjugation, biodistribution of anthic Fab fragment, 837 Glycogenesis, isoelectric point relations, tumor accumulation of avidin, 479 Government Relations Update, 1998 year end report, 25N(2) Granulocyte colony-stimulating factor therapy, splenic FDG uptake, PET evaluation of, 1456 Granulocytopenia, bacterial and fungal infection, scintigraphic imaging, 2066 Graves' disease anti-thyroid drugs, 932(ab) dose calculation, 528(ab) retreatment with radioiodine, 215(ab) somatostatin receptor scintigraphy of, 925(ab) H HCFA reimbursement, PET, Town Hall Meeting, 101N(3) HPCPS codes, 1999, 26N(3) Head and neck cancer chemoradiotherapy, evaluated by FDG PET, 1132 cost-effectiveness of FDG PET imaging, 255(ab) diagnosis of with FDG PET, 253(ab) diagnostic and therapeutic assessment with DMSA, 98(ab) differentiation of tumor recurrence and post-treatment effects, 259(ab) dual-tracer lymphoscintigraphy, 257(ab) FDG PET assessment, 1051(ab) nuclear medicine in, 91 primary staging and recurrence, 254(ab) prognostic value of 201Tl-chloride, 105(ab) staging primary tumors with dual-head PET camera, 1056(ab) 18F-re-labeled monoclonal antibody, radiomunotherapy with, 263(ab) Head and neck tumors cervical lymph node metastases, 1150(ab) diagnosis of recurrent tumor with IMT SPECT, 256(ab) dual-time point FDG PET imaging of, 105(ab) FDG PET imaging of, 1053(ab) lymphoscintigraphy, double tracer technique, 776 sestamibi scintigraphy, prediction of radiotherapeutic response, 985(ab) SUI, 1049(ab) Head injury, PET vs CT/MRI in closed-head injury, 287(ab) Health Care Financing Administration (HCFA) hospital outpatient prospective payment system (HOPPS), 24N(A), 16N(12) Medicare coverage of PET, 23N(5) ruling on diagnostic tests, 25N(7) Y2K, 16N(12) Health Professions Network, news from the Technologist Section, 16N(4) Heart chronic heart failure, PET measures of, 19(ab) congenital anomalies, surgical intervention, scintigraphic assessment, failing, cardiac MIBG kinetics and metoprolol, 224 gated images, using factor analysis of dynamic structures, 1676 hibernating myocardium, 822(ab) sensitivity of 1C PHEN kinetics, monoamine oxidase activity and, 232 Heart disease, ischemic computer-assisted decision support system use in, 96 121I BMIPP myocardial metabolism in, 471 Heart rate, variability, 121I MIBG kinetics after myocardial infarction and repercussion, 904
Insulin-resistance syndrome, effect on FDG uptake, 939(ab)

Integrin antagonists, radiolabeled, tracers for tumor targeting, 106(ab)

Instrumentation
breast cancer imaging system, 122(ab)
compact quantitated gamma camera, 1225(ab)
detectors
avalanche photodiode array, 304(ab)
high resolution gamma ray, 303(ab)

micro-PET, lutetium oxyorthosilicate scanner for, 1164 penetration, determination of, 1261(ab)
PET, high resolution camera, 1233(ab)
PET scanner for neuropsychiatric disorders, 1240(ab)
scintigraphic findings of HIS-RIS interface, 1465(ab)
segmentation algorithms, effect of acquisition time on, 459(ab)
solid-state photodetector, 599(ab)

Insulin, hepatic targeting property, 498(ab)
Insulin-resistance syndrome, effect on FDG uptake, 939(ab)

Insulin-dose, Iodine-i23, iodine-123, 30(ab)
detectors
segmentation
scintigraphic PET, micro-PET, breast comparison, 39(ab)
"Ic scatter SPED' radioiodinated SPED', gene correction, labeled ligand, synthesis, quantification and quantitated 80(ab)

Iodine-123, iodine-125-labeled myocardial perfusion imaging, myocardial, sodium passage, uptake, uptake, 122(ab)
uptake, uptake in, 39(ab)
uptake in soft-tissue tumors, proliferation rate, 39(ab)

Iodine-123 B CIT, dopamine transporters, 107(ab)
SPECT data, Parkinson's disease, 530(ab)

Iodine-123 BMIPP, accumulation at ventricular junction, impairment, hypertrophic cardiomyopathy, 207(ab)
metabolic marker of ventricular pressure overload, 800(ab)
myocardial metabolism, ischemia model, 471(ab)

Iodine-123 epidepride outcome measures, 270(ab)
SPECT, quantification of dopamine D3 receptors, 1902(ab)

Iodine-123 FDG defects of functional dopaminergic system, automatic algorithm, 1091(ab)
SPECT, nigrostriatal dopaminergic pathway in Parkinson's disease, 753(ab)

Iodine-123 IBZM, dopamine D2-receptors, 122(ab)
efficient synthesis, 607(ab)
reliable synthesis for clinical studies, 609(ab)
SPECT study of schizophrenia, 123(ab)
synthesis for routine clinical studies, 606(ab)

Iodine-123 IMP, interictal SPECT imaging of frontal lobe epilepsy, 1204(ab)
radiolabeled amphetamine, simplified chemical synthesis, 1391(ab)
SPECT estimation of regional cerebral blood flow, 1273(ab)
SPECT-TCBF study to differentiate dementia, 1185(ab)

Iodine-123 IMT, pharmacokinetics in gliona cells, 1017(ab)

Iodine-123 IMZ, ischemia-reperfusion injury, 1172(ab)

Iodine-123 lomazenil, SPECT assessment of post-traumatic stress disorder, 578(ab)

Iodine-123 MIBG, Bechet's disease, 39(ab)
cardiac allografts evaluated with, sympathetic reinnervation of, 911(ab)
cardiac sympathetic denervation detection, 744(ab)
cardiac uptake, idopathic ventricular tachycardia and fibrillation, 7

Iodine-125, iodine-125, iodine-131, 30(ab)
detectors
segmentation
scintigraphic PET, micro-PET, breast comparison, 39(ab)
comparison of two methods with nonuniform attenuation correction, 1326(ab)
heart study, PET, 862
limited-memory quasi-Newton, 301(ab)
maximum likelihood, bone SPECT, 1978
mixed continuity image, 1299(ab)
OSEM vs standard filtered backprojection in brain studies, 592(ab)
reconstruction methods for PET detection of small lesions, 591(ab)
segmentation-based reconstruction vs gamma-regularized Bayesian reconstruction, 299(ab)
SPECT, 202(ab)
time-dependent compensation methods for, 1298(ab)

Journal of Nuclear Medicine (JNM), outstanding article, 15N(9)
Sandler, Martin P, Editor, Directions, 9N(1)
single-case study, 2130(ab)

K
Kawasaki disease, reverse mismatch of myocardial perfusion and metabolism, 90(ab)

Kidney
failure, hypertensive patients, captopril renal scintigraphy in, 412(ab)
function
automated technique to assess, 862(ab)
radionuclide therapy with 111In-DTPA-octreotide, 416(ab)
renal depth as predictor of, 867(ab)
hypotensive response to captopril, renal artery stenosis assessment and, 406(ab)
plasma flow, 18F EC clearance, radionuclide renography, 429(ab)
reconstruction of inconsistent SPECT data, 128(ab)
reproducibility of 125Tc DMSA, 56(ab)
scarring, 125Tc DMSA use in, 60(ab)
tumor neculation, function after, 125Tc DMSA SPECT assessment of, 968(ab)
urteropelvic junction obstruction, SPECT of 125Tc DMSA uptake, infant, 111(ab)

125Tc MAG3 uptake, reproducibility and accuracy, 972(ab)

Kidney function
"125Tc DMSA quantitative SPECT uptake, children, 56(ab)
"125Tc EC clearance, radionuclide renography, 429(ab)
125Tc MAG3 clearance, reproducibility of, 112(ab)

Kidney transplantation, captopril renal scintigraphy of complications, 372(ab)

Kinetic analysis
neuroreceptor modulation, 1265(ab)
quantization of dynamic FDG PET oncology images, 465(ab)

Kinetic modeling
cardiopulmonary studies of 1C-carbonyl-WAY-10635, 1162(ab)
PET dopamine D1 receptors, 435(ab)
serotonin transporters, 114(ab)
"125I MIIBG, uptake, heart, effects of Parkinson's disease, 371(ab)
125I-orthodihalopropionate, single-sample clearance, renal, reproducibility of, 1122(ab)
125I-sodium iodide rapid automated blood volume analyzer, 961(ab)
uptake measurement in thyroid remnants, 930(ab)
125I-sodium therapy, stunning, well-differentiated thyroid carcinoma, 1046(ab)
125I-whole-body scan comparison of measurement techniques, 989(ab)
diagnostic and post-therapeutic imaging, 1046(ab)

Ischemia
effects on glucose utilization, 828(ab)
three-dimensional location, size and intensity of ischemia, 729(ab)

Ischemic heart disease
effect of experimental myocardial perfusion, 734(ab)
prognostic value of dual SPECT studies of, 13(ab)

Ischemic left ventricular dysfunction, "125I, fixed defects on stress-rejection SPECT, 731(ab)

Ischemic penumbras, detection of viable cortical neurons, 1166(ab)

Iterative reconstruction
coded aperture imaging, 1305(ab)
comparison of two methods with nonuniform attenuation correction, 1326(ab)
heart study, PET, 862
limited-memory quasi-Newton, 301(ab)
maximum likelihood, bone SPECT, 1978
mixed continuity image, 1299(ab)
OSEM vs standard filtered backprojection in brain studies, 592(ab)
reconstruction methods for PET detection of small lesions, 591(ab)
segmentation-based reconstruction vs gamma-regularized Bayesian reconstruction, 299(ab)
SPECT, 202(ab)
time-dependent compensation methods for, 1298(ab)

Journal of Nuclear Medicine (JNM), outstanding article, 15N(9)
Sandler, Martin P, Editor, Directions, 9N(1)
single-case study, 2130(ab)

J

Labia, biopsy, salivary gland scintigraphy in Sjögren's syndrome, 64(ab)

Latin America, nuclear medicine in, 9N(9)
Lawrence, John, Donner Laboratory, 16N(ab)
Left bundle branch block, fatty acids added in, myocardial viability and, 213(ab)
pattern of myocardial perfusion abnormality, 783(ab)

Left ventricular dysfunction
for acute MI, prediction of recovery, 1683(ab)
chronic, BMIPP imaging, 1468(ab)
severe, "125Tc tetrofosmin SPECT for prediction of, 1824(ab)

Left ventricular ejection fraction
automated, echocardiographic-gated "125Tc tetrofosmin SPECT, 1693(ab)

blood-pool imaging of, 776(ab)
gated SPECT techniques to assess left ventricular function, 753(ab)
gated SPECT vs radionuclide ventriculography in assessment, 757(ab)
gated thallium SPECT in, major myocardial infarction patients, 513(ab)
large perfusion defects and, gated SPECT, 805(ab)
perfusion and, gated SPECT, 650(ab)
radiouclide, sympathetic nerve alterations, failing heart, 224(ab)
simultaneous dual-isotope gated SPECT study for, 724(ab)

viability in chronic infarction, BMIPP imaging, 1468(ab)

