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Heterogeneity of left ventricular myocardial perfusion is an impor
tant clinical characteristic. Different aspects of this heterogeneity
were analyzed. Methods: The coefficient of variation (v), character
izing heterogeneity, was modeled as a function of the number of
segments (n), characterizing spatial resolution of the measurement,
using two independent pairs of mutually dependent parameters: the
first pair describes v as a power function of n, and the second pair
adds a correction for n small, n was varied by joining equal numbers
of neighboring segments. Local similarity of the perfusion was
characterized by the correlation between the perfusions of neigh
boring segments. Genesis of the perfusion distribution was mod
eled by repeated asymmetric subdivision of the perfusion into a
volume among two equal subvolumes. These analyses were applied
to study the differences between 16 syndrome X patients and 16
age- and sex-matched healthy volunteers using 13N-ammonia para

metric PET perfusion data with a spatial resolution of 480 segments.
Results: The heterogeneityof patients is higherfor the whole range
of spatial resolutions considered (2 < n < 480; for n = 480, v =
0.22 Â±0.03 and 0.18 Â±0.02; p < 0.005). This is because the first
pair of parameters differs between patients and volunteers (p <
0.005), whereas the second pair does not (p > 0.1). For both groups
of subjects there is a significant positive local correlation for dis
tances up to 30 segments. This correlation is a formal description of
the patchy nature of the perfusion distribution. Conclusion: When
comparing values of v, these should be based on the same value of
n. The model makes it possible to calculate v for all values of n <
480. Mean perfusion together with the two pairs of parameters are
necessary and sufficient to describe all aspects of the perfusion
distribution. For n small, heterogeneity estimation is less reliable.
Patients have a higher heterogeneity because their perfusion distri
bution is more asymmetrical from the third to the seventh generation
of subdivision (8 < n s 128). Therefore, a spatial resolution of n >
128 is recommended for parametric imaging of perfusion with PET.
Patients have only a very slightly more patchy distribution than
volunteers. The differences in perfusion between areas with low
perfusion and areas with high perfusion is larger in patients.
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Left ventricular myocardial blood perfusion (LVMBP) can be
investigated in humans using PET with '3N-ammonia as a tracer
(1-5). The perfusion distribution is generally characterized by
the mean perfusion JA,together with the coefficient of variation
v (v = s.d./mean), as a measure of the heterogeneity. Both are
important characteristics for studying different groups of pa
tients (6-10).

The value of v depends on the number of segments n on
which the calculation of v is based, n characterizes the spatial

resolution of the measurement. Consequently, measurements
with different spatial resolutions (6,7,11-13) are not compara
ble.

Bassingthwaighte et al. (14-18), King et al. (19) and van
Beek et al. (20,21 ) have analyzed the heterogeneity of LVMBP
in animals, based on measurements with microspheres and with
the tracer iododesmethylimipramine. They used the concept of
self-affinity or invariance with respect to scaling (14,16,17,2]),
analyzed the correlation between the perfusions of neighboring
segments (15,21) and investigated the genesis of the perfusion
distribution (17,19-21).

These approaches were synthesized and described here. A
mathematical model was developed to analyze the influence of
the spatial resolution of the measurement on the heterogeneity
of '3N-ammonia PET-determined LVMBP. Local similarity of

the perfusion was analyzed to clarify the meaning of the model
parameters. The genesis of the perfusion distribution was
modeled to analyze whether other aspects were overlooked;
because Â¡j.and v are invariant for permutations of the segments,
the description of the distribution is very likely incomplete
using only these two characteristics. The minimal number of
independent model parameters that is necessary and sufficient
to describe the distribution of LVMBP was selected. The
method of analysis of LVMBP was tested in patients with
syndrome X compared with that in age- and sex-matched
healthy volunteers.

Syndrome X denotes the combination of typical angina
pectoris and exercised-induced ST-segment depression despite
angiographically normal coronary arteries (22). The cause(s)
and anatomical location are not well known (23). Recently, we
showed that, in syndrome X patients, LVMBP was more
heterogeneous in addition to an increased resting value (6).

