
tracer uptake measured from a large number of brain regions
and applied it to a large number of subjects. The purpose of the
new method was to reduce the large volume of SPECT data, to
analyze highly correlated data in an appropriate fashion, and to
avoid capitalizing on chance in the analyses, all of which are
challenges for data derived from functional imaging.

MATERIALSAND METhODS

Subjects
This study consisted of 152 (67 men, 85 women; age range

50â€”92yr). The distribution ofsubjects across this age range was as
follows: 50â€”55yr = 10, 56â€”60yr 12, 61â€”65yr = 10, 66â€”70
yr = 48, 71â€”75yr = 47, 76â€”80yr = 13, 80+ yr = 12. All subjects
were right handed.

Subjects were recruited primarily through the print media and
were screened first by a telephone interview. Subjects with a
histoiy of significant head trauma, neurological or psychiatric
illness, major medical disease (e.g., diabetes, pulmonary disease)
or use of medication with psychoactive properties (including
certain classes of antihypertensives) were excluded. Subjects with
mild medical conditions such as osteoporosis or arthritis were
included.

All subjects considered appropriate for further evaluation re
ceived a physical, neurologic and psychiatric assessment. In
addition, an EKG was performed and blood and urine specimens
were analyzed to rule out evidence of occult disease (e.g., urinal
ysis, CBC). Any subject found to have a clinically significant
abnormality based on this evaluation was excluded.

The potential participants also were administered a series of
standardized cognitive tests to identify subjects with evidence of
cognitive impairment. These included the vocabulary subtest of the
Wechsler Adult Intelligence Scale, Revised (WAIS-R) (14), the
Logical Memory Subtest of the Wechsler Memory Scale (WMS)
(15), the Rey-Osterreith Complex Figure Test (16) and the Mini
Mental State Exam (MMSE) (1 7). Any subjects with scores on
these tests that fell outside the normal range were eliminated. In
addition, the majority of the subjects were followed for 3 yr and
anyone who showed evidence of cognitive decline during that
interval was eliminated from the study.

These criteria resulted in a sample that was not representative of
the total population but rather of those individuals without evi
dence of major medical, neurologic or psychiatric disease. Table 1
presents the basic demographic and cognitive data pertaining to the
participants.

Approximately half of the subjects were recruited through the
Massachusetts Institute of Technology Clinical Research Center
(18) and half were recruited through the Gerontology Research
Unit of Massachusetts General Hospital. All participants signed
informed consent statements for the study.

The main objective of this study was to characterize changes in
brain perfusionassociatedwith normal agingand gender.Methods
PerfusionSPECTimagesusing @rc-hexamethy1propyleneamine
oume (HMPAO)were obtained from 152 healthysubjects (67 men,
85 women)aged 50-92 yr. An automated method was developedto
objectivelyassess imagedata from a largenumber of brain regions.
Imagedata were reduced with singularvalue decomposffion (SVD),
which produced 20 elgenvectors captunng 97.05% of the total
information content of 4320 regions from each subject. Subjects
were scored indMdually on each vector. Results Muftivarle@teanal
yses demonstrated that there were no significant differences in
whole-brain HMPAO uptake with age, but age-related regional
declineswere seen in lateralventricular regions.Women had higher
HMPAO uptake than men in eslimatesof global perfusionand
regional perfusion in the midcingulate/corpus callosum, inferior
temporal and inferior parietal areas.Conclusion: Thesediscrimina
tionsdemonstratethatsingularvaluedeompositionof SPECTdata
maybe usedto assessdifferencesin perfusionpatternsbetween
groups of subjects. They replicate several previous findings, both
with respect to age-relatedchanges in perfusionand with respectto
gender differences.Inaddition, they kienfify a pre@oualyunreported
genderdifferencein biparietalregions.
Key Words SPECT; technelium-99m-hexamethyl propyleneamine
oxime;aging;genderdifferences
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Normalagingresultsindetectablechangesinbrainstructure
and function. Numerous recent studies, using both CT and MRI
have demonstrated there is an age-related decrease in brain size
and an increase in cerebrospinal fluid space (1â€”4).There has
been less agreement about the nature of the functional differ
ences in brain metabolism with age. Using PET, some studies
have reported focal alterations in metabolic rates but no
evidence of an overall change with advancing age (5â€”7),while
others report decreased metabolism overall (8â€”10) and in
selected brain regions (10â€”13).

This study was undertaken to examine age-related differences
in brain perfusion, using SPECT. While PET has a greater
spatial resolution than SPECT, both measures are capable of
demonstrating regional differences in perfusion. Because it was
possible to obtain SPECT data from a substantial number of
individuals for this study ( 152 subjects), we also examined
gender differences.