Left ventricular function
free fatty acid utilization and, 125I BMIPP gated SPECT assessment of, 1840(ab)
gated myocardial perfusion SPECT assessment of, 705(ab)

improvement in, after pulmonary thromboendarterectomy, 173(ab)
prediction by BMIPP in chronic infarction, 706(ab)
Liver, Liposomes, FDG, pulmonary, chronic, fibrosis, gated, myocardial viability with rest 20Tl, 743(ab)
Leptin, melanoma, metastases, cerebrospinal fluid study of, 120(ab)
Leukemia anti-CD33 in, pharmacokinetics and dosimetry, 1935 chronic lymphocytic, non-Hodgkin’s lymphoma and, radiation dosimetry, 1317 early and delayed whole-body scan to detect, 523(ab) minimal residual disease, 942(ab)
Liposomal antibodies to treat leukemia, 262(ab)
Leukoecytosis, utility of delayed HMPAO in diabetic foot, 903(ab)
Lewy body disease, discrimination from Alzheimer’s-type dementia, 1185(ab)
Limp perfusion, hyperthermic isolated, soft-tissue sarcoma and skin cancer, 262
Liposomes, 99mTc labeled, hydrazino nicotinyl derivative, 192
Liver hemodynamic change and uptake ratio of, 217(ab) hiliar cholangiocarcinoma, 99mTc GSA accumulation, 394 ischemia-reperfusion injury, FK506, 847(ab)
lesion detection, tracer subtraction in SPECT, 1011 metastasis, radiolabeled antibody distribution and radioimmunotherapy, 685 partial resection of, 212(ab) portal hemodynamics, 858(ab) ressecion residual functional reserve, 99mTc GSA SPECT, 1644 99mTc-GSA, recovery of asialoglycoprotein receptors, 137 transferrin receptors, 99mTc targeting in tumors, 1547 99mTc annexin assessment of transplant rejection, 846(ab)
Liver clearance, comparison between 99Tc-99mTc and 99mTc GSA, 211(ab)
Liver disease chronic, functional evaluation with liver-spleen scan, 1745 pathophysiology of biliary secretion, 845(ab)
Liver function liver, quantitative evaluation of, 213(ab) segmental estimation of, 216(ab) 99mTc-labeled fatty acid analog to assess, 1406(ab) Liver malignancies, SPECT assessment of PGP expression, 426(ab)
Liver metastases, pancreatic cancer, FDG PET, 250 Liver-spleen scan, functional spleen volume calculation, 1745 Liver transplantation, auxiliary partial orthotopic, asialoglycoprotein receptor scintigraphy in, 1463
Loevinger-Berman Award, 15n(9)
Low flow, fatty acid imaging of ischemia, 840(ab)
Lung aerosol scintigraphy, 99mTc-labeled exogenous natural xenon, 1080 detection of pulmonary lesions with coincidence imaging, CT and MRI, 1094(ab) FDG uptake, errors in, 385(ab) fibrosis in, 379(ab) muscarinic receptors, PET detection of, 1270 pulmonary adrenergic receptor density, 834(ab) scintigraphy, pulmonary segmented reference charts in, 1402(le)
Lung cancer chemosensitivity of, reproducibility by 99mTc MIBI SPECT, 1778 diagnosis, staging and management of, 544(ab) diagnosis with FDG PET, 230(ab) differential diagnosis with Met PET and FDG PET, 1091(ab) distribution of bone metastases in, 1144(ab) dynamic 30-minute PET imaging of, 1088(ab) FDG detection of pulmonary lesions, 1092(ab) FDG detection of skeletal metastases, FDG, 1145(ab) FDG gamma camera coincidence imaging in, 556 FDG PET diagnosis of, 228(ab)
FDG PET evaluation of chemotherapeutic effect, 1090(ab) FDG PET staging, 229(ab), 547(ab), 561(ab) FDG PET tumor detection, 1030(ab) FDG uptake as prognostic marker, 548(ab) lesion detection, FDG PET, ROC analyses, 2043 lymph node staging with 99mTc choline and FDG PET, 2014 multidrug resistance, and radiostereology, 1084(ab) non-small cell glucose transporters and FDG uptake in, 536 P-glycoprotein and 99mTc tetrofosmin uptake in, 1223(ab) non-small-cell chemotherapeutic effect of, 1086(ab) response monitoring, 564(ab) staging of, with coincidence imaging, 1093(ab) PET imaging, patterns and pitfalls of, 1462(ab) PET in, 814 preoperative assessment of mediastinal lymph node metastases, 108(ab) pulmonary nodules, evaluation of, 3(ab) small cell targeting cholecystokinin-B/gastrin receptor-expressing tumors, 1029 two-step targeting and dosimetry, 1216 SPECT 99mTc MIBI imaging of, 1087(ab) uptake of FDG in, 1089(ab) validation of three-dimensional PET imaging, 1096(ab)
In-DOTA-lanreotide scintigraphy, 395(ab)
Lung disease, diffuse, threshold of detection, 85 Lung perfusion prognostic value of, 880(ab) quantification of regional pulmonary artery flow, 877(ab) Lung scintigraphy detection bronchocelebitis obliterans syndrome after lung transplantation, 525(ab) released computational tomography, 88(ab) partial ventilation/perfusion mismatch, 221(ab) whole-body blood flow patterns, congenital heart anomalies, 1477 Lutetium oxyorthosilicate PET scanner, high-resolution, animal imaging, 1164 Lyme neuroborreliosis, reduced cerebral perfusion, 1197(ab)
Lymphadenopathy, FDG PET vs CT in assessment of metastasis, 69(ab) Lymphedema, prediction of infection risk, 49(ab) Lymph nodes axillary, metastasis, breast cancer, FDG PET and dual-head coincidence imaging comparison, 1003 axillary lymph node detection with planar and 99mTc MIBI SPECT, 55(ab) sentinel localization, early breast cancer, 1403(le)
99mTc serum albumin identification of, in melanoma, 1143 Lymphoma brain SPECT, LESION detect size of scan accuracy, 891(ab) clinical behavior of CB-CC variant, 957(ab) colorectal cancer, FDG PET imaging applications, 591 FDG coincidence imaging of, 249(ab) FDG PET staging of, 247(ab) high-dose chemotherapy, 946(ab) malignant bone, 99mTc scintigraphy and MRI comparison, 387 primary staging, FDG PET detection of bone scintigraphy in, 1407 non-Hodgkin’s B-cell, 99mTc GA scintigraphy in, 40 chronic lymphocytic leukemia and, radiation dosimetry, 1317 conventional treatments, 1967(le)
99mTc 2IT-TAT-LYM-1 radioimmunotherapy, 2014 low-dose radioimmunotherapy, compared to high-dose, 993(ab) radioimmunotherapy with Y-90 and IDEC = Y288, 260(ab) response monitoring with FDG, 953(ab) radioimmunodetection of MRI of, 251(ab) staging and follow-up with FDG, 944(ab) tumor regression in, 99mTc IIT-TAT-LYM-1 pharmacokinetics in, 302 tumor staging with FDG coincidence imaging, 250(ab) Y-90 imaging of, 965(ab)
99mTc SPECT assessment of primary gynecologic, 955(ab)
99mTc uptake and in vitro studies, 960(ab)
Lymphangiography clinical significance of intercalated lymph nodes, 233(ab) complete groin dissection in vulvar cancer, 235(ab) detection of lower extremity lymphedema, 49(ab) diagnosis of breast cancer, 555(ab) double tracer technique, head and neck tumors, 776 dual-tracer imaging of head and neck tumors, 25(ab) influence of volume and injection site in breast cancer, 237(ab) internal mammary drainage, 557(ab) nodal drainage patterns of, 1120(ab) primary melanoma of the trunk management of, 112(ab) reproducibility of sentinel lymph node detection, 234(ab) vs subdermal and peritonal infections, 238(ab)
99mTc sulfur colloid sentinel node detection, 236(ab)
M Magnetic resonance imaging (MRI) chronic synovitis, radiation synovectomy effects, 1277 combination of Fourier space with 1H2O MR image, 1301(ab) correlation to SPECT in acute cerebral infarction, 569(ab)
dopamine receptor sensitivity, 582(ab) frequency encoding, simultaneous display using, brain, 442, gated, severe left ventricular dysfunction, recovery from, 1824 partial volume correction schemes based on, PET, 2053 tumor membrane metabolism, 973(ab) use with SPECT, to quantify pulmonary arterial flow, 877(ab) vs gated SPECT assessment of left ventricular volume and LVEF, 180(ab)
99mTc scintigraphy comparison, bone neoplasms, 387(ab) 201Tl SPECT and, non-metastases, 1414 Malignant disease, FDG-PET in lung lesions without tissue, diagnosis, 409(ab)
Mammography, scintimammography and, suspected breast cancer, 296 Managed care, 9N(12)
Marrow imaging, FDG PET of multiple myeloma, 945(ab)
Mass spectrometry, BMIPP pharmacokinetics and metabolism, animals and humans, 1484 Mathematical modeling analytic formula, 1310(ab) blood flow, 1269(ab)
Mclntyre, Patricia A., 20N(6)
MDS Nordin, MAPLE reactors, 20N(6)
Meckel’s diverticulum, gastrointestinal bleeding and, procedure guidelines, 1226 Medical Internal Radiation Dose (MIRD) method dosimetry, 166(ab) dynamic urinary bladder model, 1025 internal dosimetry, pediatric head and brain models for, 1327 radionuclide S values, revised dosimetric model and, adult brain, 62S techniques for radiation dose methods, 37S
99mTc-DMP-HSA serum albumin, dose estimates, 1532 Medical Isotopes Conference, nuclear physicians and the political process, 13N(5)
Medical speciality integration, nuclear medicine in the 21st Century, 13N(7)
Medulosa, focused infants, remote regional cerebral blood flow consequences, 721 Melanoma affinity for 99mTc complexes, 487(ab) FDG PET imaging, 78(ab), 591 FDG PET vs scintigraphy in outcome analysis, 79(ab) lymphoscintigraphy, 234(ab) lymphoscintigraphy in management of, 1125(ab) lymphoscintigraphy in sentinel node biopsy, 1124(ab) sentinel lymph nodes in, 99mTc serum albumin identification of, 1143 TNF perfusion, TYR PET in, 317 tumor targeting of 99mTc cyclic melanotropin peptide, 484(ab)
99mTc sulfur colloid filtration effects, 236(ab)
Metalodobenzylguanldine (MIBG) evaluation of cardiac adrenergic nerve, 833(ab)
low cardiac uptake as predictor of cardiomyopathy, 175(ab)
plasma cortisol levels on myocardial uptake of, 726(ab) scintigraphy in dilated cardiomyopathy, 8(ab)
sympathetic nerve effects, comparison with, 1342
uptake, heart, effects of Parkinson’s disease, 371
Metastasis carcinoma of unknown primary (CUP), 1149(ab)
optimize treatment, 16(ab)
Metastatic carcinoma, unknown primary sites, 1151(ab)
Methodine, lymph node uptake of, 85(ab)
11B-Methoxy-(172,20E,2Z)-[14C]lodovalinostriadiol, 103(ab) alpha-lactalbumin receptors, breast cancer, 1728