MATERIALS AND METHODS

Theory
The coefficient of variation of the perfusion v has self-affinity

for a limited range of scales (14,16,17,19). The relationship
between v and the number of segments n into which the myocar
dium is divided or spatial resolution of the measurement is then:

v = v(n) = v0X nD-I
Eq.
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where D is the fractal dimension (D Ã¤l ) and v0 is the extrapolated
value of v for n = 1. Equation 1 gives a straight line in a double
logarithmic plot; however, v is always overestimated for small n.
To obtain an equation also valid for small values of n, an
exponential function with parameters a()and at (a0 & 0 and a, & 0)
was subtracted from the straight line. This gives an equation with
four parameters. In a double logarithmic plot (Fig. 1):

lb(v(n)) = Ib(v0) + (D - 1) X lb(n) - ao X e -ai'lb(n)
Eq. 2
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FIGURE 1. Example of estimation of the model parameters, x-axis: binary
logarithm of the number of segments n; y-axis: binary logarithm of the
coefficient of variation v. The values of v (squares) are calculated from data of
one of the volunteers. The solid line is the regression line with Equation 2,
lb(Vo) = -3.14, D-1 = 0.06, BO= 0.52, a, = 0.42 and v^ = 0.01 (v^ is a

measure for the goodness of fit, Eq. 4). The dotted line is the straight line part
of Equation 2 with the same values for the parameters Ib(v0)and D-1.

where Ib is the binary logarithm (logarithm to base 2). In a double
linear plot:

where b0 = a,, X ln(2) and b, = a,/ln(2). For large n, the
exponential function in Equation 2 approaches 0, leaving a straight
line, and the exponential function in Equation 3 approaches 1,
leaving a power function (Eq. 1). n was varied by joining equal
numbers m of neighboring segments, i.e., n = N/m, where N is the
original number of segments (2 Â£n ^ N; l Â£m s N/2; N = 480).

Local similarity is characterized by the autocorrelation function
p(i), which is the correlation coefficient of the perfusions of
segments and the distance i between the segments. For the unit of
distance, the distance between two adjoining segments is taken. In
Appendix 1, v as a function of n is transformed into p as a function
of m, where the distance i is now replaced with distance m = N/n.

The genesis of the perfusion distribution is described by a tree,
which is here a process of repeated subdivision of a volume into
equal subvolumes, where each subvolume is perfused by a fraction
of the flow through the volume. The fractions may be mutually
different and different for each generation of subdivision. If the
number of subvolumes h is constant for each generation of
subdivision, it is possible to derive the relations between v(n) and
the fractions. This was worked out in Appendix 2 for arbitrary
values of h. The fractions can only be calculated from v(n) for h =
2 (Equation 14A in Appendix 2). Therefore, this model is only used
here with h = 2. The i-th generation of subdivisions can then be
characterized by one fraction pÂ¡;the other fraction is then 1 â€”pÂ¡

(Fig. 2).

PET
With BN-ammonia PET, LVMBP was quantified using 480

segments. The results were displayed in parametric polar maps (2 ),
consisting of 10 rings, each with 48 segments. Each ring represents

FIGURE 2. Tree dividing intotwo branches. F isthe total flow intothe volume
V, represented by a rectangle. V is divided into two equal volumes, which
each are again divided into two equal volumes and so on. p, and 1 - p, are

the fractions into which the flow is divided in the first generation of branching,
p2 and 1 - p2 are the fractions into which the flow is divided Â¡nthe second

generation of branching and so on. In each rectangle, the perfusion is given
next to the lines, indicating the subdivision of the volumes. The values of the
flows into the volumes are given.

a slice perpendicular to the basis-apex axis. The instrumentation
and measurement procedure were described in detail previously
(2,6).

Subjects
LVMBP was measured in 16 syndrome X patients (9 males) and

in 16 age- and sex-matched healthy volunteers. The investigation
confirmed to the principles outlined in the Declaration of Helsinki.
The study was approved by the ethics committee of the University
Hospital Groningen, and each subject gave written informed
consent. All participants were nonsmoking, normotensive and
nondiabetic. The patients were 30-60 yr (mean Â±s.d. = 50 Â±8
yr) and had a normal left ventricle ejection fraction (mean Â±s.d. =
0.65 Â±0.04). The volunteers were 25-60 yr of age (mean Â±s.d.
= 49 Â±8 yr). They were matched for sex and age (within 5 yr) to
the patients. This is essentially the same group as that described
previously (6); however, one pair was replaced by another with a
better match, and a second pair was replaced because the patient
had additional complaints.