Since we expected some ofthese differences to be difficult to
detect, we developed an automated method of analyzing radio
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GenderNumberAge (mean)Age (s.d.)Age (range)MMSE(mean)Male6770.347.9650-9229.26Female8570.697.3650-8829.21Total15270.557.5950-9229.23MMSE

= Mini-MentalStateExam.

TABLE I
Charactensticeof the Study Sample

SPECTAcquisition
All subjects (n = 152) were imaged using a digital dedicated

brain imaging instrument (CERESPECT, Digital Scintigraphics,
Inc., Waltham, MA) consisting of a stationary annular NAI crystal
and rotating collimator system (19). The measured resolution using
capillary line sources was 8.2 mm at center and 7.3 mm at 9 mm
from center for 99mTc(19â€”20).Images were acquired 20 mm after
injection of 20.0 mCi (Â±1.0 mCi) 99mTc@HMPAO(Ceretec, Am
ersham Ltd., Amersham, UK) with the subjects supine at rest, eyes
open, in a darkened room and with ambient white noise. Total
acquisition time was 30 mm.

Datasets were corrected for scatter and attenuation, recon
structed using filtered backprojection and displayed as a set of 64
slices ( 1.67-mm slice thickness) using a 128 X 128 matrix ( 1.66 X
1.66 X 2 mm pixels). Dataset anatomic orientation, surface
contouring and scaling procedures were performed as detailed
previously (21). Briefly, each dataset was oriented to a set of
spatial reference standards, based on a modification of a standard
atlas (22). The topmost slice representing activity from the thala
mus was defined as a reference slice and 10 slices (thickness = 5 X
1.67 mm = 8.54 mm) were defined above and below the reference
slice. Individual surface contouring accomplished scaling in x and
y planes, compensating for brain size differences between subjects.
A polar grid, consisting of spokes and contours, which was
concentric with and the same shape as the external contour, was
then superimposed on each summed slice. Forty-eight radial spokes
and nine bands were generated for each dataset, forming 432
macrovoxels per slice, and more than 10 slices, 4320 macrovoxels
per dataset.

Data Reduction of SPECT Information
This study used a technique known as singular value decompo

sition (SVD) to reduce the SPECT data from the 4320 macrovoxels
mentioned above to 20 vectors which represented 97% of the
variance. This method is described in detail below. These vectors
then were used to examine differences in rCBF related to age and
gender.

The SVD method can be considered an information-oriented
technique since it uses principal components analysis procedures
(PCA), a form of factor analysis, to concentrate information before
examining the primary analytic issues of interest (23â€”26).The two
most commonly used methods for analyzing SPECT and PET data
use morphologically-based measures (13,27) or criterion oriented
techniques, such as statistical parametric mapping (28â€”29).The
relative strengths and weaknesses of these techniques have been
discussed elsewhere (30). PCA has previously been applied to both
PET and SPECT data (31â€”33),but with a slightly different analytic
approach (i.e., measurements were made on brain regions that were
identified a priori).

The SVD approach was selected for the present analysis because
of its potential strengths in demonstrating results that are not
related to a specific group difference (i.e., criterion value) or
preselected morphological boundaries. It therefore seemed possible

that it might reveal differences between groups not previously
demonstrated by other techniques.

The first step in the analysis was to perform a z-score transfor
mation of the data, by subtracting the sample mean from the value
of each of the 4320 macrovoxels and dividing each resulting value
by the standard deviation of the sample. The centered data then
were divided by the square root of the sample size and subjected to
a singular value decomposition (23â€”26).This reduced the data to
its principal components. Although the SVD technique implicity
analyzes the intervoxel correlation matrix, it does so by operating
on the datamatrix itself, rather than on the covariancematrix, and
thus avoids the need to generate a matrix of more than 18 million
correlations. The mathematics of the procedure have been previ
ously described (24) and are briefly outlined in the Appendix.

In this study, the first 20 principal components generated by the
SVD procedure were used. This number was chosen because the
first 20 principal components captured 97.03% of the total data
variance for the sample. The principal components, called SPECT
vectors in this study, thus captured a substantial amount of the
information in the original dataset.

The 20 vectors were rotated using the Varimax procedure (34).
These rotated vectors retain the orthogonality of the original
vectors, but allow the captured variance to be distributed from
larger to smaller vectors, under the general rules ofsimple structure
(35). The rotation neither adds to nor subtracts from the total
information content of the vector ensemble, but merely redistrib
utes the variance. These orthogonal vectors represent 20 indepen
dent association patterns of macrovoxel activity. They are nonre
dundant, orthogonal representations of individual differences in
cerebral activity, as reflected by blood-flow activity common to all
subjects. Thus each vector is a natural, functional combination of
activity measures across macrovoxels that is independent of the
information in the other vectors. That is, the macrovoxels are
correlated within a vector, but the vectors are uncorrelated with one
another. Table 2 presents some of the statistical characteristics of
the vectors.