Methylphenidate, brain response to, repeated measures of dopamine release, 1285
Metoprolol, cardiac MIBG kinetics and, failing heart, 224
MicroPET Tc-99m myocardial blood flow, dynamic acquisition of, 20(ab)
myocardial imaging on, 826(ab)
Military medicine, 10N(1)
Modeling kinetic, dopamine transporter imaging agent, 96(ab) TRODAT-1, 150
myocardial glucose utilization measurements, blood activity corrected/uncorrected for metabolites, 842(ab)
quantification of FHT2, 1266(ab)
Modeling software, SPECT, improved detectability of perfusion defects, 218(ab)
Molecular imaging, 497
Molecular probes, oncogenes, cancer, and imaging, 498
Monoamine oxidase, activity, sensitivity of 13C PHEN kinetics, heart, 232
Monoamine oxidase B, effect of cigarette on, 1215(ab)
Mononuclear antibodies (MAB) anti-carcinomebrinogenic, 111(ab), labeled, after radioimmunotherapy, 1609 anti-C1q, adsorbing bismuth cyclohexylbenzyl DTPA, 166 anti-colon cancer xenografts with deoxyglucose, 430(ab) anti mucin antibody, to stage bladder cancer, 399(ab)
biodistribution of 99mTc- and 111In-labeled NY, 328(ab) CC49, constructs, colon carcinoma xenografts, 1536 mutation specificity of 6H8, 433(ab) red marrow, dosimetry of, 972(ab) therapy, biodistribution and dosimetry of 1-131-TNT antibody, 971(ab) vs MIBI in breast tumor imaging, 1106(ab)
99mTc, dosimetry of, 261(ab)
211Bi labeled, preparation of constructs for clinical use, 1722
Mononuclear transporter 2, vesicular, reproducibility studies with, 283
Monte Carlo simulation absorbed fractions of energy, within cortical bone, 2115 accurate modeling of photon interactions, 473(ab) code-based software for, EGS4, internal radionuclide dosimetry, 1517 effect and correction of detector sag in SPECT systems, 1260(ab)
effects of cardiac chamber size determined by, 314(ab) mathematical anthropomorphic phantoms, 157(ab) rectal expulsion, 545my applications, 1524 three-dimensional transport model, absorbed fractions of energy within trabecular bone, 1947
Motion artifacts head immobilization device for PET, 1242(ab) myocardial SPECT studies, 510(ab) Motion correction diverging circle algorithm for, 1329(ab)
Neuroblastoma
detected, 765(ab)
cardiac PET management of congestive heart failure, 189(ab)
clinical trial or time-interval as predictor of, 773(ab)
comparison of I-125-lododotestone and *HTe sestamibi in
detecting, 352(ab)
determinant of improved LVEF postvascularization, 190(ab)
dobutamine echocardiography, 777(ab)
dual-isotope assessment of, 193(ab)
effect of filtering on MIBI/FDG SPECT, 1322(ab)
fatty acid imaging, 17*I-9-F-MA, acute coronary syndrome, 1999
gatty acids added in left bundle branch block, 213(ab)
FDG PET study of, 708(ab)
gated FDG vs static N3H in assessment of, FDG, 183(ab)
gated SPECT and dobutamine echo assessment of, 338(ab)
gated *HTe sestamibi imaging, segmental thickening by, 171(ab)
ischemic left ventricular dysfunction, BMIPP imaging, 1468
I-123-BMIPP and *HTe MIBI, mismatching, 707
I-1**HPPA, low flow or after acute infarction and
reperfusion, 821
left ventricular dysfunction, 725(ab)
LVEF, postvascularization improvement of, 196(ab)
PET, spatial coregistration techniques, 18(ab)
post-stress ECG-gated SPECT assessment of, 798(ab)
recovery of left ventricular dysfunction, 194(ab)
recovery post-revascularization, 706(ab)
wall thickening or wall motion, 790(ab)
*HTe MIBI vs. *HTe SPECT, 2(ab)
*HTe sestamibi defect severity, poor prognostic indicator of,
function, 716(ab)
*HTe tetrofosmin assessment, models of coronary
occlusion and reperfusion, 142
*HTe tetrofosmin, 756(ab)
*HTe SPECT imaging of, 191(ab)
Myocardium
glucose uptake, FDG PET measurement of, 1186
glucose use, in CD36 deficiency, 239
influx and efflux of *HTe MIBI, 835(ab)
ischemic, 99mTc-MIBI and *HTe-BMIPP studies, 707
ischemic and hypoxic, radioiodinated fatty acid anlogs,
1204
oxidative metabolism abnormalities, PET, 846
reperfusion therapy, 770(ab)
*HTe MIBG kinetics, elevated plasma norepinephrine
effects, 2088
*HTe SPECT, distribution of image amplitude, 730(ab)
Myopathies, inflammatory, biodistribution and radiation
dosimetry of *HTe antimyosin in, 464
N
Naltrexone, regional cerebral blood flow changes, alcohols, SPECT, 19
Nasopharyngeal carcinoma
PET study of malignant tumor, 105(ab)
SPECT imaging of skull base involvement, 1052(ab)
National Cancer Institute, prostate cancer, 33(ab)
National Institute of Biomedical Imaging, Academy of
Radiology Research (ARR), 9(ab)
National Institutes of Health (NIH), imaging research
opportunities, 9(ab)
National licensure
public affairs update, 25(ab)
rewrite of 107(ab)
Neck, metastases, *HTe SPECT and and MRI, 1414
NEMA, acceptance testing, 12(ab)
NEMA protocol, signal-to-noise ratio, evaluation of,
48(ab)
Nephron-sparing surgery, *HTe MDP renal retention
after, 418
Neural networks
PET activation study of cochlear implant users, 1160(ab)
PET studies of sound processing and memory process,
1175(ab)
Neuroblastoma
image analysis, 912(ab)
somatostatin receptor scintigraphy and FDG PET, 1059(ab)
*C epinephrine PET imaging of, 519(ab)
Neuroendocrine tumors
somatostatin receptor imaging, factor analysis of
dynamic series in, 33
somatostatin receptor scintigraphy in, 539
*HTh P829 vs *HTh-Pentetoreotide in detection, 369(ab)
Neuroimaging
CBF with flow-sensitive alternating inversion recovery,
omostenteties, 574(ab)
database for image analysis and documentation, 1289(ab)
revised dosimetric model, adult head and brain, 625
Neurophysiology, functional neuroanatomy, 119(ab)
Neurotransmitters, *HTe labeled, unprecedented high specific
activity, 1913
Noricotic acetylcholine receptors
kinetic modeling of, 116(ab)
occupancy by nicotine doses, 439(ab)
PET imaging with, 1340(ab)
Noricotic receptors, acetylcholine, with [18F]fluoro-A-
85380, 1374
Nifedipine, photoactivated
promotion of galium uptake in tumor cells, 159
tumor cell uptake of galium and, 2129(ab)
Nitrogen-13 ammonia, PET, myocardial blood flow, 1045
NMDA (N-methyl-D-aspartate) receptor, glycin site of,
135(ab)
Noise, removal, using factor analysis of dynamic structures,
1676
Norepinephrine, plasma, extrinsically elevated,
myocardial MIBG kinetics and, 2088
Norepinephrine transporter, vesicular storage and
monamine oxidase activity, isolated heart, 323
Normal uptake, myocardial perfusion baseline studies,
inter-slice and intra-subject variability, 763(ab)
Nuclear medicine
advances, fused image tomography, 13N(ab)
clinical practice, 10N(ab)
decision analysis, 1570
history of, Donor Laboratory, 16(ab)
Latin America, 9(ab)
lines from the president, 21(ab), 38(ab)
in managed care, 9(ab)
in the military, 10(ab)
U. S. Congress, 20(ab)
Nuclear Medicine Archives, The Heritage Project,
21(ab)
Nuclear Medicine Pioneer Series
MCAF1E, John G., 15(ab)
Wagner, Henry N., 13(ab)
Nuclear Regulatory Commission (NRC)
ACNP/SSN-ACR, 6(ab)
DOE isotope conference, 22N(ab)
itations to patients following radioidine therapy, 990(ab)
10 CFR Part 35, Sustained Growth Rate System, 25(ab)
O
Osteogenesis imperfecta
PET evaluation of, 1424
Pancreatic cancer
FDG PET, optimal interpretation of, 1774
FDG PET assessment of treatment response, 107(ab)
FDG PET vs CT in management of, 42(ab)
FDG PET, liver metastases from, 1(ab)
preoperative FDG uptake, correlation with Ki-67
immunostaining, 5(ab)
Osteogenic sarcoma
FDG PET evaluation of chemotheraphy in, 113(ab)
metastasis, 9(ab)
neoadjuvant therapy response, FDG PET, 163(ab)
tumor necrosis, 52(ab)
Osteomyelitis
assessment and efficacy of imaging vetebra1
ostomyelities, 9(ab)
bacterial detection with *HTe ciprofloxacin, 60(ab)
FDG PET exclusion of, 61(ab)
pediatric imaging of, 47(ab)
*HTh HMPAO four-phase imaging, 902(ab)
Osteosarcoma, radiotherapy with high-dose Sm-153-
EDTMP, 97(ab)
Ovarian cancer
experimental ovarian carcinoma, effect of
radioimmunotherapy, 43(ab)
ovarian cancer, using a hybrid PET scanner, 54(ab)
recurrence, detection of with whole-body FDG PET,
42(ab)
*HTh labeled chimeric monoclonal antibody, 96(ab)
Oxygen extraction fraction, increased, prognosis in
cerebrovascular diseases, 1992
Oxygen metabolism, myocardial, iterative reconstruction,
PET heart studies, 862
Oxygen-15 water
calculated input function in relative rCBF study,
127(ab)
derivation of input function on PET brain images,
14(ab)
echocardiography, 79(ab)
multiple-plane factor analysis in PET images, 30(ab)
PET and, baseline and hyperemic myocardial blood flow
measurement, 1848
O-2-[18F]fluorooctyl-1-tyrosine, transport mechanism,
uptake kinetics and, 1367
P
Pancreatic cancer
FDG PET, optimal interpretation of, 1784
FDG PET assessment of treatment response, 107(ab)
FDG PET vs CT in management of, 42(ab)
liver metastases from, 1(ab)
preoperative FDG uptake, correlation with Ki-67
immunostaining, 5(ab)
Parathyroid
hyperfunctional, *HTe MIBI correlated with histology, 1792
rapid scintigraphy with *HTe tetrofosmin, 920(ab)
scanning accuracies, 36(ab)
Parathyroid adenoma
SPECT, diagnostic utility and cost-effectiveness of,
94(ab)
*HTe MIBI correlated with histology, 1792
*HTe sestamibi, pre- and postoperative localization of,
197(ab)
1* HTe subtraction and delayed *HTe MIBI imaging, 199(ab)
Parathyroid imaging
effect of cell type of sestamibi sensitivity, 201(ab)
sequential parathyroid-seeastamibi imaging, 200(ab)
Parathyroid scintigraphy
perchlorte in, 176(ab)
radiouged surgery, comparison of, 203(ab)
Parkinson's disease
cardiac sympathetic dysfunction in, 727(ab)
dementia with Lewy bodies, 117(ab)
differential diagnosis vs multiple system arophy, 271(ab)
disease progression, 107(ab)
dopamine degeneration in, 111(ab)
dopamine D2 receptors, 273(ab)
dopamine SPECT in, 530