Calculations
The value of v was calculated for all numbers of segments n

obtainable by joining an equal number of neighboring segments.
For each heart, 23 values of n and v were obtained (nÂ¡= 2, 3,...
,160, 240, 480; i = 1,... ,23). The segments were joined starting
with the first segment of the first ring, then the second segment and
so on. After 48 segments, the next ring was passed in the opposite
direction and so forth. This change of direction each time a ring
was completed was done to allow the application of the model for
the genesis of the perfusion distribution. The starting segment was
always located at a corresponding anatomical position. All seg
ments were treated in the same way.

The four parameters of Equation 2 [lb(v()), (D-1 ), a()and a,] were
estimated using nonlinear regression analysis. Because the values
of lb(v) for large values of n are more accurate than those for small
values, we supposed that o-Â¡*l/\/nÂ¡where o-Â¡is the s.d. of the i-th

observed value of lb(v), and we used regression analysis with
weights wÂ¡*l/o-Â¡.

The differences between observed (obs) and estimated (est)
values of lb(v) are reported as a coefficient of variation vcal:
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i X (lb(Vi)obs - lb(Vi)est))2

Vcal =

TABLE 1
Perfusion Data

- nf

Â¿wÂ¡X lb(vÂ¡)ob

Eq. 4

where np is the number of data points (np = 23) and nf is the
number of degrees of freedom of the model (nf = 4). Because lb(v)
< 0, we have taken the absolute value of its weighted mean. This
is the same equation as that used by van Beek et al. (21 ), but was
adapted to the use of weights wÂ¡(w^vX; the wÂ¡values are
normalized so that EwÂ¡= rip).

The estimated values of the parameters vâ€ž,D-l, a()and a, were
used to obtain estimates of v for all values of n, (i = 1, ... , 23)
using Equation 3. For 1 < m < 240, p(m) was calculated directly
from the perfusion data, estimated values for p(m) were obtained
using Equations 7A and 8A (for m = 1) in Appendix 1 with the
estimated values of v. The required values of v for noninteger
values of n = N/m were obtained by interpolation using Equation
3 as a continuous function of n. Because 480 is not a power of 2,
the fractions p, were not calculated directly; estimated values for pÂ¡
for the range 1 < i < 9 were obtained using Equation 14A of
Appendix 2, partly by interpolation and partly by extrapolation,
with the estimated values of v and h = 2.

Statistics
As a measure of correlation. Spearman's rank correlation coef

ficient ps was used. ps was also used as a test statistic for
independence of the variables. These tests were partly executed
one-sided because it was expected that curves with large values of
D-l should have small values of lb(vâ€ž)and the other way around
(16,18,19). It was also expected that curves with large values of a,
should have large values of a0.

The results of patients and volunteers were compared using
Wilcoxon's signed-ranks test. These tests were executed one-sided

because it was expected that patients had a larger mean perfusion
(6,7,12 ) and a larger coefficient of variation than their matched
volunteers (6,7). The significance of p was also tested. Values of
test statistics with p < 0.05 were considered significant.

RESULTS
Perfusion data are summarized in Table 1, model parameters

are summarized in Table 2 and rank correlation coefficients are
summarized in Table 3. A summary of the results, based on the
mean values of the model parameters, for the coefficient of
variation v(n), the autocorrelation function p(m) and the frac
tions Pi is given in Figure 3.

Heterogeneity
The mean /A and the heterogeneity v are two different and

independent aspects of the distribution of LVMBP (Table 3).
The parameters D-l and lb(v()) (Equation 2) are significantly
correlated for patients and volunteers; the same holds true for a()
and a, (Equation 2) for patients (Table 3). This is also
demonstrated in Figure 4. All points representing Ib(v0) and D-1
clearly belong to one group; the same holds true for the points
representing ln(a()) and a,. Separate regression lines calculated
for patients and volunteers each did not differ significantly. As
D-l and Ib(v0) as well as a0 and a, are not independent
quantities (Table 3), we replaced each pair of values by one
value, indicated as (v0,D) and (30,3,), for the purpose of
statistical testing. As we have no knowledge of which quantities

Patients (n = 16) Volunteers (n = 16)

Means.d.s.dVmeanMinimumMaximumMedianPerfusion

[ml/(min-100g)]128330.2689220118V0.220.030.140.170.260.22Perfusion[ml/(min-100g)]86*160.186411884V0.1

8f0.020.140.140.220.18

*p < 0.0005 (one-sided).

Tp < 0.005 (one-sided).