It should be noted that the vectors were not covaried for global
or whole-brain counts. This decision was based on the fact that the
macrovoxels are significantly spatially autocorrelated, and a co
variance adjustment could conceivably delete important informa
tion. The absence of a correction for mean level means that each
macrovoxel's perfusion contributes to the vectors. Thus, informa
tion about individual differences in overall perfusion rates are
embedded in the vectors. To determine the consequences of this
decision, a mean vector (i.e., a 2 1st vector) was created that
permitted a direct examination of intraindividual differences in
activity. The mean vector was developed by averaging the 4320
macrovoxels for each subject. Vector scores were then computed
for each individual on each of the 2 1 vectors. The vector scores
were used in all subsequent analyses.

The vector scores were calculated by multiplying the individu
al's perfusion in each of the 4320 macrovoxels by the weights for
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VectorSum
of

squaresVariance for rotatedloadings(%)Average loadingfactorMaximum loadingMinimum loadingVectornumberVOl2648.3961

.310.100.900.77VectorVOlV02976.9522.610260.900.46Vector
V02V03313.157.250.000.790.25Vector
V03V0422.780.53-0200.430.03Vector
V04V0528.490.66â€”0.230.620.04Vector
V05V0618.030.42â€”0.130.270.02Vector
V06V0730.770.71â€”0.170.480.06Vector
V07V0825.270.58â€”0.200.520.05Vector
V08V099.340.22â€”0.130.300.01Vector
V09V1O14.790.34â€”0.160.400.02Vector
V1OVi

116.790.39â€”0.200.180.01VectorViiV121
1.190.26â€”0.190.240.02VectorV12Vl315.710.36â€”0.220.440.01Vector

V13V147.650.18â€”0200.190.01Vector
V14V157.080.16â€”0.100.170.01Vector
V15V168.350.19â€”0.120.280.01Vector
V16Vi

715.080.35â€”0.1 10.260.03VectorV17Vl88.170.19â€”0.210.160.00Vector
V18V197.120.16â€”0.180.180.01Vector
Vl9V206.800.16â€”0.170.350.01Vector

V20Total4191.8897.03

TABLE 2
Characteristicsof the SPECTVectors After Vanmax Rotation

the normative sample, and summing them to form a linear weighted
sum (the resultant vector scores are z transformed as a result of this
procedure). Since there were 2 1 vectors for the normative sample,
each individual had 2 1 vector scores.

Statistical Analysis
The distribution of the SPECT data was examined to establish

that parametric data analysis procedures were appropriate. SPECT
vector 2 1, which represented the mean perfusion rates of the
subjects, was analyzed with analysis of variance (ANOVA) to
examine differences with age and gender. For these analyses, the
subjects were divided into two age groups, using 72 yr as the cutoff
point. There were 90 subjects under the age of 72 yr and 62
subjects who were 72 yr and over.

Then SPECT vectors 1â€”20were analyzed. First, multivariate
analysis of variance (MANOVA) was used to evaluate the manner
in which SPECT vectors 1â€”20varied with age and gender, with the
same grouping strategy as for the ANOVA. To examine age
effects, with age treated as a continuous variable, linear multipile
regression analysis was performed. Discriminant function analysis
also was used to examine differences among the subjects based on
age and gender. Finally, MANOVA was used to determine whether
the primary findings relating to age and gender differed on the
basis of the site at which the subjects had been recruited.

Backprojection of Discriminating SPECT Data
To facilitate the interpretation of the SPECT vectors, a method

of backprojecting the vectors that discriminated the groups was
developed that produced a map of the cerebral location of the
macrovoxels that contributed to each discrimination. To accom
plish this, the 20 discriminant weights derived from the discrimi
nant function analyses (described below) were multiplied by the
matrix of the vector loadings from the normative sample. This
yielded 4320 elements (actually correlations of each macrovoxel
with the discriminant score). An iterative surface matching algo
rithm then was used to generate a rigid body transformation of the
SPECT data on MRIs from five different subjects with differing
degrees of atrophy. Each MRI was scaled to the Tailarach coordi
nate system (22). All regions that had factor loadings greater than
0.20 were examined and the loading levels were displayed in color.
The superimposed images were reviewed in detail by a physician

with special expertise in neuroimaging. The brain regions were
labeled, based on those that were consistently identified across the
set of MRI images and Tailarach coordinates were provided (22).
All vectors were used for the backprojections, but were weighted
proportionate to their ability to discriminate. Thus, the SPECT data
were used to display the macrovoxels throughout the brain, in
terms of the differences among the groups.

It should be emphasized that this backprojection was not itself a
method ofdiscnminating the groups, but rather a method of portraying
the group differences that had been established by discriminant
function.Likewise,the vectors themselveswere not labeledbecause
the primary goal was to develop a method of combining them for
the purposes of discrimination. Thus, the figures below represent
the brain regions that were identified by combining all significant
vectors that contributed to a particular group discrimination.