Subject Index • 1999 331
doxorubicin transporter, localization and biodistribution, 1178(ab)

Pharmacokinetics
biomodulation of 5-FU, 103(ab)
characteristics of 1-131-anti-B1 (anti-CD20) antibody, 991(ab)
compartamental analysis, heterogeneous tissue model of 18C-aminooxyacetic acid, 101(ab)
design of oral pharmacological dosage forms, 365(ab)
drug formulation evaluation, 610(ab)
Pharmacologic stress test, imaging protocol for, 513(ab)
Pharmacokinetic studies
dosimetry of 99mTc tissucase peptides, 136(ab)
PET data processing, 128(ab)
Phelps, Michael, Fermi Award, 12N(6)
Phelps, Michael E., Presidential award given for PET research, 10N(4)
Phospholipid turnover, ischemic brain, PET, 1590
Phosphorus-32 palliation, in skeletal metastases, 256
radioiodinated treatment of joint hemorrhage, 44(ab)
Photodynamic therapy, tumor response after, high-resolution PET, 876
Physical evaluation Program (PEP), earning CME credit electronically, 9N(2)
Physician fee schedule
CHCPP news, 26N(3)
SNM Physical Evaluation Program, 26N(1)
Pinna longitudinal imaging, magnetic fields in pigeons, 412(ab)
Pinna-labeled angiography, 300(ab)
Peptide receptor radiometry
Asilomar symposium, 99(ab)
Metabolic activity of S-receptor ligands, 55(ab)
seizure focus, subtraction ictal SPECT, 786
thyroid cancer, UICC/AJCC classification in, 212(ab) urinary tract infection, 99mTc DMSA clearance and, 52 validation of PET in diuretic renography, 54(ab)
[99mTc] DMSA quantitative SPECT uptake, kidney, 56
[99mTc] white blood cell imaging of inflammatory bowel disease, 50(ab)
[11] IBZM SPECT, dopamine receptor brain imaging, neonatal period, 212(ab)
Peptide receptor imaging
angiogenesis, intravascular agent for detection of, 119(ab)
chelation in collagen imaging, 417(ab)
cholecystokinin-B/gastrin receptor ligands, preclinical development of, 420(ab)
GPIIb/IIa, 887(ab)
melanoma, 485(ab)
metastatic medullary thyroid cancer, staging of, 396(ab)
[99mTc] labeled leukotrien-B4 receptor antagonist, 892(ab)
[99mTc] labeled vasoactive intestinal peptide, 1081(ab)
[111In-labeled] analogs, 300(ab)
Peptide-receptor radiography
for lymphoma with Interleukin-15, 1027(ab)
medullary thyroid cancer, 420(ab)
somatostatin analog, radiocolidine therapy, 41(ab)
[111In-DTPA-octreotide, nonimpairment of renal function, 41(ab)
Peptides
epitope-specific growth factor receptor targeting of breast cancer, 137(ab)
infusion imaging multicenter trial results, 5(ab)
pharmacokinetis and biodistribution of 111In-DTPA-G-CSF, 103(ab)
uptake and pharmacokinetics in E. coli, 954(ab)
in vivo and in vitro properties of 99mTc labeled, 139(ab)
[99mTc] labeled infection imaging, 950(ab)
Peptide chelator
glutathione, 504(ab)
tumor uptake of Cu-67-labeled antibody fragments, 326(ab)
Perchlorate, attribute of use, parathyroid scintigraphy, 176(ab)
Perucutaneous transcutaneous coronary angioplasty
defect severity, prognostic indicator of function, 716(ab)
postvascularization recovery, 767(ab)
evaluation of endocrine therapy in prostate cancer, 1137(ab)
evaluation of global ventricular function, 35(ab)
evaluation of intravenous radiopharmacy in pancreatic cancer, 1424
exclusion of chronic osteomyelitis, 61(ab)
flow-metabolism mismatch, 1196(ab)
gated, LVEF determination with, 755(ab)
germ-cell tumor staging, 1133(ab)
head and neck cancer, 91
heart and skeletal muscle uptake, insulin action on, 116
hematopoietic bone marrow, 95(ab)
histopathological correlation with aortic uptake, 355(ab)
human cancer cell lines, 99(ab)
infection imaging of lung, 86(ab)
lesion detectability, attenuation correction on, 1423
lesion detection, ROC analyses, 2043
liver metastases from pancreatic cancer, 250
lung cancer staging, 89(ab)
lymph nodes, 70
myocardial glucose uptake, 1186
myocardial glucose uptake in ischemic cardiomyopa-thy patients, 1292
neoadjuvant chemotherapy, evaluation of, 1143(ab)
neoadjuvant therapy response of osteosarcoma, 1637
noninvasive measurement of cerebral metabolic glucose, 1441
normal breast uptake of FDG, 1099(ab)
occult malignancy, identification with, 410(ab)
oncological applications, 1706
optimal interpretation, pancreatic cancer, 1784
papillary thyroid carcinoma, 986
Patlak analysis, 1075(ab)
postoperative direct radiation imaging of head and neck cancer, 1051(ab)
predictive value in soft-tissue sarcoma, 1147(ab)
predictor of pathological response to chemotherapy in breast cancer, 553(ab)
predictor of prognosis in lung cancer, 1095(ab)
preoperative lymph node staging of esophageal cancer, 9(ab)
preoperative uptake in breast cancer, 555(ab)
prevalence of recurrence in cervical lymph nodes, 529(ab)
primary staging and detection of recurrent head and neck cancer, 254(ab)
primary staging of malignant lymphoma, 1407
prognostic value in malignant pleural mesothelioma, 1241
prognostic index, 998(ab)
quantitation, correlation with histopathologic tumor control, 547(ab)
regional metabolic covariance patterns, 1264
role in oncology management, 40(ab)
routine follow-up procedure with thyroid carcinoma, 1043(ab)
same-day sequential studies, 83(ab)
sequential studies in AIDS patients, 889(ab)
skeletal muscle, glucose transport and phosphorylation, 977
splenic uptake, granulocyte colony-stimulating factor therapy, 1456
staging of gastric cancer, 94(ab)
staging of primary head and neck cancer, dual-head camera, 1050(ab)
staging of testicular carcinoma, 1135(ab)
temporal lobe hypometabolism, 276(ab)
thyroglobulin elevation in differentiated thyroid cancer, 1041(ab)
tumor volume assessment in cervical cancer, 1129(ab)
uptake as prognostic marker to therapeutic response, 548(ab)
uptake in giant cell-rich primary bone tumors, 390(ab)
uptake in inflammatory, skeletal and myocardinium, 563(ab)
uptake in non-small-cell lung cancer, 1089(ab)
uptake of broncholoalveolar lung cancer, 86(ab)
urinary excretion during, 1352
value of 30-minute scan in lung cancer, 1088(ab)
vs coincidence imaging in lesion detection, 545(ab)
vs coincidence imaging of thyroid cancer, 543(ab)
vs Ga-67 in Hodgkin’s disease, 252(ab)
vs MRI in abdominal lymph node staging in cervical cancer, 42(ab)
vs whole-body 99mTc FMT to detect malignancies, 1018(ab)
vs 99mTc chelometric peptide in infection/inflammation imaging, 16(ab)
whole-body imaging, follow-up of thyroid cancer, 1042(ab)
whole-body imaging in Hodgkin’s disease, 248(ab)
whole-body imaging of potentially resectable lesions, 106(ab)
whole-body scanning of gastric cancer, 1073(ab)
whole-body scanning of metastatic cervical lymph node, 1151(ab)
whole-body tumor imaging, 1134(ab)
FDG and tyrosine imaging, soft tissue tumors, 381
FDG imaging vs 18F PET to detect malignancies, 386(ab)
FDG management of differentiated thyroid cancer, 411(ab)
FDG PET diagnosis of primary or secondary lung cancer, 811(ab)
FDG quantification, 564(ab), 953(ab)
FDG vs CT in management of pancreatic cancer, 421(ab)
flow/metabolism imaging, 19(ab)
frequency encoding, simultaneous display using, brain, 442
frontotemporal metabolism in Alzheimer’s disease, 1198(ab)
glucose metabolism, brain tumors, after stereotactic radiosurgery, 1085
hepatic, scatter subtraction effects, 1011
high-resolution, tumor response after photodynamic therapy, 876
high-resolution cardiac study, 832(ab)
impedances on the HCPA Town Hall Meeting, 101N(3)
increased oxygen extraction fraction, cerebrovascular diseases, 1992
integrated vascular, anatomic brain data, 311
iterative reconstruction, heart study, 862
LSO-based camera, Lu-176 radiation effects on, 305(ab)
lymph constant variability during MGU measurement, 824(ab)
mammography-guided stereotactic brain biopsy, 468(ab)
MAP reconstruction, 129(ab)
measurement of dopamine receptor availability, 117(ab)
Medicare coverage of, HCPA expansion of, 23(ab)
meningioma staging, 79(ab)
methyl-11C thymidine. 11C activity after, 491
micro, performance evaluation, 1164
microgravity, 145(ab)
missing data effect on image quality, 1234(ab)
mononuclear oxidade B, 1215(ab)
myocardial beta-adrenoreceptor density, 507
myocardial blood flow, quantitative assessment of, 29(ab)
myocardial fatty acid metabolism, 91(ab)
myocardial hibernation, 186(ab)
myocardial oxidative metabolism, 33(ab)
myocardial perfusion imaging in CAD, 346(ab)
new high-resolution research tomograph, 306(ab)
new tracer, imaging of temporal lobe epilepsy, 935
nicotinic acetylcholine receptors, 439(ab)
nicotinic acetylcholine receptor studies, 116(ab)
noise suppression in image reconstruction of, 297(ab)
nonhuman primate
human vs nonhuman primate, comparison of, 294(ab)
nicotinic acetylcholine receptors, 1349(ab)
noninvasive assessment of hypoxia, 401(ab)
nuclear medicine, clinical, 11N(11)
N-13-ammonia detection of ischemia, 21(ab)
O-methyl-11C L-DOPA, blood-brain transport, 584(ab)
oxidative metabolism abnormalities, sympathetically
denergized myocardium, 846
parametric, 95(ab)
receptor distribution, neocortex, 25
partial volume averaging, 474(ab)
partial volume correction schemes, MR-based, 2053
patterns and pitfalls in lung cancer imaging, 1462(ab)
PET, bone and soft-tissue sarcoma, 84(ab)
potential applications of, developing novel cancer therapies, 995
preoperative FDG evaluation of Liver metastases, 1069(ab)
probe for imaging gene expression, 332(ab)
prognostic value of regional brain metabolism in assessment of dementia, 285(ab)
prostate cancer detection with 11C acetate, 243(ab)
quality assurance, clinical relevance of detector defects, 1657
quantification of myocardial glucose utilization, 836(ab)
quantitation
analytic scatter correction, 123(ab)
automated lesion volume estimation, 466(ab)
brain studies with reversible ligands, 1265(ab)
cascade gamma rays, effects on, 123(ab)
chemotherapy response in esophageal cancer, 594(ab)
comparison of SUL, visual grading and ROC, 565(ab)
conditions of physics and reconstruction methods, 59(ab)
CO2 quantitation in brain and myocardium, 841(ab)
dopamine D1 receptor binding, 5(ab)
equilibrium modeling, 5HT2A, 120(ab)
errors in FDG lung uptake, 385(ab)
FDG and 11C amino acid uptake in tumors, 1061(ab)
hottest pixel analysis, 1, 128(ab)
image-derived input function, 463(ab)
image evaluation on personal computers, 128(ab)
lung, deposition studies of, 383(ab)
myocardial blood flow by N-13 ammonia PET, 1304(ab)
OSEM vs standard filtered back projection in brain studies, 592(ab)
phantom testing of I-120, 501(ab)
post-adenosine data, 717(ab)
reconstruction of small animal images, 132(ab)
response to therapy, 124(ab)
serotonergic innervation with 11C M-CMN652 PET, 115(ab)
standardized uptake value, time corrections, 469(ab)
standardized uptake value distribution features, 1283(ab)
statistical bias in Logan graphical method, 141(ab)
stratal dopamine transporter, 1156(ab)
11C FLD457, 436(ab)
11C water and 46a EDSTA, 147(ab)
unquantitative, accuracy, 123(ab)
quantitative, venous sinususes as input functions for, 1666
receiver operating curve as SUV in bone marrow tumor, 387(ab)
registration, vascular structure for, pelvis, 347
reverse flow/metabolism mismatch pattern, acute myocardial infarction, 1492, 1499(ed)
reverse mismatch of myocardial perfusion and metabolism, 909(ab)
role in management of congestive heart failure, 189(ab)
R-82, wavelet-base noise reduction, 720(ab)
segmentation algorithms for transmission scanning, 459(ab)
senile plaques, 284(ab)
short-segmented transmission scans, effect on lesion detection and image quality, 1325(ab)
small-animal dedicated PET camera for, 303(ab)
image device, 1258(ab)
new era in research, 1176(ed)
small spheres, radioactivity concentration of, 118
Society of Nuclear Medicine Imaging in Drug Development (SNIDD), 22W(7)
spatial normalization methods, anatomic validation of, 317
Table-based standardized uptake value, 1284(ab)
tumor tracers
assessment of presurgical chemotherapy with, 551(ab)
correlation of tumor blood flow, 1029(ab)
FDG and FMT uptake in sarcoidosis, 878(ab)
FDG and 11C amino acid uptake, 1061(ab)
radionuclide antibody distribution and, and liver metastases model, 685
stability of monoclonal antibodies, 1381(ab)
synergic effect of, 430(ab)
treatment planning, dose estimation system and, 1151
vs chemotherapy in colorectal cancer, 428(ab)
5-fluorouracil/Leucovorin as radiosensitizer, 429(ab)
"Cu, pharmacokinetics and dosimetry of, 337(ab)
"Cu-212-BAT-LYM-1, lymphoma patients, 302
"Cu-212-TAT-LYM-1, non-Hodgkin's lymphoma, 2014
"Y biotin therapy in gIoma, 266(ab)
"Y DOTA-biotin, 75(ab)
"Y DTPA-anti-CEA Mab to improve, 1105(ab)
"Y HMFG1 in ovarian cancer, 432(ab)
In and Y-90 study of non-Hodgkin's lymphoma, 965(ab)
anti-B1, comparison of treatment techniques, 998(ab)
anti-B1 in lymphoma, 77(ab)
"I-labeled chimeric antibodies, 970(ab)
"I-labeled B1C6 monoclonal antibody, malignant brain tumors, 631
"I-labeled anti-B1 antibody, 76(ab)
"Re-labeled monoclonal antibody, 263(ab)
"Re-labeled antibodies in leukemia, 262(ab)
"Bi-labeled anti-CD19 antibody in lymphoma, 43(ab)
Radiolabeled antibodies
radiiodination, 1008(ab)
"Y DOTA conjugates, 603(ab)
Radiolabeled peptides
multiple dose regimen, effect on biodistribution, 997(ab)
pretargeting studies with, 1002(ab)
Radiolabeling, antisense, 693
Radiometals, Lu-177, facile labeling with, 968(ab)
Radiouclide angioMorphography
brain imaging with "F FDG, 1274(ab)
estimation of brain perfusion index, 1271(ab)
hepatic scintigraphy, 2(ab)
Radiouclide cocktails, peripheral neuropathy in osseous metastases, 976(ab)
Radiouclide cystography, incidence of vesico-ureteral reflux/infecMosis, 860(ab)
Radiouclide Imaging
computer-assisted decision support system, ischemic heart disease, 96
diagnosis of, with "Te imaging, 849(ab)
osseous cancer, neoadjuvant therapy response, FDG PET, 1637
"Te, radiouclide mixture with, 472(ab)
"Te, myocardial viability after coronary occlusion, 142
"Te, phantom study to test positron emitter, 501(ab)
"I-IPTA, low flow or after acute infarction and reperfusion, 821
Radiouclides, S values at voxel level, dosimetry of nonuniform activity distributions, 11S
Radiouclide studies, frequency encoding, simultaneous display using, brain, 442
Radiouclide therapy
concentration in blood and body, patient-specific narrow dose using, 2102
concentration effects of, 2(ab)
dose to household members, 935(ab)
efficacy of copper-64-TETA-Y3-octreotate, 997(ab)
intestinal administration, dosimetry from, 161(ab)
peripheral neuropathy following, Re-labeled HEDP/Sr-89 chloride, 976(ab)
radiolabeled CCK analogs, medullary thyroid cancer, 2081
synovectomy in hemophilic children, 44(ab)
systemic, management of metastatic bone pain, 1420
"Sc as a replacement for, 489(ab)
"Rb, bone pain relief, 515
"Sn citrate, 490(ab)
"Re-labeled colloids, 1392(ab)
"I-labeled octreotide, 415(ab)
Radiouclide venography
estimation of ejection fraction, after His bundle ablation, 754(ab)
exercise capacity, 739(ab)
vs gated SPECT in assessment of left ventricular ejection fraction, 757(ab)
Radiopharmaceutical Chemistry
multipurpose autotransplant apparatus, 1467(ab)
nuclear pharmacy, radiodetection method, 1391(ab)
radioclinical studies with, 14(ab)
radiolabeled antibody preparation, 140(ab)
reduction of Re-188 perrhenate, 1382(ab)
stannous chloride, 1379(ab)
"I61TC dopamine, characterization of, 321(ab)
"I-labeled pentetreotide labeled with Fe-59-ferric chloride, 1389(ab)
Radiopharmaceutical Development
biliary secretion studies, 1401(ab)
dosimetry for two PET tracers, para- and meta-"F FFPG and MBBG, 1362(ab)
FLT labeling substrate design, 335(ab)
iodine-labeled estrogen receptor ligands, 1372(ab)
peptide receptor radiouclide therapy, 322(ab)
radiolabeled transferrin, 5(ab)
reduction of Cu-111(ab)
"I-labeled benzamines, 118(ab)
Radiopharmaceuticals
generator-produced PET myocardial perfusion agents, 774(ab)
medication utilization evaluation, 1390(ab)
quantitative biodistribution, MIRD Pamphlet No. 16, 375(ab)
nuclear medicine protein, 1(ab)
Tc myocardial perfusion imaging with and without fatty meal, 343(ab)
thallium vD technetium for MPI, 344(ab)
uptake ratio of "F2CO3 in acute myocardial infarction, 838(ab)
"F YPS01, analog of alanserin and MDL 10, 148(ab)
Radioprotection, antimetastatic to reduce parenchymal damage from, 1(ab)
Radiosurgery, stereotactic, glucose metabolism after, brain tumors, PET, 1085
Radiosynovectomy efficacy in inflammatory joint disorders, 46(ab)
Radiotherapy
cervical cancer, 1130(ab)
delivery efficacy of radiopharmaceuticals, local drug delivery device, 837(ab)
efficacy of Lu-177-DOTA-Y3-octreotate, 993(ab)
fractured external beam, radiourography and, human bone, 177(ab)
quasimorphological, 177(ab)
three-dimensional assessment of pulmonary injury, 882(ab)
unresectable pancreatic carcinoma, 984(ab)
uptake of "Te tagged transferrin and "Te I, effect of irradiation on, 1376(ab)
Raynaud's phenomenon, esophageal dysmotility, scintigraphy with semisolid meal to evaluate, 77
Receptor operating characteristic curve
PET brain imaging, 477(ab)
three-dimensional moving match filter on simultaneous SPECT images, 120(ab)
Receptor-binding radiopharmaceutical IQNP, rapid purification of, 608(ab)
radiolabeling methods for, 322(ab)
synthesis and preliminary evaluation of, 494(ab)
"Te-RP527, accumulation and retention of, 419(ab)
"I-labeled, 317(ab)
"I-labeled analogs, 418(ab)
Receptors, genes of, Nuclear Medicine Imaging in Drug Development (SNIDD), 22(ab)
Receptor Imaging
ability, 44(ab)
cannabinoid receptor radioligands, 438(ab)
dopamine receptor radioligand, effects of amantadines, 58(ab)
Galactosyl-insulin, 498(ab)
IPT/BIZM analysis of pre and postsynaptic dopaminergic system, 11(ab)
P-gp modulation, 292(ab)
predictor of therapeutic response, 110(ab)
synthesis, labeling and evaluation of, "Te ECD-folate, 40(ab)
Receptor ligands, identification, phase display peptide libraries, 883
Receptors, effective dose determination of, "F BFET, 1356