Perfusion = mean perfusion; v = estimated values of the coefficient of
variation v for n = 480. The mean and s.d. are given, as well as s.d. as a

fraction of the mean, the minimal vlaue, the maximal value and the median.
The significances of differences between patients and volunteers are indi
cated as superscripts at the mean values of the volunteers.

should be chosen as independent parameters of the regression
lines, the regression lines are not normal (minimizing the sum
of the squared vertical distances between data points and line)
but are lines minimizing the sum of the squared shortest
distances between data points and line. As the test value, the
nearest point on the regression line to a data point was chosen.
These points were represented by one coordinate, giving their
position on the line. (v0,D) and <a(),a|) or the straight lines and
the exponential curves (Fig. 1) represent two different aspects
of the heterogeneity; the heterogeneity for n large can be
separated from the correction for n small (Table 3).

The estimated values of v for all values of n were also
compared. The same result as that for n = 480 (Table 1) was

obtained (patients have a higher v than volunteers), however
only for n > 15. If the observed values were used, the result

remained the same but with a more restricted range: n ^ 24.

Local Similarity
The autocorrelation function p(m) can be described by three

(D-l, a0 and a,) of the four parameters of Equation 2 (Eqs. 7A

and 8A of Appendix 1). However, in Equation 7A, the contri
bution of D-1 cannot be separated from the contributions of a0

and a, (Appendix 1). Therefore, no conclusions about p(m)
could be obtained by comparing the parameters. Only for m =
1 were the estimated values of p(m) significantly higher for
patients than for volunteers (Fig. 3, middle). The observed
values of p showed no significant difference for any value of m;
p(m) is more a measure of the resemblance between patients
and volunteers than of the difference. The significance of p(m)
for each group of subjects was estimated using the mean values
of the model parameters. For both groups there was a significant
positive correlation for m < 30 (Fig. 3, middle).

Genesis of the Perfusion Distribution
In Equation 14A (Appendix 2), the contributions of v0 and D

cannot be separated from the contributions of ao and a,.
Therefore, no conclusions about the fractions pÂ¡(Fig. 2) could
be obtained by comparing the parameters. The estimated values
of PJ for each group of bjects were compared for 1 < i < 9.
The p; values of the pati its were significantly smaller for 3 <
i <= 7 (Fig. 3, right).
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TABLE 2
Model Parameters

Ib{v0)

Patients (n = 16) Volunteers (n = 16)

D-1 D-1

Means.d.s.d.

/meanMinimumMaximumMedian-2.50.4-0.14-3.2-1.9-2.60.040.030.60.000.090.043.01.50.50.75.53.00.420.020.050.380.440.420.0350.0190.550.0120.0820.031-3.1*0.4-0.12-3.7-2.4-3.10.08*0.040.50.020.160.082.3T1.40.60.45.82.00.40r0.020.050.360.430.400.0230.0080.350.0110.0450.023

), D-1, BOand a, are the parameters of Equation 2. vcal is a measure of the goodness of fit of the model (Eq. 4). Mean value and s.d. are given, as well

as s.d. as a fraction of the mean, minimal value, maximal value and median. The significances of differences between patients and volunteers are indicated
as superscripts at the mean values of the volunteers. For this test, Ib(v0)and D-1 as well as ^ and a, are taken together, as explained in the text.

DISCUSSION

The Model
Heterogeneity of LVMBP, characterized by the coefficient of

variation v, is modeled here by the sum of two functions of the
spatial resolution, characterized by the number of segments n
(Equation 2 or 3, Fig. 1). The goodness of fit of this model,
characterized by vcal (Equation 4), must be judged to be
excellent (Table 2); the values of vca, are comparable with or
slightly better than those of van Beek et al. (21). The two-
dimensional parameters, (v0,D) and <a0,a,}, or the straight lines
and the exponential curves (Fig. 1) combined with the mean /u,

are, therefore, necessary to describe the perfusion distribution.
If fi is known together with v as a function of n, then the
perfusions of all segments can be calculated using a tree with
the number of subvolumes per generation of subdivision h = 2

(Appendix 2). Consequently, \v(),D) and {a(),a,), together with
/x, are also sufficient to describe the perfusion distribution for
h = 2. For other values of h, the distribution always lies
between two fully specified distributions based on h = 2,

because v can be considered a continuous function of n.
Therefore, (v(),D) and {a,,,a|) together with ju,are necessary as
well as sufficient to describe the distribution of the LVMBP.