RESULTS

Differences in SPECT Perfusion with Age
The multiway ANOVA of the SPECT mean vector (i.e., the

2 1st vector) demonstrated no significant difference with age in
the mean perfusion rate of the subjects (F (1, 140) = 0.01 ; p =
0.99). There also were no significant interaction effects.

A three-way MANOVA was then performed in which the
subjects were stratified by age (i.e., all subjects less than 72 yr
in one group and all subjects 72 yr or greater in another), gender
and nature of recruitment. In the MANOVA the 20 vector
scores (from vectors 1â€”20)were entered as dependent variables
simultaneously and each interaction term was tested for statis
tical significance.

There was a highly significant effect for age (F (20, 112) =
2.80; p 0.000l)and gender(F (20, 121) = 3.20; p 0.0001).
However, there were no significant interaction effects, indicat
ing that the age and gender effects did not vary significantly
with the site at which the sample was recruited.

To examine the age effect for vectors 1â€”20more closely, a
linear regression was performed in which age was treated as a
continuous variable. Table 3 presents the results of this regres
sion. In this regression gender was introduced as a control
variable, but its effect was negligible (i.e., beta = â€”0.03;t =
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TABLE 3 â€”0.36; p = 0.72). The results indicated a significant linear
MultipleRegression of Vectors 1â€”20withAge relationship between the SPECT vectors and age (r = 0.64; R2

= 0.41; F = 4.22; df = 21,130; p < 0.0001).p
Vector Beta r@ t value A discriminant function was computed to determine the

degree to which the subject's age group could be correctly
Vl4 0.38 0.27 4.35 0.0001 identified basedon SPECT vectors 1â€”20(i.e., < 72 yr versus
VOl 0.35 0.21 3.73 0.0003Vi7 0.27 0.16 3.19 0.0018 72 yr). The overall classification rate for the function, using
V05 â€”0.27 â€”0.08 â€”3.13 0.0022 eqUal apriori weights, was 76.9% and it was significant (Table
V18 0.21 â€”0.01 2.40 0.0176 4). The associated multiple correlation was 0.56. Four vectors
V13 â€”0.21 â€”0.33 â€”2.25 0.0260 were significant at the 5% level or greater. Together, these
Vi6 0.18 0.11 2.09 0.0388 results indicate that the 20-vector ensemble contained signifi
Vi2 â€”0.i6 â€”0.10 â€”1.97 0.0500 cant discriminatory information with regard to age. Table 4
V03 â€”0.16 â€”0.12 â€”1.96 0.0500 gives the parameters and their statistical significances for the
V08 0.18 0.04 1.89 0.0611
V04 â€”0.13 â€”0.20 â€”1.50 0.1349 two-age level discrimmant function. The weights are the stan
V2O 0.13 0.01 1.50 0.1356@ discriminant function weights. The loadings are the
V07 â€”0.14 â€”0.10 â€”1.41 0.1604 correlations of the vector variable with the discriminant score.
V06 â€”0.10 0.04 â€”123 02227 The correlations are the correlation with the vector and the
V09 â€”0.10 â€”0.03 â€”1.03 0.3046 dummy variable defining group. The t-values represent the
Vi 1 â€”0.06 0.14 â€”0.71 0.4816 significance level associated with each weight.
V19 â€”0.04 0.09 â€”0.43 0.6671@ examination of the backprojections of the discriminant
V02 â€”0.03 â€”0.07 â€”0.35 0.7281

scores from the significant discriminant functions indicated thatVl5 0.02 0.11 0.25 0.8054
Vl0 0.02 0.03 0.15 0.8812 age-relateddifferences primarily pertained to alterations in yen

tricular size. This was particularly striking in Vectors 2 and 3. This
A 0.64 age-related difference is shown graphically in Figure 1. In this
A-sq 0.41
F-ratio 4.2 f1@, the SPECT data were overlaid on a typical MRI scan.The
dfl 21 anatomical label assignedto the region was basedon the exami
df2 130 nation of the overlay on mulitiple MRI exemplars and on the

location of the SPECT region that was most statistically signifi
p < 0.0001 cant. The significant differences between the groups were highest

TABLE 4
DiscnminantFunctionAnalysisUsing SPECTVectors to Predict Age Group (< 72 vs. 72)