Reconstruction algorithms, impact on activity quantitation, 595(ab)
effect of transmission scan duration and smoothing, 131(ab)
effects on ROC analysis lesion detection, 130(ab)
iterative, 590(ab)
matrix inversion for image, 296(ab)
PET, normalization correction, 123(ab)
Rectal model, dosimetry applications, 1524
Relan sympathetic dystrophy, responsiveness to NSAID/ steroid, 1189(ab)
Regional cerebral blood flow (rCBF), PET, activation studies with oxygen-14-CO2, 503(ab)
Regional metabolic covariance patterns, FDG PET, 1264
Regional myocardial blood flow, transmyocardial laser revascularization vs PMR, 337(ab)
Region of interest, hottest pixel analysis, 1286(ab)
Renal artery stenosis
PET imaging after treatment with lisinopril, 373(ab)
sцинтиграфическая статистика, 412(ab)
renovascular effects on structure and clearance, 1403(ab)
Renal cell carcinoma
fractionated radioimmunotherapy, 1364(ab)
"C acetate, PET imaging with, 1139(ab)
"Tc-labeled monoclonal antibody G250, characterization, 829
"I-labeled chimeric antibodies, 970(ab)
Renal cortical scintigraphy, pediatric applications of pinhole magnification imaging, 1906
Renal imaging
duplicated collecting systems, 913(ab)
renal uptake of Ca-67, 1140(ab)
renovascular effects on structure and clearance, 1403(ab)
Renal scintigraphy
ACE inhibition in diagnosis of RVH, 374(ab)
assessment of cardiac function during, 378(ab)
captopril vs captopril exercise to detect RVH, 866(ab)
communicating bladders in conjoined twins, 861(ab)
urologic management, 913(ab)
Renography
diuretic evaluate paramacular effects in renal transplant, 377(ab)
infants and children, 1805
timal timing of diuretic administration, 204(ab)
quantitative gravity-assisted drainage, 55(ab)
stafication of acute renal colic, 200(ab)
suprapubic tapping maneuver, 205(ab)
validation of F + G in pediatric patients, 54(ab)
dual-isotope assessment of renal function, 863(ab)
glomerular filtration rate estimation from, 196(ab)
Pataki-Rutland plot in, deconvolution comparison, 1503
radioiodine, "Te, EC clearance, single plasma sample, validation of, 429
resistance vessel dysfunction, 372(ab)
"Te MAG3, evaluation of renal function, 793
Renovascular hypertension
captopril/exercise imaging to detect RVH, 866(ab)
soratans vs captopril in depiction of, 374(ab)
Reperfused, reversible trapping, 813(ab)
Reperfusion therapy, myocardial infarction and, 121
MIBG kinetics after, 904
Reproducibility
camera-based clearance measurements, 209(ab)
myocardial perfusion SPECT studies, 509(ab)
PET studies, malignant tumors, 1771
11C DTZB, healthy human subjects, 283
11F FPCT SPECT imaging of dopamine transporters, 2101(ab)
Research radiouclides, thymidine as a cell proliferation
marker, 1013(ab)
Resolution improvement, cardiac SPECT imaging,
59(ab)
Resource-based practice expense, SNM Physical
Evaluation Program, 26N(1)
Restenosis
brachytherapy, 837(ab)
inhibition of, angioplasty, 819(ab)
Re-188 prevention of, after PTCA, 341(ab)
Revascularization
adjunctive transmyocardial laser, 339(ab)
PET and transmyocardial laser, 340(ab)
Reverse flow-metabolism mismatch, PET, acute
myocardial infarction, 1492, 1499(ed)
Rhenium-186 etidronate, breast cancer, with metastatic
bone pain, 639
Rhenium-186 HEDP, cisplatin and, prostate cancer cells,
667
Rhenium-188
biodistribution and elimination, 356(ab)
comparison of radiation absorbed dose, 166(ab)
dose calibrator setting for, 1508
DTPA liquid-filled to inhibit restenosis, 819(ab)
labelled antibody, stability study, 1367(ab)
labelled colloids as radiotherapeutic agent, 1392(ab)
labelled agents, preparation of, 1382(ab)
on-demand labeling of metal stents, 825(ab)
palliative treatment of metastatic bone pain, 975(ab)
phosphonate ligands, 1015(ab)
prevention of restenosis after PTCA, 341(ab)
radiation dose measurements of, 1359(ab)
spectral analysis, 1385(ab)
in vitro stability to prevent restenosis, 611(ab)
in vivo and in vitro analysis of stereoisomers, 1384(ab)
187Re HEDP, dose-eescalation study, 974(ab)
Rheumatoid arthritis
experimental antigen-induced arthritis, 537(ab)
inflammation imaging of, 872(ab)
arthrocentesis and inflammatory joint disorders, 46(ab)
Right lateral, 111Tc MIBI SPECT, diagnostic accuracy,
85(ab)
Right ventricular function
gated SPECT to measure, 758(ab)
 improvement in, after pulmonary thromboendarterectomy,
172(ab)
111Tc sestamibi SPECT, in coronary artery disease, 889
ROC curve, whole-body PET lesion detection with,
130(ab)
high-energy photon compensation, 1300(ab)
ROC curve in myocardial SPECT, 358(ab)
spectral deconvolution, 133(ab)
123I method for, 133(ab)
SCFV fragments, radioimmunotherapy, 324(ab)
Schizophrenia
dopamine D1 receptor binding in, 120(ab)
IPT SPECT of decrease dopamine transporter binding,
126(ab)
receptor ligand imaging of, 609(ab)
SPECT imaging of amphetamine-induced striatal
dopamine, 122(ab)
SPECT imaging of endogenous dopamine, 121(ab)
11F FDOPA assessment of, 125(ab)
Scintigraphy, see also specific type
endophagel, with seminal fluid, systemic sclerosis and
Raynaud's phenomenon, 77
lung, threshold of detection of diffuse disease, 85
perfusion, bronchial artery revascularization, after lung
transplant, 290
whole-body, congenital vascular malformation, 751(ab)
Scintillation camera
dual-head, coincidence imaging with, 432
gas detector, detection of electrons emitted by 181Re, 868
optimization of crystal thickness, 1229(ab)
Scintimammography
assessment of chemotheraphy response, 103(ab)
brain cancer, scintimammography in recurrent, 68(ab)
early breast neoplasm, 1100(ab)
cone-beam, 1254(ab)
correlation of scan patterns with 111Tc MDP, 66(ab)
effect of lesion size on 99mTc sestamibi, 64(ab)
lesion detection with, 140(ab)
patterns in radiouclide uptake, 146(ab)
reduction in breast biopsies, 1103(ab)
ROC analysis to improve tumor detection in, 1314(ab)
sestamibi SPECT vs planar imaging, 1099(ab)
111Tc MIBI
dedicated nuclear mammography use in, 46
suspected breast cancer, 296
99mTc sestamibi, Tc-scan and, breast cancer diagnosis, 376
99mTc tetrofosmin, 1102(ab)
Sclerosis, systemic, esophageal dysmotility, scintigraphy
with seminal fluid to evaluate, 77
Scrotal scintigraphy, pediatric applications of pinhole
magnification imaging, 1896
Seizures
postoperative neuropsychological changes, PET,
1180(ab)
temporal lobe hypometabolism, 276(ab)
Sentinel nodes
active uptake of macromolecule tracers, 1117(ab)
biospy, role of lymphoscintigraphy in breast cancer,
1119(ab)
biospy, cost-effectiveness in breast cancer management,
560(ab)
detection with lymphoscintigraphy, 70(ab)
dynamic lymphoscintigraphy, 232(ab)
filtered or unfiltered Tc-sulfur colloid for
lymphoscintigraphy, 612(ab)
imaging
advantage of small small solid-state gamma camera,
1121(ab)
melanoma and breast cancer staging, detection of,
602(ab)
nonvisualization in patients with breast neop,
1122(ab)
single- or double-method lymph node biopsy, 1114(ab)
imprint cytology, 1115(ab)
localization, early breast cancer, 1403(ab)
lymphoscintigraphic imaging, 233(ab)
lymphoscintigraphy in breast cancer, 238(ab)
mapping
111Tc serum albumin detection, 1149(ed)
111Tc serum albumin identification of, in melanoma,
1143
needle free tracer injection, 1113(ab)
prophylactic management of, counting properties of
gamma probes used in, 1227(ab)
radiation safety of lymphoscintigraphy, 1116(ab)
sensitivity of gamma probe in localization of, 558(ab)
sentinel node biopsy, 1118(ab)
Serotonin
low synthesis in temporal lobe indicator of major
depression, 577(ab)
receptor distribution, neocortex, parametric PET imaging
of, 25
turnover rate and orbitalfrontal glucose utilization,
219(ab)
Serotonin receptors
binding studies of depression pre- and post-treatment,
579(ab)
biodistribution and dose estimates for 11F FCWAY,
16(ab)
competition between 11C carbylonyl-1100635 and
endogenous serotonin, 117(ab)
hereditary depression, 575(ab)
localization with 11C WAY-100635, brain, PET, 102
PET brain studies, 150(ab)
PET imaging of, 151(ab)
P-glycoprotein modulation, 1167(ab)
preparation of SHT1A antagonist C-11 WAY-100635,
609(ab)
quantification of SHT2, 1266(ab)
regional distribution in human brain, 116(ab)
reproductibility studies of 11C carbylonyl-1100635,
visualisation with I-123-R91150 SPECT in Ecstasy
users, 121(ab)
11C PET, 1347(ab)
11F-labelled, 149(ab)
11F YPS01, PET radiotracer for 5-HIT2A, 148(ab)
Serotonin transporters
effect on alcohol neurtotoxicity, 445(ab)
kineetic modeling of 11C XMC5652, 114(ab)
kineinct model in nonhuman primates, 115(ab)
radiolabelled FEINT for mapping serotonin, 1344(ab)
in vivo activity of, 1346(ab)
in vitro and in vivo evaluation of, 1343(ab)
11B-C-BIT, follow-up SPECT study, 576(ab)
125I DAM SPECT imaging of, 1345(ab)
Sestamibi
assessment of regional myocardial blood flow, 1100(ab)
breast cancer, in suspected recurrent, 68(ab)
delayed detection to identify adenoma, 940(ab)
early and delayed ECG-gated SPECT, 812(ab)
memorial narrow imaging of residual disease in
acute leukemia, 942(ab)
high accumulation in bone marrow, 943(ab)
imaging of multiple myeloma, 959(ab)
quantiative SPECT method to identify cardiomyopathy,
507(ab)
redesession distribution of, in acute myocardial infarction
after direct PTCA, 713(ab)
stress testing, comparison of rest-exercise and rest-ATP
stress, 512(ab)
uptake patterns in benign and malignant disease,
1463(ab)
uptake ratio indicator of multihing resistance, 919(ab)
vs furofinosin and tetrofmo in detecting tumor
multidrug resistance, 1025(ab)
vs tetrofmo in detection of mild-to-moderate
coronary artery disease, 345(ab)
Sickle cell anemia
perfusion imaging in children with, 910(ab)
sulfur colloid assessment of hydroxyurea therapy on
splenic function, 958(ab)
Sigmal receptors
pharmacological targeting, 1127(ab)
11F labeled benzamides as, 118(ab)
111I imaging in breast cancer, 405(ab)
123I PMS tumor imaging agent, 486(ab)
Simulations, small animal PET system, 131(ab)
Simultaneous dual-isotope imaging
myocardial SPECT, validation of photon-energy
recovery, 839(ab)
SPECT coincidence system, 1247(ab)
Single photon emission computed tomography (SPECT)
accurate determination of head boundary, 1277(ab)
alcohols, naltrexone effects on cerebral blood flow, 19
attenuation and point response correction, 1254(ab)
attenuation correction, 137(ab)
application in TI-201, 363(ab)
attenuation correction for, 1251(ab)
bone
maximum likelihood reconstruction and ordered
subsets in, 1978
spine, attenuation correction techniques, 604
Surgery
endoscopy, miniature beta-sensitive probe for, 600(ab)
utility of myocardial scintigraphy before vascular.