TABLE 3
Spearman's Rank Correlation Coefficients

vV0Da,.a,<V0,

D)(agi
3i /Perfusion0.20.3-0.3-0.070.06-0.3-0.07v0.7*-0.3-0.10.03-0.7*-0.1Patients

(n =16)v0

D ao (vâ€ž,D)Perfusion0.4-0.3-0.8*

0.40.4
-0.5*-0.040.4
-0.7* 0.5* -0.30.3-0.4

-0.04Volunteers

(n =16)v0.30.2-0.2-0.1-0.3-0.2v0

D ao<v0,D>-0.8*0.2

-0.30.7*
-0.8" 0.4-0.2

Perfusion = mean perfusion; v = estimated value of v for b = 480; v0, D-1, a,, and a, are the model parameters of Equation 2. As i>sis based on ranks,
the values of p3for InfvJ are equal to those of v0, and the same holds true for D-1 and D and for ln(a<,)and a^ therefore these values are not shown. Because
v0 and D-1 as well as a,, and a, are not independent, they are treated as one quantity as described in the text. These quantities are indicated as <v0,D) and

<a<j,a,).
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FIGURE 3. Summary of the results. Above
the dotted line, the correlation is significantly
different from zero (middle). Significantly dif
ferent fractions are indicated with an asterisk
between the data points (right). The functions
shown are all discrete functions of the inde
pendent variables. For the sake of simplicity,
they are presented here as continuous func
tions, only the estimated values of the frac
tions are also presented. The variables of all
three horizontal axes can be transformed into
each other, as shown by two extra axes in
each panel.
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each subject (left) and the values of InfaJ and
a, (right) together with the regression lines
ItXvo) = -1.95-14.35 x (D-1) (n = 16, r =
0.85) and InfaJ = -24.27 + 61.48 x a, (n =
16, r = 0.48). The regression lines minimize
the sum of the squared shortest distances
between data points and line.

As one of the functions (the straight line), describing v as a
function of n (Equation 2) differs between patients and volun
teers and the other (the exponential function) does not (Table 2),
the sum of these two functions also differs. This implies that the
heterogeneity of syndrome X patients is higher than that of
healthy volunteers for the whole range of spatial resolutions
(2 s n ^ 480; Fig. 3, left). This conclusion may not have been
reached when using a lower maximal resolution (N < 480)
because v is different for n large, while the correction for n
small is the same. This is corroborated by using less advanced
data reduction schemes; the conclusion holds for n > 15 when
using estimated values of v and for n > 24 when using observed
values of v. The difference between the mean distributions
increases from i s 3 or n S: 8 up to i = 7 or n = 128 (Fig. 3,
right), with i being the number of the generation of subdivision.
Thus an optimal resolution would be n > 128.

The values of D (Table 1) are smaller than those reported by
Bassingthwaighte et al. (14), who found a mean value of
approximately 1.2 with different measurement techniques (dep
osition of microspheres and tracers) and in various species
(baboons, sheep and rabbits). This can be expected because we
considered self-affinity as an approximation for large n instead
of description for all values of n, whereas there may also be a
species dependency of D.

The perfusion distribution is treated as a one-dimensional
problem. This gives a fractal dimension between 1 and 2, in
agreement with the fact that the value of D lies between the
Euclidean dimension and one plus this dimension (24). How
ever, we use, in fact, a two-dimensional projection of the left
ventricle, so 2 ^ D ^ 3. van Beek (20) has shown that the
fractal dimension for this situation is exactly 1 higher than the
D obtained by using Equation 2.

We have reduced a two-dimensional to a one-dimensional
problem by combining the segments in a special way. As
already remarked by Bassingthwaighte et al. (14), the segments
can be joined in many different ways. As there are no other
criteria for joining the segments than doing it always in the
same way so as to make the results mutual comparable and
doing it so as to make the model for the genesis of the
distribution applicable, we have chosen the way that is indicated
by the geometry of the measurement; it is the obvious way to
link the concept of spatial resolution to the measurement set-up.

Heterogeneity is considered here as a function of the spatial
resolution of the measurement. This is an instrumental charac
teristic. Different causes of heterogeneity can be distinguished:
spatial, temporal and methodological (16,25). These causes

have been separated by performing succeeding and simulta
neous microsphere measurements (16,25), but this is not
feasible for PET measurements. However, by employing non-
parametric statistics, our conclusions are not influenced by
methodological variations.

