University for their advice and support. We thank Max Brandt for linguistic revision. This study received financial support from Akademiska Sjukhuset, Uppsala University, Uppsala, Sweden.

REFERENCES

Iodine-131-Metaiodobenzylguanidine Uptake in Metastatic Carcinoid Tumor to the Orbit

Michael W. Hanson, Andrew M. Schneider, David S. Enterline, Jerome M. Feldman and Jon P. Gockerman

Division of Nuclear Medicine, Department of Radiology, Divisions of Endocrinology and Oncology, Department of Medicine, Duke University Medical Center, Durham, North Carolina

Metastatic tumor is one of several etiologies of space-occupying masses in the orbit that accounts for 1%-13% of all orbital masses (1). In the adult patient population, breast cancer is the most common tumor to metastasize to the orbit followed by metastases from the lung, prostate and gastrointestinal tract (2). It is rare for carcinoid tumors to metastasize to the eye or to the orbit. Carcinoid tumors arise from Kulchitsky cells that originate in the neural crest. Histologically, these tumors resemble, but are not as aggressive as, adenocarcinomas. Most carcinoids arise in the gastrointestinal tract or the lung. The most common site for carcinoid metastases is the liver. On anatomical imaging studies, such as CT and magnetic resonance imaging, metastatic orbital carcinoid tumors appear as nonspecific tumor masses. Carcinoid tumors have an affinity for uptake of the radiopharmaceutical 131I-metaiodobenzylguanidine (MIBG) (3). We report a case of a patient with a known carcinoid tumor who developed a left orbital mass that demonstrated abnormal uptake of 131I-MIBG indicative of metastatic carcinoid tumor to the orbit.

Key Words: carcinoid tumor; orbital metastasis; iodine-131 metaiodobenzylguanidine
CASE REPORT

A 76-yr-old man presented with a history of peripheral visual impairment of his left eye for 2 yr and diplopia for 3 mo. Twenty-three years prior to presentation, the patient had a carcinoid tumor diagnosed following a resection of a mesenteric mass found incidentally at the time of an appendectomy for acute appendicitis. Follow-up surgery, after resection of the small mesenteric mass, revealed a 3.2-cm primary carcinoid tumor of the ileum that was resected along with part of the ileum and colon. Retroperitoneal lymph nodes were positive for a carcinoid tumor. Subsequent laboratory analysis revealed elevated urinary excretion of 5-hydroxyindoleacetic acid (5-HIAA) and elevated platelet serotonin concentration.

Clinically, the patient had tolerated his carcinoid for many years and had only required therapy for symptom relief primarily related to diarrhea. He had not required antineoplastic chemotherapy. Other medical problems included recurrent gastrointestinal bleeding from varices at the junction of his ileal anastomosis, a myocardial infarction, hyperthyroidism and pulmonary tuberculosis. At the time of imaging, physical examination revealed proptosis and strabismus of his left eye and an inability to adduct his left eye. A brain magnetic resonance imaging (MRI) study revealed a left orbital mass.

Subsequently, a whole-body 131I-metaiodobenzylguanidine (MIBG) scan and a dedicated orbital MRI scan were obtained. The MRI scan (Signa 1.5 T, 5.4 software; General Electric, Milwaukee, WI) (Fig. 1) demonstrated a 2.0 × 2.7 × 1.8-cm mass lesion in the medial left orbit that involved both the medial rectus and superior oblique muscles. There was left orbital proptosis. The left globe and the optic nerve were laterally displaced though not infiltrated. Intracanal fat signal was normal. The right orbit was normal. Images from the whole-body 131I-MIBG scan acquired on a 180° opposing dual-head gamma camera (Vision T-22: SMV America; Twinsburg, OH) at 24 and 48 hr after the intravenous injection of 74.0 MBq (2.0 mCi) of 131I-MIBG are shown in Figures 2 and 3. These images demonstrated multiple areas of abnormal 131I-MIBG accumulation that included the peritoneum, liver, pericardium and left superior mediastinum supraclavicular region. Asymmetric tracer accumulation in the region of the parotid glands was due to prior surgical removal of the right parotid gland. There was prominent focal abnormal accumulation of 131I-MIBG in the medial left orbit corresponding to the mass in this location on the MRI.