792(ab)

Spectrophotometric determination, myocardial, oxidative metabolism abnormalities. PET, 846
Spectrophotometric system, cardiac

overactivity in hypertension. 121,51 MBIG imaging, 6 Parkinson’s disease, 371
Spectrophotometric system, vesicular storage and monoamine oxidase activity, isolated heart, 323
Sympathomimetic actions, MBIG, tympanic comparison, 1342
Synergistic, chronic, effects of radiation synovectomy, MRI, 1277
Technetium-99m, PET, 484(ab)

T
Tchugasch, idiopathic ventricular, 121 MBIG uptake in, 1

[snod 1]Tsalairch Atlas, global spatial normalization, brain, 942
Technetium-99m, PET, 484(ab)

Tc, pulmonary embolus, 579
Technetium-99m acute ischemic injury, 1369(ab)
atamper, 357(ab)
chrysamine G, 288(ab), 898(ab)
combinatorially designed radiopharmaceuticals, 499(ab)
dual-isotope PET, partial epilepsy, 677
ECDF, synthesis of, 1367(ab)
electrons emitted by, scintillation gas detector used to localize
flow IgM antibody labeled with, granulocytes, 625
infection imaging with ciprofloxacin, 904(ab)
labeling of highly selective DAT ligand for PET,

[ab}

liposomes labeled with, hydrazino nicotinyl derivative, 192
melanoma scintigraphy, 485(ab)
metabolization of fatty acid analogs, 1406(ab)
metal binding ligands, 500(ab)

mune immunoglobulin M antibody labeled with,
granulocyte membranes and, 2107
detection assay of with mpetid, 1366(ab)
SPECT imaging of dopamine transporter sites, 1161(ab)
strioserotonerig effects on structure and clearance,

1403(ab)
synthesis, labeling and evaluation of ECD-folate, 404(ab)
tumor targeting with labeled cyclic melanotropin peptide,

484(ab)
REV receptor agonist labeled with, colorectal tumors, 352
in vitro and in vivo properties of labeled peptides,

1397(ab)
13C breath test, oroecal transit, 1451
Technetium-99m annexin V, imaging of apoptosis with, 184
Technetium-99m-antibody labeling

MAG3-chelator for, 327(ab)
mercaptoacetyltriglycine chelator for, 1006(ab)
monoclonal antibody Fab’ fragment in infection of,

897(ab)
Technetium-99m apetid, early and delayed scintigraphy.
acute deep vein thrombosis, 2029, 2036(ab)
Technetium-99m Aquascan, peptide label, unprecedented high specific activity, 1913
Technetium-99m benzamides, affinity in melanoma.