For patients and volunteers the autocorrelation function p(m)
is significantly positive for m ^ 30 (Fig. 3, middle). This means
that segments with high perfusion tend to have neighbors with
high perfusion, and segments with low perfusion tend to have
neighbors with low perfusion. Therefore, this positive correla
tion is a formal description of the patchy nature of the perfusion
distribution: the smaller the value of p or the larger the value of
D (in case of self-affinity or m small), the less patchy the nature
of the distribution. Syndrome X patients have only a very
slightly more patchy distribution than healthy volunteers (only
for m = 1 the values of p differ). If the patchy character of the
distribution is not quantified or compared with that in healthy
subjects, one may easily attribute this character as being unique
to syndrome X patients (26,27). The striking distinction is that
the differences in perfusion between areas with a low perfusion
and areas with a high perfusion is larger in patients than in
volunteers (higher value of v()). These differences are more
pronounced for higher values of n. The positive correlation over
short distances has previously been reported in (healthy) exper
imental animals: dogs (28) and baboons (/5).

For self-affinity, van Beek et al. (21) have shown that:

for !<D<2, Eq. 5

where p( 1) is the correlation coefficient for perfusions between
nearest neighboring segments and D is the fractal dimension.
Bassingthwaighte and Beyer (15) have extended this to nonad-
jacent neighbors. This was further extended (in Appendix 1) for
the more general case of v a function of n, and p a function of
m (m = N/n). Equation 5 is Equation 8A with Equation 1

inserted for v(n). The relation of Bassingthwaighte and Beyer is
Equation 7A with Equation 1 substituted for v(n).

Self-affinity is treated here as a limiting situation for n large,
thereby adding two parameters (a() and a{). Bassingthwaighte et
al. (17,18) and van Beek et al. (20,21) used a tree with h = 2
to describe the origination of the heterogeneity. The calculation
procedure is the same (i.e., varying n by joining an equal
number of neighboring segments), but the interpretation of the
results is different. We extended their approach for arbitrary
values of h (Appendix 2). They made various assumptions for
the values of the fractions (18,20,21). If a relation between v
and n is available for the whole range of spatial resolutions (2 ^
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n s N), then it is not necessary to make any assumption for the
fractions pÂ¡to apply this model with h = 2 (Appendix 2) (21).
We used this model purely as a description of the genesis of the
distribution, not linking it in any way to an actual vascular tree
(18,20,21) because we consider this too speculative.

We have extended the previous reported approaches to model
LVMBP heterogeneity (14-21) and applied them to human

PET data:

1. By using all possible integer values for n, because theory
does not dictate only powers of 2 as previously used
(hence the use of binary logarithms);

2. By including in our model values of n where the self-
affinity model does not hold, through introducing an
additional exponential function for small values of n;

3. By taking into account the fact that values of lb(v) based
on large values of n are more accurate than those based on
smaller values of n;

4. By showing the mutual dependency of D-l and lb(v()) and
of a0 and a, (Fig. 4 and Table 3); the mutual dependency
of D-l and Ib(v0) has previously been shown for LVMBP
of baboons, sheep and rabbits based on microspheres data
(Â¡6,18,19)\ and

5. By establishing the relations between the different ap
proaches (Appendices 1 and 2 and Fig. 3).

Patients Compared with Volunteers
The increased mean value and increased heterogeneity of the

LVMBP in syndrome X patients have been described previ
ously (6,7,72). Rosen et al. (13) and Geltman et al. (12) found
no difference in mean perfusion and heterogeneity between
patients and healthy controls using H215O combined with CI5O

as tracers. Neither performed a paired test, but instead tested the
differences between the groups, so that individual differences
might disappear because of the large spread of the data. They
tested two-sided instead of one-sided, which may lead to a false
conclusion if the mean difference between the groups is small.
Rosen et al. (13) used a lower spatial resolution (n = 60),
whereas Geltman et al. (72) used three or four segments. The
patients of Geltman et al. (72) had a marked different range of
ages compared to their control group (40-73 yr versus 20-35

yr). Camici et al. (77) did not compare patients with healthy
subjects. The large spread in the individual data of the mean
perfusion is generally noticed, but the fact that the mean
perfusion is an independent quantity is not (7,1 J-13).