DISCUSSION

The MRI is the anatomical imaging modality of choice for orbital imaging. Its main advantage is its ability to provide exquisite soft tissue contrast that generates differential characteristics of orbital tumors that cannot be distinguished by CT. Other advantages include the multiplanar imaging capability of MRI, the lack of ionizing radiation and the avoidance of iodinated contrast agents (4).

Despite the ability of MRI to differentiate many different tumors by MR signal characteristics, a definitive tumor diagnosis is often not possible with MRI alone. MRI of orbital metastatic lesions, in general, usually demonstrates an irregular, infiltrating and nonencapsulated tumor that often involves the extraocular muscles. However, metastatic carcinoid may demonstrate a well-circumscribed appearance (5). Metastatic tumors typically have an isointense T1 signal and a mildly hyperintense T2 signal relative to the extraocular muscles (5). Orbital carcinoid metastases, however, can show decreased signal intensity on T2-weighted images (5). Other tumors with similar signal characteristics to the carcinoid include idiopathic inflammatory orbital pseudotumor, Graves’ ophthalmopathy and rhabdomyosarcoma (6). There are no specific MRI signal characteristics that distinguish the orbital metastatic carcinoid tumor.

Carcinoid tumors belong to a group of tumors known as Apudomas, all of which are thought to arise from cells in the neural crest. This group of tumors share many characteristics including the presence of a cell membrane neuronal pump mechanism that allows the cells to accumulate norepinephrine. Norepinephrine is stored in neurosecretory granules and is subsequently secreted. Some of the secreted norepinephrine is taken up by adrenergic cells and stored again in these granules. The success of 131I-MIBG as an imaging agent is derived from its chemical similarities to norepinephrine, with which it com-

FIGURE 1. (A) Axial T1-weighted MRI of the orbit. There is an expansile left orbital mass involving the medial rectus muscle (arrow), which is isointense to the extraocular muscles. (B) Axial T1-weighted fat-suppressed MRI of the orbit. The left orbital mass homogeneously enhances.
metastatic carcinoid tumor to the orbit must be a diagnostic consideration in patients who present with an orbital mass and known metastatic carcinoid tumor. Other pathology must also be considered that cannot be excluded adequately by the findings on CT or MRI alone. Additional information that could further characterize these orbital masses would be helpful to evaluate these patients. The additional information that can be gained from the whole-body 131I-MIBG scan includes: (a) additional specificity and increased confidence in a noninvasive diagnosis of metastatic carcinoid as the etiology of the mass identified on CT or MRI, (b) identification and localization of other sites of metastatic carcinoid detected by the whole-body imaging capabilities of 131I-MIBG and (c) determination of the 131I-MIBG uptake characteristics of the orbital mass in consideration for possible administration of high-dose 131I-MIBG therapy (12,13).

REFERENCES
Prostate Cancer Abdominal Metastases Detected with Indium-111 Capromab Pendetide

George H. Hinkle, John K. Burgers, John O. Olsen, Bonnie S. Williams, Renita A. Lamatrice, Rolf F. Barth, Barbara Rogers and Robert T. Maguire

Departments of Radiology and Pathology, The Ohio State University Medical Center, Columbus; Urologic Surgeons, Inc., Columbus, Ohio; and Cytogen Corporation, Princeton, New Jersey

To provide appropriate therapy for prostate cancer, accurate staging of the patient’s disease is essential. Determination of tumor size, location, periprostatic extension and metastatic disease in the skeleton and soft tissue are needed to stage properly. Current diagnostic modalities may lead to underestimating in 40%–70% of prostate cancer. Detection of metastatic disease, both at the time of initial diagnosis and in patients with suspected local recurrence, can significantly alter the type of therapy given. Clinical studies using the 111In-labeled immunonconjugate, MAB 7E11-CS.3-GYK-DTPA (capromab pendetide), have shown the superiority of radioimmunoscinography over other diagnostic modalities in the detection of both primary and metastatic prostate cancer. Radioimmunoscinigraphy with capromab pendetide depends on expression of tumor-associated antigen rather than lesion size. Earlier detection of extraprostatic invasion and metastases by means of radioimmunoscinigraphy provides valuable information for treatment decisions. A case of metastatic prostate cancer in the abdomen of a patient without local disease, in which the extent of disease was confirmed at autopsy after sudden cardiac arrest, is presented.