Vector Beta Load t p value

V14 0.66 0.34 0.22 3.32 0.0012
V17 0.47 0.19 0.12 2.40 0.0180
V02 â€”0.39 â€”0.26 â€”0.17 â€”2.06 0.0419
V12 â€”0.36 â€”0.20 â€”0.13 â€”1.96 0.0500
V05 -0.37 -0.05 -0.03 -1.84 0.0679
VOl 0.38 0.31 020 1.80 0.0740
V03 â€”0.34 â€”0.18 â€”0.12 â€”1.76 0.0813
V13 â€”0.34 â€”0.46 â€”0.30 â€”1.62 0.1067
V08 0.33 0.17 0.11 1.52 0.1316
V07 â€”0.34 â€”0.18 â€”0.12 â€”1.47 0.1447
V09 â€”0.29 â€”0.07 â€”0.05 â€”1.31 0.1918
V20 0.19 â€”0.01 0.00 0.94 0.3472
Vi0 0.18 0.03 0.02 0.75 0.4547
V16 0.15 0.02 0.02 0.74 0.4632
Vl9 0.15 023 0.15 0.72 0.4752
Vi8 0.13 â€”0.15 â€”0.10 0.65 0.5183
V15 0.04 0.03 0.02 023 0.8206
V06 -0.04 0.12 0.08 -0.22 0.8264
V04 0.03 â€”0.12 â€”0.08 0.17 0.8631
Vi 1 0.01 0.22 0.15 0.07 0.9422

A 0.56
A-sq 0.31
F-ratio 2.79
dfl 20
df2 121
p< 0.0001

%Correct
71yr 72.60%

>72yr 80.00%
Overall 76.90%
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VectorBetaLoadr@tpvalueV020.830.390.275.1

10.0001V12â€”0.48â€”0.21â€”0.15â€”2.760.0067Vi

10.460.370.262.470.0148V060.450.140.102.430.0163VOl0.510.210.152.400.01

79V160.410.090.072.180.0314V080.420.120.092.050.0421V15â€”0.31â€”0.17â€”0.12â€”1

.830.0703Vl0â€”0.390.010.01â€”1.710.0904V030.310.160.121.680.0964V200.260.150.101

.340.1834V050.220.060.041

.090.2768V070.23â€”0.02â€”0.021

.030.3064V19â€”0.160.020.02â€”0.790.4285Vi8â€”Oilâ€”0.06â€”0.04â€”0.580.5621V14â€”0.12â€”0.02â€”0.01â€”0.570.5727V04â€”0.090.030.02â€”0.460.6452V09-0.090.000.00-0.450.6557Ageâ€”0.070.000.00â€”0.360.7201V130.07â€”0.05â€”0.030.340.7324V17â€”0.04â€”0.07â€”0.05â€”0.230.8219R0.59R-sq0.35F-ratio3.2dfl20df2121p<0.0001%

Correct..Males85.10%Females68.20%Overall75.70%*Male

= 1;female= 2.

genders in the mean perfusion rate ofthe subjects (F (I , 140) =
13.7, p@ 0.0001). There was no significant interaction with the
age of the subjects (F ( I , 140) = 0.65, p = 0.52).

A discriminant function analysis then was performed with
Vectors 1â€”20to determine whether there were significant
differences between the genders. The overall classification rate
for the function,usingequal a priori weights, was 75.7% and it
was significant. The associated multiple correlation was 0.59.
Seven vectors were significant at the 5% level or greater.
Together, these results indicate that the 20-vector ensemble
contains significant discriminatory information with regard to
gender. Table 5 gives parameters and their statistical signifi
cances for the two-gender level discriminant function. The
weightsarethestandardize4discriminantfunctionweights.The
loadings are the correlations of the vector variable with the
discriminant score. The correlations are the correlation with the
vector and the dummy variable defining group. The t-values
represent the significance level associated with each weight.

Figures 2-4 represent backprojections of the discriminant
function representing the differences between the genders. The
data are overlaid on a typical MRI in sagittal section to display
the anatomical sources of the discriminating information. The
primary regional differences in rCBF between the genders
included higher rCBF levels in the women compared to the men
in the region of the mid cingulate/corpus callosum, the inferior
temporal lobe on the right, and the inferior parietal lobe
bilaterally (centered at Â±x = 30, y = â€”40,z = â€”40).The
SPECT data are overlaid on a typical MRI scan. The significant

FiGURE1.Thisfigurerepresentstheventricularareasthatdifferbetweenthe
subjectson the basisof age.All significantvectors,as shownin Table4,
contributedto the age group discrimination.The significantdifferences
betweenthe two agegroupswerehighest(Le.,mostdecreasedin older
subjectscomparedto youngerones)withinthe regionthat is the darkestand
lowest in the lighterareas.

(i.e., most decreased in older subjects compared to younger ones)
within the region that is the darkestand lowest in the lighter areas.