CONCLUSION
The coefficient of variation v of LVMBP is a monotonously

nondecreasing function of the number of segments n or spatial
resolution of the measurement (Appendix 2). When comparing
values of v, these should be based on the same value of n. The
model makes this possible for all n smaller than the total
number of segments used (N = 480). The independent two-
dimensional parameters (v,,,D) and (a(),a,) (Fig. 1 and Equaiton
2) represent two different aspects of the heterogeneity: the
heterogeneity for n large can be separated from the correction
for n small (Table 3). These parameters combined with the
mean /a are necessary and sufficient to describe the distribution
of the LVMBP. The heterogeneity of syndrome X patients is
higher than that of healthy volunteers for the whole range of
spatial resolutions considered (2 ^ n ^ 480; Fig. 3, left).

The relation between v and the local similarity, characterized
by the autocorrelation function p(m) with m the distance
between segments, was established (Appendix 1). p depends
only on the shape of v, not on its magnitude. Only p(l) is
significantly higher for patients compared to volunteers. Both

patients and volunteers had a significant positive correlation for
m Ã  30. This positive correlation is a formal description of the
patchy nature of the perfusion distribution.

The generation of heterogeneity was modeled by repeated
asymmetric subdivision of the perfusion into a volume among
two equal subvolumes. The perfusion distribution of the pa
tients was significantly more asymmetrical from the third
through the seventh generation of subdivision. Therefore, an
optimal resolution would be n > 128.

The high similarity between the distributions of patients and
healthy volunteers (Fig. 4) indicates that the cause of the
difference in the distributions is either homogeneously distrib
uted for the spatial resolutions considered (2 < n < 480) or has
a location beyond the maximal resolution (n > 480). The
character of the difference in perfusion distribution between
patients and volunteers (i.e., the differences in perfusion be
tween areas with a low perfusion and areas with a high
perfusion is larger in patients compared to volunteers) is in
favor of the latter hypothesis. This latter hypothesis is in also
agreement with the concept that increased resistance of the
prearteriolar coronary vessels is the fundamental abnormality in
syndrome X patients (27).
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APPENDIX 1:

Autocorrelation Function
We consider N volumes Vk (k = I,. . . , N), ordered in such a

way that Vk and Vk+1 always adjoin each other. We form groups
of m neighboring volumes: Vk+l, Vk+2>-â€¢â€¢, Vk+m, with perfu
sions: qj,+1, qk+2v â€¢â€¢.<lk+nrFÂ°rtne variance a2 applies (29):

mâ€”l

cov(qk+i,

o^N/rn) = m X
m- 1 m

2 Â£ Â£ cov(qk+i,
1=1j=i+i

Eq. l A

where cov(qk+i,qk4.j) is the covariance of qk+j and qk+j. We assume
that er depends only on the number of elements. The correlation
coefficient p(i,j) between two perfusions qÂ¡and qj is (29):

cov(i, j) cov(i.j)
- 2A

where cov(qÂ¡,qj)is notated as cov(i,j). Equation 1A can be rewritten
as:

o^N/ m

^
-m. Eq.3A

Dividing each variance in Equation 3a by the square of its mean
gives:

2 X Z Z P(k+i, k+j)=m2 X
v2(N/m)

m, Eq. 4A

where v is the coefficient of variation.
We consider p as a function of the distance between the volumes.

For the unit of the distance we take the distance between two
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FIGURE 5. The correlation coefficient p(m) as a function of the fractal
dimension D for different values of the distance between the segments m.
The equation of the plotted lines is Equation 7A with Equation 3 for v(n). This
gives an equation that is applicable in case of self-affinity.

adjoining volumes. As the volumes are numbered in succession, for
every value of k applies:

p(k, k + i) = p(i). Eq. 5A

The double sum in Equation 4A has now many equal terms, leading
to:

2 X (m - i) X p(i) = m2 X
, v2(N/m)

v2(N)
- m. Eq. 6A

If we replace m with m + 1 and with m â€”1 in Equation 6A, we

get:

p(m) =

N(m + I)2 X v2
m

- 2 X m2 X v2 - + (m - I)2 X v2 .
,m/ \m â€”1

2 X v2(N)

Eq. 7A

This equation is valid for integer values of N > 6 and m a 2.
p(o)=l. For m = 2 and N > 4, Equation 6A gives:

V

v2(N)

When v is known as a function of the number of segments n =
N/m, then p, as a function of the distance between segments m, can
be calculated from it, but not the other way around; p depends only
on the shape of v(n), not on its magnitude, i.e., not on v,, (Eq. 7A).