487(ab)
Technetium-99m bitin, solid-phase labeling, 614(ab)
Technetium-99m collodil, double tracer technique, head
and neck tumors, 776
Technetium-99m colloidal albumin, mucoidhesive drug formulation, 610(ab)
Technetium-99m complexes
formation of NADH-sensitive Tc ligands, 493(ab)
infecion/inflammation imaging, 59(ab)
synthesis of cysteine-oxime ligands, 1402(ab)
Technetium-99m DMP-HSA, serum albumin, biodistribution and absorbed radiation dose estimates, 1532
Technetium-99m DMP 444, detection of deep venous thrombosis, 613(ab)
Technetium-99m DMISA, 52(ab)
clearance, overall and single kidney, urinary tract infection and, children, 52
renal SPECT, in renal scar, 60
SPECT, renal measurements with, 56(ab)
SPECT, renal tumor evaluation, 968
uptake
experiment paleophenixis, 643
SPECT, retroperitoneal junction obstruction, 111(ab)

Technetium-99m DTPA camera-based method to evaluate renal function, 867(ab)

estimation of renal clearance, 207(ab)
increase urinary excretion of, 370(ab)
metastasis volume complex for imaging hypoxia, 1373(ab)
Technetium-99m ECD, brain death determination, 1309(ab)
cerebral distribution, changes related to age, 1818

clearance, single plasma sample, validation of, 429
grognic value in acute cerebral infarction, 1202(ab)
quantiative analysis, regional cerebral blood flow
studies, 1183(ab)
Technetium-99m ECT, SPECT and, quantification of cerebral blood flow, 1737
Technetium-99m ENS, different freeze-dried formulations, in aerosol lung scintigraphy, 1080
Technetium-99m ethylideneicysteine, nonuniform attenuation correction of, 1328(ab)
Technetium-99m giscate acute chest pain patients, detection of acute MI in, 1832
myocardial viability assessment, 815(ab)
Technetium-99m GSA accumulation, hilar cholangiocarcinoma, 394
asialoglycoprotein receptors, 847(ab)
dynamic SPECT to predict postoperative liver function,

212(ab)
evaluation of chronic liver disease with, 211(ab)
hepatic asialoglycoprotein receptors, recovery after hepatic resection, 137
liver, biodistribution study of, 213(ab)
radiogalid for asialo-glycoprotein receptor, 855(ab)
SPECT

prognosis, cirrhosis of the liver, 1652
residual hepatic functional reserve, 1644
Technetium-99m HL91 applicability, detection of tumor hypoxia, 854
hypoxic tissue metabolism of, 330(ab)
kinetic study in isolated perfused rat hearts, 335(ab)
oxenograft status in xenografts pre- and post-radiotherapy, 1021(ab)
perfusion oxygen level, 823(ab)
trapping in hypoxic myocardium during low-flow ischemia, 813(ab)
Technetium-99m HMPAO acetazolamide challenge, 573(ab)
assessment of alterations in chronic traumatic brain injuries, 286(ab)
biodistribution of enantiomer, 1350(ab)
cerebral blood flow, qEUG and, Alzheimer’s disease, 522
dementia, Lewy bodies, Alzheimer’s disease and Parkinson’s disease, 956
endothelial cell labeling, cell-biomaterial interactions, 1756
fluorine-18 glucose utilization with, brain, 1056
regional cerebral blood flow, primary antiphospholipid antibody syndrome, 1446
retention, nervous tissue, cerebral cortex slices, 1556
semi quantitative analysis in cerebral palsy, 918(ab)
SPECT cerebral blood flow deficits in Alzheimer’s disease, 244
epilepsy, quantitative differences, 730
Technetium-99m HYNIC, imaging, bacterial infections, 2073
Technetium-99m human serum albumin, active uptake of
macromolecule tracers, 111(ab)
Technetium-99m HYNIC-folate, targeted radiopharmaceutical, tumor imaging, 1563
Technetium-99m labeled red blood cells acute gastrointestinal bleeding, detection of, 852(ab)
congenital vascular malformation, 751(ab)
plasma volume determinations, 961(ab)
Technetium-99m MAAG3 assessment of cardiac function during renal imag, 378(ab)
camera-based MAAG and creatinine clearance measure, 209(ab)
clearance estimation by semi-automated ROI, 862(ab)
Technetium-99m tetrofosmin comparison with FDG PET in lung cancer, 384(ab)
detection of axillary lymph node metastasis, 1105(ab)
detection of differentiated thyroid cancer, 198(ab)
functional imaging of Ffp transport activity, 1024(ab)
gated SPECT, left ventricular volumes and ejection fraction, 1693
gated SPECT PET myocardial perfusion imaging, 740(ab)
measurement, forward cardiac output, 1874, 1882(2ed)
myocardial uptake, indicator of severe coronary artery
disease, 514(ab)
myocardial viability tests of coronary occlusion and reperfusion, 142
SPECT, functional recovery in severe left ventricular
dysfunction, 1824
stability of labelling, 615(ab)
uptake, P-glycoprotein and, non-small cell lung cancer,
1223(le)
velocity gradient imaging, 806(ab)

Technetium-99m TRODAT-1
age effects on dopamine transporters, 108(ab)
assessment of motor function in Parkinson’s disease,
1200(ab)
dopamine transporter imaging agent, kinetic modelling of,
150
dopamine transporter imaging in Parkinson’s disease,
109(ab)
dopamine transporters, age effects, 1812

Tetrofosmin scintigraphy
dipyridamole and SPECT vs. """"washin"""" in detection of
coronary artery disease, 345(ab)
left ventricular ejection fraction evaluation with, 747(ab)
Thallium, gated SPECT
large perfusion defects and left ventricular dysfunction,
805
major myocardial infarction patients, 513
Thallium reinjection imaging
acute myocardial infarction, detection of, 756(ab)
correlation of gated SPECT with right ventriculography,
772(ab)
fixed defects on, 731(ab)
Thallium-201
AIDS, intracranial lesions in patients with, 891(ab)
bone scans to evaluate chemotherapy response,
524(ab)
evaluation, multiple myeloma, bone scintigraphy
comparison, 1138
gated SPECT studies of LVEF and end-diastolic volume,
784(ab)
overestimation of left ventricular volumes, relation to
infarct size, 179(ab)
planar scintigraphy, fine-needle aspiration and, thyroid
nodules, 1971
rest-redistribution vs reinjection as predictor of
functional recovery, 191(ab)
scintigraphy, detection of residual thyroid cancer after
""""washin"""" therapy, 1434
similarities """"washin"""" Tc sestamibi dual-isotope SPECT.

Thallium-201 chloride
quantitative analysis of metal impurities, 1394(ab)
radiotherapy in head and neck cancer, 1057(ab)
SPECT and MRI, neck metastases, 1414
three-phase imaging of musculoskeletal lesions, 875(ab)

Therapy
effect of cardedovil therapy with 1-123-MIBG, 8(ab)
intracranial tumors, 986(ab)
myelotoxicity, factor influencing, 1380(ab)
PET quantitation, 933(ab)
""""Re-labeled PR29, dose-dependent tumor suppression,
994(ab)

Three-dimensional imaging
color modulated display, 511(ab)
validation and practical strategies for PET, 1096(ab)
whole-body PET, interactive data integration display
109(ab)

Three-dimensional volume imaging
ordered subset expectation maximization, 1321(ab)
relative distribution of D2 dopamine receptors, 1157(ab)

Thrombocytopenia, cardiopulmonary bypass, 947(ab)
Thromboembolism, bleeding reversal with platelet
transfusion, 947(ab)

Thrombosis imaging
P-selectin, 357(ab)
""""Tc"""" spectrin sensitivity and specificity of, 40(ab)
""""Tc"""" FBD to detect acute deep vein thrombosis, 41(ab)
""""Tc"""" iotixatin, 492(ab)
""""In"""" labeled platelets in, 780(ab)

Thrombus
identification of biomarkers, 40(ab)
peptide-based imaging of, 41(ab)

Thyeneic cancer, differential diagnosis, 1 IC MET PET
and FDG PET, 195(ab)

Thymidine
methyl-1-""""C, 1'IC"""" activity after, 491(ab)
radiolabeled, evaluation of tumor response and
decay, 1702
2-""""C, PET, validation studies, 614

Thymoma, differential diagnosis, 1 IC MET PET and FDG
PET, 195(ab)

Thymus, radiolabeled octreotide concentrations, 1967(le)
Thyroglobulin, chromotography, 938(ab)

Thyroid
congenital anomalies in infants with congenital
hypothyroidism, 928(ab)
congenital hypothyroidism, pertechnetate scintigraphy,
799
dosimetry, 933(ab)
postoperative radioiodine therapy of differentiated
carcinoma, 987(ab)
variable scintigraphic patterns of chronic thyroiditis,
145(ab)

Thyroid cancer
brain metastasis, 530(ab)
childhood, UICC/ACC classification in, 2125(le)
comparative studies of 1-131 """"Tc-"""" Ti, 1047(ab)
detection of recurrence, 1338(ab)
diagnosis and treatment with lanreotide, 74(ab)
differentiated postirradiation remnant, 111(ab)
therapy for, radiation dose to testis and, 1716
""""Tc"""" MIBI use in, 1769(ab)
dosimetry, using clearance fitting, 131
effect of irradiation on """"Tc-"""" sestamibi and """"Tc-"""" uptake,
1376(ab)
FDG PET detection of, 1044(ab)

FDG PET follow-up studies, 1043(ab)
FDG PET scans in follow-up of, 411(ab)
FDG PET when radiotechnate scan negative, 1041(ab)
lobar ablation, 927(ab)
management with recombinant human thyrotropin,
926(ab)

medullary
CEA-producing, radioimmunotherapy in, 198
radiolabeled CCK analogs, evaluation of, 2081
Re-188-DSMA diagnosis of, 924(ab)
targeting cholecystokinin-B gastrin receptor-
expressing tumors, 1029

metastatic
FDG PET role in, 993(ab)
""""Tc"""" uptake, nucleic acid content, and clinical
behavior relations, 963
monitoring TSH-suppressive therapy, 923(ab)
papillary, FDG PET in, 986
post-therapy scan, stunning of, 1045(ab)
presurgical evaluation of recurrence in cervical lymph
nodes, 529(ab)
radiolabelled imaging of, 973(ab)
radiotherapy, 198(ab)
remnant thyroid dosimetry of, 937(ab)
residual, after 131Itherapy, 1434
stunning due to changes in urinary iodine excretion, 921(ab)
uptake measurements in thyroid remnants, 930(ab)
whole-body FDG PET in follow-up of, 1042(ab)

Thyroid disease
fetal hypothyroidism diagnosis and management, 922(ab)
radiolodine therapy, 1453(ab)
stunning parameter in, 931(ab)
thyroid visualization on lung scan, 884(ab)