DifferencesinSPECTPerfusionby Gender
The analysis of the SPECT mean vector (i.e., the 21st vector)

by ANOVA demonstrated a significant difference between the

TABLE 5
DiscnminantFunctionAnalysis Using SPECTVectors to Predict Gender@
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FIGURE2.Thisfigurerepresentsthemidcingulat&corpuscallosalareathat
d@Iferedbetweenthe genders.All signthcantvectors,as shown in Table 5,
conthbutedto thegroupdiscrimination.Figures3 and4 alsodemonstrate
regionsthatdifferedbetweenthegenders.Threeseparatefiguresareusedto
portraythegroupdifferencesbecausethesignthcantregionsareanatomi
callydistilbutedanddifficultto showclearlyon onefigure.Thesignificant
differences between the genders were highest (i.e., most increased in
womencomparedto men)withintheregionthat is at thelighterendof the
spectrumandlowestwtthintheregionthat isdarkest.

differences between the groups were highest (i.e., most in
creased in women compared to men) within the region that is at
the lighter end ofthe spectrum and lowest within the region that
is darkest.

A separate analysis, in which the SPECT vectors were
established separately on men and women (data not shown)
indicated that the intercorrelation of the vector scores for men
and women was more than 75%. (In this latter instance, the
SPECT vectors were calculated in the same manner described
above, with the exception that the principal components were
calculated separately for the men and the women, thus permit
ting one to correlate the SPECT scores for the two groups with
one another).

Replication of Results
The prediction equations developed on the subjects described

above were tested for replicability on another sample of 62 (22

FIGURE 3. This figure representsthe nght infenortemporal region that differs
betweenthegenders.M significantvectors,asshowninTable5,contributed
tothegroupdiscrimination.Figures2 and4 alsodemonstrateregionsthat
differedbetweenthe genders.Theyare portrayedon three separatefigures
becausethe regionsare distributed anatomicallyand are difficult to show
clearlyononefigure.

FIGURE4. This figurerepresents the bilateralinferiorparietalregions that
differbetweenthe genders.,@JIsignificantvectors,as shownin Table5,
COntributedthe groupdiscrimination.Figures2 and 3 alsodemonstrate
regions that differed between the genders. They are portrayed on three
separate figures because the regions are anatomically distributed and
difficultto showclearlyononefigure.

men, 40 women). The age function classified 67% ofthe second
sample correctly into younger (age 71 yr) and older (age>
71 yr) individuals (chi square = 6.6, df = 1, p < 0.Ol)(NB: the
accuracy for the original sample was 76.9%). The gender
discriminant function classified 70% of the second sample
correctly (versus 75.7% accuracy for the original sample).

DISCUSSION
These results indicate that subjects 50 yr of age and over do

not demonstrate a significant overall decline in rCBF with
advancing age. There is, however, a regional rCBF difference,
primarily evident in the ventricular regions. These findings are
consistent with several previous reports using PET (9â€”13).
Studies that have reported an overall decline in rCBF with age
have generally included subjects in their 20s through 40s
(8â€”10).

In addition, differences in rCBF between the genders were
evident. These differences did not interact with age, but rather
pertainedto consistentdifferencesbetweengendersacrossthe
age range examined. There was a generally higher perfusion
rate among the women. This is consistent with previous studies
of CBF (36â€”37),but contrastswith most previous studiesof
glucose metabolism (8,10).

There also was evidence of some differences in rCBF
betweenthegendersthatwereregional,primarilyevidentinthe
area of the right mid cingulate/mid corpus callosum, the right
inferior temporal lobe and the inferior parietal lobe bilaterally.
Differences between the genders previously have been reported
in the region of the cingulate/corpus callosum (36) and the
temporallobe (10,33,36).Genderdifferencesin parietallobe
perfusion have not, to our knowledge, previously been de
scribed. There were, nevertheless, more similarities than differ
ences between the genders, as the intercorrelation of vectors
calculatedseparatelyformenandwomenwas over75%.

The results presented above must be considered in light of the
potential limitations of the study. The first pertains to the
generalizability of the findings. The study sample was screened
quite thoroughly to be free of any evidence of major disease.

These screening procedures have the effect of restricting the
range of the data and thus reducing the correlations in the

970 Tvii@JiflR\Â¼LOFNt'I I @RMEDICINEâ€¢Vol. 39 â€¢No. 6 June 1998

/@%@ 1.@@



sample (38). This, in turn, means that Type II error is increased
and power is reduced. Mitigating these effects is the size of the
sample, which is substantial, and the fact that highly significant
effects were found.

The second potential limitation pertains to issues related to
the SPECT technique itself. SPECT has less spatial resolution
than PET and thus fine distinctions regarding differences within
regions are not possible. Moreover, in this study regions were

not defined a priori, thus it may be possible that additional
regional differences would be evident if regions of interest were
drawn and SPECT perfusion then measured within a given
region, work that is currently underway. However, the fact that
these findings replicate many ofthose previously reported using
PET suggest that the present results are likely to be valid.