Combining Equation 7A and Equation 1 gives an equation with
only D and m as parameters, which holds for the case of
self-affinity, illustrated in Figure 5. In this case, p is a monoto
nously decreasing function of D (with m constant) and also a
monotonously decreasing function of m (with D constant). If D =
1.5, then p = 0 for all values of m, indicating a random
distribution. In the case of self-affinity, the value of p is indepen
dent of the actual dimensions of the segments or the total number
of segments N. This illustrates self-affinity or invariance with
respect to scaling.

If we define f(m) = m2 X v2(N/m), then, by approximating f(m
+ 1) and f(m â€”1) by a Taylor series, p(m) can be written as a

series of even derivatives of f(m) with respect to m: p(m) Â«*(f"(m)
+ fv(m)/12 + . . . )/(2 X f(l)). If we use Equation 3 for v(N/m), we

see that p(m) can be written as the product of an exponentialfunction with exponent: â€”b0 X (N/m)~bl and a multinomial in m.

The exponential function approaches 0 for large values of m,
meaning that there is no correlation for large distances. The
multinomial contains mixed terms with D-l, a0 and a,. Thus, in
Equation 7A the contribution of D- 1 cannot be separated from the
contributions of a,, and a,.

APPENDIX 2:

Genesis of the Perfusion Distribution
We consider a volume V, perfused with a flow F. V is divided

into h equal subvolumes with volumes V/h (h s 2). The first
subvolume is perfused with a fraction pn of F, the second
subvolume with a fraction p,2 of F and so on. This subdivision is
repeated k times, and each i-th generation of subdivision is
characterized by its own fractions py (j = 1 . . . h):

0<pij<l and for Â¡=1,2 ____ , k.

Eq. 9A
The hk perfusions of the different volumes are given by the terms

of the product:

hk X F k / h \ hlâ€”y-*n zpÂ»â€¢2i'(k>h)-
Â¡=i\j=i / 1=1

i-IOA
This representation could be called a tree. If the terms of the
product of Equation IOA are always written down in the same
sequence, it is possible to attach a number 1to each term (1 = 1,2,
3,. . ., hk) unambiguously; qi(k,h) is then the 1-th perfusion of a

volume of the k-th generation of a tree dividing into h branches.
The probability (Pr) for the occurrence of a value of q is: Pr(q,(k,h))
= l/hk. The mean p. of the perfusions is always: p. = F/V.

Realizing that (analog to Eq. IOA):

Eq. 11A

we get for the variance cr^n) of the perfusions, where n is the
number of endbranches (n = hk):

= E((q,(k, h) - p.)2) = E(q,(k, h)2) - E2(q,(k, h))

Eq. 8A = Â£ q2(k, h) X Pr(q,(k, h)) - p.2 =

EPÃœ -1, Eq. 12A

where E is the expectation. The coefficient of variation v is:

o1hk)
v(n) = v(hk) = = p - 1, Eq. 13A

and reversed:

v2(hk) v2(n)+l

Eq. 14A
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The approximation (Â«*)holds good for v4(n)

gives:

Py=s

1. Equation 9A 6

Eq. 15A

The lower bound in Equation ISA represents the case of symmetric
subdivision (pn = pi2 = = pih = 1/h); the upper bound
represents the case of maximal asymmetric subdivision (pÂ¡,= pÂ¡2
= Pj3 =... = Pih-i = 0, pih = 1). The more asymmetrical the

subdivision is, the higher the value of v becomes. As long as the
subdivision is asymmetrical, v increases as n increases; if the
subdivision becomes symmetrical v stays constant. Therefore, v is
a monotonously nondecreasing function of n (Eqs. 13a and 15a).

If the fractions py are known, it is always possible to calculate
the coefficient of variation v directly from the pÂ¡jvalues (Equation
13A). However, if v is known as a function of n, the pÂ¡jvalues can
only be calculated for h = 2; the fractions can then be simplified
to pÂ¡and 1-pi (Fig. 2). Equation 10A gives the distribution of the
perfusiÃ³n.When h = 2, this distribution could be called (analogous
to the log-normal distribution) log-binomial distribution of Poisson
(JO), with the special property that the number of parameters is
generally less then k because the pÂ¡values are mutually related.

Combining Equations 14A and ISA with Equation 1, we get:
â€ž2D-2

1
+ 1

2vgx U
Eq. 16A

The lower bound is met for D S: l. The upper bound is only met
for all values of n for D < 1.5. So, 1 < D < 1.5; this is also valid
for more general versions of this model: h is not the same for each
generation and/or the dividing is not constant in a generation.
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