Thyroid hormones
cardiac effects, 33(ab)
geometric error in hypothyroidism, 527(ab)

Thyroid nodule
autonomous, dosimetry study in, 1928
fine-needle aspiration, 25(ab)Tc scintigraphy and, 1971

TLD, intraperitoneal dose measurement, 1358(ab)

Tomography
blurring tomography and positron coincidence detection, 1332(ab)
FBP or OSEM reconstruction, 1333(ab)
four-hour 18F-fluorodeoxyglucose PET/CT imaging, 843(ab)
gating errors in, 715(ab)
ML-EM iterative reconstruction, 1305(ab)
Trabecular bone, absorbed fractions of energy within, three-dimensional transport model, 1947

Tracer kinetic modeling
effects of metabolic alterations on brain retention of perfusion tracers, 1168(ab)
FDOPA distribution volume, 142(ab)
SPECT, dopamine transporter, 144(ab)
statistical bias in Logan graphical method, 141(ab)
11C FDOPA, striatum and cerebellar distribution volumes, 585(ab)

Trainee Awards, Education & Research Foundation, SNM, 32N(8)

Transferrin, 6(ab) targeting in tumors, 1547
Transferrin receptor, expression, 1'123I scintigraphy in non-Hodgkin’s lymphoma, 40

Transmission computed tomography
cardiac imaging, 135(ab)
cone-beam collimation, 137(ab)
CT-137 fanbeam collimation, 136(ab)
geometrical models, 298(ab)
ordered subsets, 1323(ab)
sctract correction in emission/transmission SPECT, 1313(ab)
simultaneous emission and transmission whole-body imaging, 1231(ab)
static line sources in brain SPECT, 1250(ab)

Transplantation, see also specific type biodistribution of 131I-labeled antibodies via portal vein infusion, 850(ab)
diagnostic accuracy of ventilation-perfusion scan, 525(ab)
lung, bronchial artery recanalization after, 290 prognostic value of lung scan, 880(ab)
125I-Tc annexin assessment of rejection, 846(ab)
125I-Tc annexin V to evaluate lung transplant rejection, 3(ab)

Transport model, three-dimensional, absorbed fractions of energy within cortical bone, 2115

Trapping mechanism, effects of metabolic alterations on brain retention of perfusion tracers, 1168(ab)
Triphenylphosphonium, enhanced uptake in malignant cell lines, 1037(ab)

Triple-energy window scatter correction, optimization of, 1337(ab)
Tumor, see also specific type and site blood flow, noninvasive estimation of input function, 464(ab)
breast, FDG biodistribution in, 90(ab)
cultured cells, nontidipine promotion of gallium uptake in, 159
differential uptake of FDG in cultured cells, 1000(ab)
proliferation, 1034(ab)
radiotherapY structure-activity-relationships, 1386(ab)

Tumor detection
abdominal tumors, 562(ab)
FDG PET, 1128(ab)
FDG PET oncology studies, 465(ab)
FDG PET study of esophageal cancer, 1078(ab)
intracellular distribution in tumor cells, 1036(ab)
intracranial tumor, 1058(ab)
linear discriminant, use for tumor detection, 601(ab)
localization ROC, 590(ab)
whole-body FDG PET, 1155(ab)

Tumor grading, IDUMP SPECT vs FDG PET, 1066(ab)

Tumor hypoxia
detection of, 99(ab)HYNIC and 18F-deoxyglucose comparison, 854
PET agents for evaluation of, 1365(ab)
synthesis of DTPA-metronidazole, 1373(ab)
18F FETA detection of, 1072
125I-Tc labeled-HL91 imaging of vs 99mTc, 1020(ab)

Tumor imaging
automated radiochemical synthesis, 1388(ab)
diagnostic potential of human antibody fragment E8, 434(ab)
evaluation of anti-angiogenic effect with 99mTc ECD, 1367(ab)
FDG coincidence imaging, 1153(ab)
sestamibi uptake as predictor of chemotherapeutic response in lung cancer, 75(ab)
tumor-to-normal tissue ratios, 567(ab)
99mTc HYNIC folate, targeted radiopharmaceutical, 1563
99mTc VIP imaging of brain tumors, 1080(ab)
201Tl brain SPECT, 1182(ab)

Tumor localization, imperfect radiopharmaceuticals, 554(ed)

Tumor markers
abnormalities, scan yields with, 410(ab)
FDG detection of pulmonary lesions, 1092(ab)
Tumor necrosis factor, limb perfusion with, Tc99m Tc in, 262

Tumor recurrence, tracer for, radiolabeled thymidine, 1702

Tumor response
DNA precursors, kinetics, 99(ab)
lactate production with bioreductive antitumor agent, 9(ab)
sestamibi imaging as predictor of, 985(ab)
tracer for, radiolabeled thymidine, 1702

Tumor-seeking agents
mannosylated albumin, 1371(ab)
tissue uptake of 99(ab)alpha-methyl tyrosine, 336(ab)
99mTc labeled HLT1 vs 99mTc, 1020(ab)

Tumor-suppressor genes, oncogenes, cancer, and imaging, 498

Tumor targeting
angiogenesis, 99(ab)
biodistribution of radiolabeled versus radiolabeled anti-CEA antibody fragments, 325(ab)
dosimetry and, small cell lung cancer, 1216 integran antigen, tumor detection using, 319(ab)
phospholipid ether agent for, 155(ab)
radiolabeled integran antigens for, 1061

Tumor-to-normal tissue ratio, aptamer tumor targeting, 402(ab)

Tyramine, sympathomimetic effects, MiBG comparison, 1342

U
U. S. Congress, nuclear medicine and, 20N(3)
Ureteropelvic junction obstruction, SPECT of 99mTc DMSA uptake, infant, 1117

Urinary bladder diagnosis of dual communicating bladder system, 861(ab)
radiation absorbed dose, dynamic model, MIRD, 102S

Urinary tract infection, 99mTc DMSA clearance and, children, 52

V
Validation, brain data
integrated visualization, 311

Spatial normalization methods, PET, 317

Vascular endothelial growth factor receptors, peptide uptake and in vitro profile, 995(ab)

Vascular graft, cell-biomaterial interactions, labeling with 99mTc HMPAO, 1756

Vasculitis
diagnosis, 573(ab)
pulmonary uptake of 1-123-MIBG, 39(ab)

Vasoactive intestinal peptide, receptor agonist, 99mTc labeled, 352

Venography, contrast-enhanced, 99mTc tcate scintigraphy and, deep venous thrombosis, 2029, 2036(ab)

Venous stenoses, as input function, quantitative PET, 1666

Venous thrombosis, silent pulmonary embolism in deep venous thrombosis, 223(ab)

Ventilation/perfusion imaging, CT and nonradioactive xenon inhalation, 855(ab)

Ventilation perfusion scintigraphy, variations in image interpretation, 879(ab)

Ventilation scintigraphy, Technegas vs CT ventilation map, 855(ab)

Ventricular Shlhhillation, idiopathic, 121I MiBG uptake in, 1

Ventriculography
cerebrospinal fluid study, 1206(ab)
gated SPECT to assess wall motion defects, 1278(ab)

Vertebral osteomyelitis, efficacy of imaging, 906(ab)

Vesico-ureteral reflux, voiding cyslotomography, 865(ab)

Visualization, integrated, functional and anatomic brain data, validation, 311

Vocal cords, paralysis, after 131I therapy, 505(ab)

Volume visualization, whole-body PET data integration display system, 1452(ab)

Voxel S values, radiomimics, nonuniform activity distributions, 11S

W
Wada test, amytal distribution, regional cerebral perfusion and, 747

Wall thickening artefactual changes in, 715(ab)
evaluation by ECG-gated SPECT, 802(ab)
gated SPECT assessment, 792(ab)
gated 99mTc sestamibi, 171(ab)
Welch, Michael J, 24N(12)
Wolf, Walter, Aebersold Award, 12N(6)

World Federation of Nuclear Medicine and Biology (WFNMB), Santiago Meeting 2002, 16N(6)

X
Xenon-133, mean absolute cerebral cortical blood flow, 917(ab)

Y
Y2K
HCFA, 16N(12)
Medicare payment updates, 20N(6)

Yttrium-86
PET imaging of antibodies, 328(ab)
quantitation of PET images, 1238(ab)

Yttrium-90
facilitated labeling of DOTA-MAB conjugates, 603(ab)
radiation dose calculation after brachytherapy, 167(ab)

Yttrium-90-labeled antiTc, 11N differences, 268

Z
Zollinger-Ellison syndrome, somatostatin receptor scintigraphy in, 539
Listed below are the companies that have advertised in this issue. Simply circle the numbers of those companies you are interested in, fill out the information below and mail or FAX this to the Society of Nuclear Medicine, Advertising Department, 1850 Samuel Morse Drive, Reston, VA 20190, Fax: 703-708-9018. We will forward this information to the advertiser(s).

<table>
<thead>
<tr>
<th>Reader Svc. No.</th>
<th>Advertiser</th>
<th>Telephone No.</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ADAC Laboratories</td>
<td>800/538-8531</td>
<td>Cover 3</td>
</tr>
<tr>
<td>23</td>
<td>Capintec, Inc.</td>
<td>201/825-9500</td>
<td>2A</td>
</tr>
<tr>
<td>31</td>
<td>Diatide, Inc.</td>
<td>877/DIATIDE</td>
<td>17A-20A</td>
</tr>
<tr>
<td>62</td>
<td>GE Medical Systems</td>
<td>800/643-6439</td>
<td>Back Cover</td>
</tr>
<tr>
<td>86</td>
<td>IS2 Research, Inc.</td>
<td>613/228-8755</td>
<td>22A</td>
</tr>
<tr>
<td>108</td>
<td>Macrocyclics</td>
<td>972/897-0424</td>
<td>25A</td>
</tr>
<tr>
<td>110</td>
<td>Mallinckrodt Medical, Inc.</td>
<td>314/895-2000</td>
<td>13A-14A</td>
</tr>
<tr>
<td>135</td>
<td>Nycomed Amersham</td>
<td>800/633-4123</td>
<td>7A-8A</td>
</tr>
<tr>
<td>181</td>
<td>Siemens Medical Systems</td>
<td>847/304-7700</td>
<td>Inside Front Cover and 1A</td>
</tr>
<tr>
<td>188</td>
<td>Sony Medical Systems</td>
<td>800/892-SONY</td>
<td>21A</td>
</tr>
</tbody>
</table>

☐ SNM Meetings ☐ SNM Membership Information ☐ SNM Book Order Information

YOUR NAME: __ TITLE: __________________________
INSTITUTION: __________________________________ DEPT: __________________________
ADDRESS: __
CITY: __________________________________ STATE: __________________ ZIP: __________
PHONE: ___________ FAX: ___________
PRIMARY SPECIALTY: __________________________________ SECONDARY SPECIALTY: __________

CHECK ONE ANSWER IN EACH CATEGORY

Employer
☐ Hospital
☐ Private Clinic
☐ R&D Commercial
☐ University
☐ Government
☐ Other

Purchase Authority
☐ Recommend
☐ Specify
☐ Buy

Reason for Inquiry
☐ Immediate Purchase
☐ General Information
☐ Budgeting Information

SNM Member
☐ Yes
☐ No

JNM/JNMT Subscriber
☐ Yes
☐ No