It should also be pointed out that the method of surface
contouring used to adjust for individual differences in brain size
used here, reduced the influence of atrophy at the boundary
between the cortex and subarachnoid space. Thus, the SPECT
measurements in cortex are likely to be primarily derived from
perfusion of brain, rather than a result of averaging brain and
CSF. However, contouring was not applied to ventricular
regions. Therefore, some of the SPECT vectors pertained to
differences in ventricular size and reflected age-related alter
ationsin theseregions,confirming numerouspreviousfindings.
To fully evaluate the contribution of atrophy, MRI registration
and volumetric correction of SPECT data would be required,
and was not possible in our study because MRIs were not
available in all subjects.

Lastly, one must consider a methodological issue raised by
this study. This pertains to the treatment ofthe individual global
mean perfusion, which is somewhat different than that of prior
studies (28,31â€”32). Various suggestions for the treatment of the

global mean have been proposed; they have included dividing
all regional values by the mean, creating a ratio between each
voxel and a representative region such as the cerebellum, and
treating the mean rCBF as a covariate. Each of these has merit
in particular situations. The present analysis examined issues
related to the global mean perfusion rate in two ways. It was
examined directly, by means of the mean vector (i.e., the 2 1st
vector), as described above. In addition, the global mean was
incorporated into the 20 vectors by means of the Varimax
rotation. This made it possible to explore the degree to which an
individual's perfusion rate was distributed across the vectors
and thus contributed to the group differences being examined.
An examination of the intercorrelation matrix of the 21 vectors
indicated that global mean perfusion rate was strongly cone
lated with vectors 1 through 3 (r@ 0.84, 0.36, 0.39, respec
tively). However, therewasconsiderableadditionalinformation
in these vectors. Thus, for example, vector 1 was significantly
related to age (p@ 0.0003) but this relationship did not derive
from an age-related decline in overall mean perfusion, since this
was not seen when examined directly.

CONCLUSION
These findings demonstrate that the SVD approach to SPECT

data analysis (which utilizes parsimonious statistical tests of
significance and is not based on multiple criterion oriented
statistical tests) can lead to meaningful discriminations between
groups of subjects. They replicate several previous findings,
both with respect to age-related changes in perfusion and with
respect to gender differences. In addition, they identify a
previously unreported gender difference in biparietal regions.
This may be related to numerous reports that men tend to
perform better than women on nonverbal tasks (39) and can be
explored in future analyses.
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APPENDIX

Principal Components Analysis
The SPECT analyses described in this manuscript are based

on principal components analysis (PCA) (40). Hotelling is
usually seen as the formulator ofthe modern procedure of PCA.
The theorem, which has been rediscovered many times, is
proved in Eckart (41 ). It shows that any real matrix may be
transformed into a set of left vectors (P), a set of right vectors
(Q')andadiagonalmatrixofroots(L).Thecontinuedproduct
of these matrices exactly reproduces the observed data (Z):

z = PLQ'. Eq. 1

If the raw (observed) data matrix, X, represents n rows of
observations by m columns of variables, is standardized so that
each variable has a zero mean and a unit variance, and we
further scale this by dividing each element by the square root of
the number of cases, this new matrix, Z, when premultiplied by
its transpose will form the matrix of variable intercorrelations:

R = Z'Z = QLP'PLQ' = QL2Q'. Eq. 2

Because P is orthonormal, when multiplied by its transpose an
identity matrix result. This is the correlational form of the
Eckart-Young Theorem and is sometimes written as:

where:

R = FF',

F = QL.

The columns of F are the well-known component loadings
which describe the correlation between each observed variable
and the latent variable component score. It is often the case that
fewer latent variables are retained than the maximum needed to
exactly reproduce the correlation matrix. In this situation the
correlation matrix is only approximately reproduced. Ifthe carat
represents approximation, then:

Bartlett's (42) test of significance may be used to determine
the adequacyof the approximationof R.

SIngular Value Decomposition
There are several methods for finding the latent roots and

vectors of the data matrix that results from the above proce
dures. In the usual case where there are more observations than
variables (i.e., n > rn), it is more efficient to generate an
associated matrix, as the correlation matrix, and to use Equation
2. However, when the number of variables is very large and the
number of cases modest, the computer resources needed to
solve Equation 2 may be prohibitive.

One solution to this problem is to solve Equation 1 directly.
This is known as the singular value decomposition technique
(SVD) (22,23). The number of nonzero latent variables (roots)
can be no larger than n or m, whichever is the smaller. If the
data are centered, by subtracting the mean from each value, then
it is n â€”1 or m whichever is the smaller.

If we have a set of measures (e.g., regional cerebral blood
flow measures within each macrovoxel), we may compute the
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linear function of these values, which represents the first
principal component. There are three common forms of the
scores: the raw data as gathered, the mean centered data, or the
standardized data which is the mean centered data divided by
the standard deviation of the sample. The latter is used in the
present analyses. If these scores are scaled by dividing by the
square root of the number of cases, we have the n-rowed by
rn-columned matrix Z:

R = Z'Z = QL2Q'.