Key Words: prostate cancer; indium-111; capromab pendetide; radioimmunoscinigraphy

CASE REPORT

A 50-yr-old man was found on routine physical examination to have an elevated prostate-specific antigen (PSA) level (20.3 ng/ml) and an enlarged prostate by digital rectal examination. After biopsy, the initial diagnosis was moderately-to-poorly differentiated prostatic carcinoma involving both lobes. His past medical history was otherwise unremarkable and he was not taking any medication. CT of the abdomen and pelvis and a radionuclide bone scan revealed no evidence of metastatic disease. A radical prostatectomy was performed, and histopathologic examination showed a solitary micrometastasis in a left obturator lymph node. Moderately differentiated (Gleason 6) adenocarcinoma was found in both prostatic lobes. Local margins were free of tumor including urethral and bladder margins (Stage 4, T3, N1, M0). Postoperatively, the patient did well clinically and his postoperative 1-mo PSA level was < 0.5 ng/ml. However, 5 mo after surgery, the PSA had increased to 1.4 ng/ml and at 8 mo it had risen to 2.4 ng/ml. Needle biopsy of the prostatic bed was negative. Radionuclide bone scan disclosed no evidence of skeletal metastatic disease.

The patient was enrolled in a clinical study involving radioimmunoscinigraphy with 111In capromab pendetide. This recently FDA-approved radiopharmaceutical is composed of the antibody, 7E11.C5, which recognizes PSMA or prostate-specific membrane antigen (PSMA). At this time, his PSA level was 6.1 ng/ml and peroxidase-antiperoxidase (PAP) level was 0.3 U/liter. No other lab values were abnormal. The patient denied bone pain, weight loss and urologic symptoms. An MRI of the abdomen and pelvis showed no evidence of lymphadenopathy. The patient received 203.5 MBq (5.5 mCi) 111In capromab pendetide and whole-body and SPECT images were completed 4 days later. Uptake was noted in the upper abdomen at the level of the upper pole of the left kidney (Figs. 1 and 2). A second finding was an increased uptake at the aortic bifurcation (Figs. 2 and 3).

Based on these results, the patient was started on hormonal therapy. Four days later, he died at home of sudden cardiac arrest. At autopsy, no grossly residual tumor was identified in the pelvic cavity. Several enlarged periaortic lymph nodes were found in the upper left abdomen corresponding to positive uptake on the nuclear medicine images. Metastatic prostate cancer was identified in two of these, as well as in two of four nodes at the level of the aortic bifurcation. A solitary 1-cm nodule with central necrosis that was shown to be a benign adenoma was identified in the lower pole of the left kidney.

Samples of the tumor-positive periaortic and aortic-bifurcation lymph nodes were sent for PSMA and PSA expression determination along with a portion of the left kidney mass. Two lymph nodes from the aortic bifurcation area showed approximately 70% of the cells positive for PSMA with moderate (2+) to strong (3+) staining intensity. All tumor cells also were PSA (+) and displayed strong (3+) stain intensity. A third lymph node from the same area was negative for both tumor and PSMA and PSA staining. Two lymph nodes from the periaortic area showed 90% of the tumor cells positive for PSMA with moderate (2+) to strong (3+) staining intensity. A small foci of tumor in a third lymph node also stained positive for PSMA. All three nodes stained 100% for PSA with a strong (3+) staining intensity. As expected, the adenoma of the left kidney was nonreactive.