The L-square represent the so-called latent roots or eigenvalues
of the matrix R and:

z = PLQ'.
As Z is an n-by-rn matrix so is PLQ' and we can get Q without
forming the large rn-by-rn matrix. A smaller number of com
ponents may then be selected that account for a substantial
portion ofthe total variance (information). The resultant vectors
may then be rotated to simple structure (34). In addition, the Q
vectors may be used to compute component scores for each
member ofthe sample or subjects outside the analytical sample,
The component scores are just the projections of each subject's
scorevector on the componentaxes. If k axes are retained,k
scores will be computed, k being less than rn. As the Q vectors
are the direction cosines between the variable vectors and the
components,the P vectorsare the directioncosinesbetweenthe
subject vectors and the components. In one standardization or
another these are the component scores. In standard form these
scores will be:

S = \/@1ZQL

(n*k) = (n*rn)(rn*k)(k*k).

Here k is the number of retained components. The matrix of
components scores, standardized to unit variance and zero
mean, may then be used to stand for the information contained
in the rn original data scores. These scores are orthogonal to one
another, hence represent independent contributions to whatever
criterion they are used to predict. The above may be rewriten as:

S = XF(F'FY',

ft

Sik@ CjXjj,

j=I

where rn is the number of variables, I and k represent the
individualandkthevectorcomponent.Thecs aretheso-called
score coefficients which are the entries of FL2.

In the present analysis 20 latent roots or vectors were
retained, which accounted for 97.03% of the total variance in
the 4320 SPECT macrovoxels.

Varimax Rotation
Thurstone proposed a set ofrules forjudging whether a set of

latent variables are satisfactorily described by the observed
variables (34). According to these procedures, it is both
legitimate and desirable to refine the latent variables generated
by PCA by further rotation of the component axes to achieve
simple structure. Basically this involves taking variance from
the larger components and distributing it to other components in
such a manner as to enhance interpretability. One way to
accomplish this is with the Varimax procedure (33,43). When
there is a rotation of the loading matrix, F, the scores may be
estimated by several alternative procedures, the most common
of which is the regression method. This is the method that was

used in the present manuscript after a Varimax rotation to
simple structure.

In equation form the rotation is simply:

B = FT.

Here B is an rn-by-k matrix of rotated loadings, F is the original
rn-by-k principal component loadings and T is the k-by-k
orthogonal transformation matrix derived by the Varimax
analytical procedure. The matrix B is the orthogonal since it
results from the multiplication of two orthogonal matrices. It
containsno lessnor more informationthan was in the original
matrix, F, but the information is redistributed to conform to the
rules of simple structure. If one had no interest in interpreting
the individual vectors then rotation would be unnecessary as the
prediction of the entire set of latent variables (e.g., the 20
SPECT vectors) for any given dependent variable would be the
same whether rotated or unrotated. A similar set of rotated
scores may be computed from:

V = XB(B'B)'.

These scores may be used to predict a dependent criterion.

Backprojection of Discriminating Data
A method of backprojecting the rotated vectors onto the

cerebral locations of the macrovoxels was developed for the
present study to identify the brain regions implicated by the
analyses. For example, if one discovers some linear combina
tion of vector scores which optimally and significantly predict
a continuous criterion, as in a regression model, or group
membership, as in a discriminant model, then one may apply
the derived beta weights or standardized discriminant weights
to the vector scores to compute a composite score of best
prediction. Thus, if the discriminant score be known as d, and
is a linear functionof the vector scores,V, Then:

ft

d,=@
j=1

Here the betas are the optimized weights and the vs are the
vector scores. In matrix notation this is:

d = Vj3'.

The loadings (i.e., correlations) for the original (macrovoxel)
variables on the transformed scores are the correlations for the
d scores with the original, X, scores.

d'X
R1= -@.

Nrr@

Here we assume that each of the scores in the matrix X has unit
variance, but d need not. By substitution of appropriate above
formulae in this equation we may derive a simple expression for
the backprojection of the d scores onto the original macrovox
els, X;

f3V'X P(B'BY' B'X'X
R1= =

Nud No@d

/3(T'F'FT1T'F'X'X 13(T'L2TYâ€˜T'F'FF'(N)
R1= =

Nod Ncrd

R = @(T'L2T)@T'F'L2 @T'F' 1313'

I @d Â°d @d

The rotated loadings are premultiplied by the appropriate
weights (betas), to yield a set of correlations, in this case, for
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each of the 4320 macrovoxels with the particular score of
prediction.The betasare of order 1 by 20, the rotatedloadings,
B-prime, in the present analyses. The values of these loadings
(correlations) represent the degree to which (jositively or
negatively) a given macrovoxel defines a high score on the d
variable. If these are plotted on the original map they portray a
profile ofhigh scores. When these are overlaid on a typical MRI
one may determine the general anatomical areaswhich are
contributing most to d, hence defining it.
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